Inzynierka/Lib/site-packages/pandas/tests/plotting/test_datetimelike.py

1515 lines
54 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
""" Test cases for time series specific (freq conversion, etc) """
from datetime import (
date,
datetime,
time,
timedelta,
)
import pickle
import numpy as np
import pytest
from pandas._libs.tslibs import (
BaseOffset,
to_offset,
)
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
NaT,
Series,
concat,
isna,
to_datetime,
)
import pandas._testing as tm
from pandas.core.indexes.datetimes import (
DatetimeIndex,
bdate_range,
date_range,
)
from pandas.core.indexes.period import (
Period,
PeriodIndex,
period_range,
)
from pandas.core.indexes.timedeltas import timedelta_range
from pandas.tests.plotting.common import TestPlotBase
from pandas.tseries.offsets import WeekOfMonth
@td.skip_if_no_mpl
class TestTSPlot(TestPlotBase):
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_ts_plot_with_tz(self, tz_aware_fixture):
# GH2877, GH17173, GH31205, GH31580
tz = tz_aware_fixture
index = date_range("1/1/2011", periods=2, freq="H", tz=tz)
ts = Series([188.5, 328.25], index=index)
_check_plot_works(ts.plot)
ax = ts.plot()
xdata = list(ax.get_lines())[0].get_xdata()
# Check first and last points' labels are correct
assert (xdata[0].hour, xdata[0].minute) == (0, 0)
assert (xdata[-1].hour, xdata[-1].minute) == (1, 0)
def test_fontsize_set_correctly(self):
# For issue #8765
df = DataFrame(np.random.randn(10, 9), index=range(10))
fig, ax = self.plt.subplots()
df.plot(fontsize=2, ax=ax)
for label in ax.get_xticklabels() + ax.get_yticklabels():
assert label.get_fontsize() == 2
def test_frame_inferred(self):
# inferred freq
idx = date_range("1/1/1987", freq="MS", periods=100)
idx = DatetimeIndex(idx.values, freq=None)
df = DataFrame(np.random.randn(len(idx), 3), index=idx)
_check_plot_works(df.plot)
# axes freq
idx = idx[0:40].union(idx[45:99])
df2 = DataFrame(np.random.randn(len(idx), 3), index=idx)
_check_plot_works(df2.plot)
# N > 1
idx = date_range("2008-1-1 00:15:00", freq="15T", periods=10)
idx = DatetimeIndex(idx.values, freq=None)
df = DataFrame(np.random.randn(len(idx), 3), index=idx)
_check_plot_works(df.plot)
def test_is_error_nozeroindex(self):
# GH11858
i = np.array([1, 2, 3])
a = DataFrame(i, index=i)
_check_plot_works(a.plot, xerr=a)
_check_plot_works(a.plot, yerr=a)
def test_nonnumeric_exclude(self):
idx = date_range("1/1/1987", freq="A", periods=3)
df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]}, idx)
fig, ax = self.plt.subplots()
df.plot(ax=ax) # it works
assert len(ax.get_lines()) == 1 # B was plotted
self.plt.close(fig)
msg = "no numeric data to plot"
with pytest.raises(TypeError, match=msg):
df["A"].plot()
@pytest.mark.parametrize("freq", ["S", "T", "H", "D", "W", "M", "Q", "A"])
def test_tsplot_period(self, freq):
idx = period_range("12/31/1999", freq=freq, periods=100)
ser = Series(np.random.randn(len(idx)), idx)
_, ax = self.plt.subplots()
_check_plot_works(ser.plot, ax=ax)
@pytest.mark.parametrize(
"freq", ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
)
def test_tsplot_datetime(self, freq):
idx = date_range("12/31/1999", freq=freq, periods=100)
ser = Series(np.random.randn(len(idx)), idx)
_, ax = self.plt.subplots()
_check_plot_works(ser.plot, ax=ax)
def test_tsplot(self):
ts = tm.makeTimeSeries()
_, ax = self.plt.subplots()
ts.plot(style="k", ax=ax)
color = (0.0, 0.0, 0.0, 1)
assert color == ax.get_lines()[0].get_color()
def test_both_style_and_color(self):
ts = tm.makeTimeSeries()
msg = (
"Cannot pass 'style' string with a color symbol and 'color' "
"keyword argument. Please use one or the other or pass 'style' "
"without a color symbol"
)
with pytest.raises(ValueError, match=msg):
ts.plot(style="b-", color="#000099")
s = ts.reset_index(drop=True)
with pytest.raises(ValueError, match=msg):
s.plot(style="b-", color="#000099")
@pytest.mark.parametrize("freq", ["ms", "us"])
def test_high_freq(self, freq):
_, ax = self.plt.subplots()
rng = date_range("1/1/2012", periods=100, freq=freq)
ser = Series(np.random.randn(len(rng)), rng)
_check_plot_works(ser.plot, ax=ax)
def test_get_datevalue(self):
from pandas.plotting._matplotlib.converter import get_datevalue
assert get_datevalue(None, "D") is None
assert get_datevalue(1987, "A") == 1987
assert get_datevalue(Period(1987, "A"), "M") == Period("1987-12", "M").ordinal
assert get_datevalue("1/1/1987", "D") == Period("1987-1-1", "D").ordinal
def test_ts_plot_format_coord(self):
def check_format_of_first_point(ax, expected_string):
first_line = ax.get_lines()[0]
first_x = first_line.get_xdata()[0].ordinal
first_y = first_line.get_ydata()[0]
assert expected_string == ax.format_coord(first_x, first_y)
annual = Series(1, index=date_range("2014-01-01", periods=3, freq="A-DEC"))
_, ax = self.plt.subplots()
annual.plot(ax=ax)
check_format_of_first_point(ax, "t = 2014 y = 1.000000")
# note this is added to the annual plot already in existence, and
# changes its freq field
daily = Series(1, index=date_range("2014-01-01", periods=3, freq="D"))
daily.plot(ax=ax)
check_format_of_first_point(ax, "t = 2014-01-01 y = 1.000000")
tm.close()
@pytest.mark.parametrize("freq", ["S", "T", "H", "D", "W", "M", "Q", "A"])
def test_line_plot_period_series(self, freq):
idx = period_range("12/31/1999", freq=freq, periods=100)
ser = Series(np.random.randn(len(idx)), idx)
_check_plot_works(ser.plot, ser.index.freq)
@pytest.mark.parametrize(
"frqncy", ["1S", "3S", "5T", "7H", "4D", "8W", "11M", "3A"]
)
def test_line_plot_period_mlt_series(self, frqncy):
# test period index line plot for series with multiples (`mlt`) of the
# frequency (`frqncy`) rule code. tests resolution of issue #14763
idx = period_range("12/31/1999", freq=frqncy, periods=100)
s = Series(np.random.randn(len(idx)), idx)
_check_plot_works(s.plot, s.index.freq.rule_code)
@pytest.mark.parametrize(
"freq", ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
)
def test_line_plot_datetime_series(self, freq):
idx = date_range("12/31/1999", freq=freq, periods=100)
ser = Series(np.random.randn(len(idx)), idx)
_check_plot_works(ser.plot, ser.index.freq.rule_code)
@pytest.mark.parametrize("freq", ["S", "T", "H", "D", "W", "M", "Q", "A"])
def test_line_plot_period_frame(self, freq):
idx = date_range("12/31/1999", freq=freq, periods=100)
df = DataFrame(np.random.randn(len(idx), 3), index=idx, columns=["A", "B", "C"])
_check_plot_works(df.plot, df.index.freq)
@pytest.mark.parametrize(
"frqncy", ["1S", "3S", "5T", "7H", "4D", "8W", "11M", "3A"]
)
def test_line_plot_period_mlt_frame(self, frqncy):
# test period index line plot for DataFrames with multiples (`mlt`)
# of the frequency (`frqncy`) rule code. tests resolution of issue
# #14763
idx = period_range("12/31/1999", freq=frqncy, periods=100)
df = DataFrame(np.random.randn(len(idx), 3), index=idx, columns=["A", "B", "C"])
freq = df.index.asfreq(df.index.freq.rule_code).freq
_check_plot_works(df.plot, freq)
@pytest.mark.parametrize(
"freq", ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
)
def test_line_plot_datetime_frame(self, freq):
idx = date_range("12/31/1999", freq=freq, periods=100)
df = DataFrame(np.random.randn(len(idx), 3), index=idx, columns=["A", "B", "C"])
freq = df.index.to_period(df.index.freq.rule_code).freq
_check_plot_works(df.plot, freq)
@pytest.mark.parametrize(
"freq", ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
)
def test_line_plot_inferred_freq(self, freq):
idx = date_range("12/31/1999", freq=freq, periods=100)
ser = Series(np.random.randn(len(idx)), idx)
ser = Series(ser.values, Index(np.asarray(ser.index)))
_check_plot_works(ser.plot, ser.index.inferred_freq)
ser = ser[[0, 3, 5, 6]]
_check_plot_works(ser.plot)
def test_fake_inferred_business(self):
_, ax = self.plt.subplots()
rng = date_range("2001-1-1", "2001-1-10")
ts = Series(range(len(rng)), index=rng)
ts = concat([ts[:3], ts[5:]])
ts.plot(ax=ax)
assert not hasattr(ax, "freq")
def test_plot_offset_freq(self):
ser = tm.makeTimeSeries()
_check_plot_works(ser.plot)
dr = date_range(ser.index[0], freq="BQS", periods=10)
ser = Series(np.random.randn(len(dr)), index=dr)
_check_plot_works(ser.plot)
def test_plot_multiple_inferred_freq(self):
dr = Index([datetime(2000, 1, 1), datetime(2000, 1, 6), datetime(2000, 1, 11)])
ser = Series(np.random.randn(len(dr)), index=dr)
_check_plot_works(ser.plot)
@pytest.mark.xfail(reason="Api changed in 3.6.0")
def test_uhf(self):
import pandas.plotting._matplotlib.converter as conv
idx = date_range("2012-6-22 21:59:51.960928", freq="L", periods=500)
df = DataFrame(np.random.randn(len(idx), 2), index=idx)
_, ax = self.plt.subplots()
df.plot(ax=ax)
axis = ax.get_xaxis()
tlocs = axis.get_ticklocs()
tlabels = axis.get_ticklabels()
for loc, label in zip(tlocs, tlabels):
xp = conv._from_ordinal(loc).strftime("%H:%M:%S.%f")
rs = str(label.get_text())
if len(rs):
assert xp == rs
def test_irreg_hf(self):
idx = date_range("2012-6-22 21:59:51", freq="S", periods=100)
df = DataFrame(np.random.randn(len(idx), 2), index=idx)
irreg = df.iloc[[0, 1, 3, 4]]
_, ax = self.plt.subplots()
irreg.plot(ax=ax)
diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
sec = 1.0 / 24 / 60 / 60
assert (np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all()
_, ax = self.plt.subplots()
df2 = df.copy()
df2.index = df.index.astype(object)
df2.plot(ax=ax)
diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
assert (np.fabs(diffs[1:] - sec) < 1e-8).all()
def test_irregular_datetime64_repr_bug(self):
ser = tm.makeTimeSeries()
ser = ser[[0, 1, 2, 7]]
_, ax = self.plt.subplots()
ret = ser.plot(ax=ax)
assert ret is not None
for rs, xp in zip(ax.get_lines()[0].get_xdata(), ser.index):
assert rs == xp
def test_business_freq(self):
bts = tm.makePeriodSeries()
_, ax = self.plt.subplots()
bts.plot(ax=ax)
assert ax.get_lines()[0].get_xydata()[0, 0] == bts.index[0].ordinal
idx = ax.get_lines()[0].get_xdata()
assert PeriodIndex(data=idx).freqstr == "B"
def test_business_freq_convert(self):
bts = tm.makeTimeSeries(300).asfreq("BM")
ts = bts.to_period("M")
_, ax = self.plt.subplots()
bts.plot(ax=ax)
assert ax.get_lines()[0].get_xydata()[0, 0] == ts.index[0].ordinal
idx = ax.get_lines()[0].get_xdata()
assert PeriodIndex(data=idx).freqstr == "M"
def test_freq_with_no_period_alias(self):
# GH34487
freq = WeekOfMonth()
bts = tm.makeTimeSeries(5).asfreq(freq)
_, ax = self.plt.subplots()
bts.plot(ax=ax)
idx = ax.get_lines()[0].get_xdata()
msg = "freq not specified and cannot be inferred"
with pytest.raises(ValueError, match=msg):
PeriodIndex(data=idx)
def test_nonzero_base(self):
# GH2571
idx = date_range("2012-12-20", periods=24, freq="H") + timedelta(minutes=30)
df = DataFrame(np.arange(24), index=idx)
_, ax = self.plt.subplots()
df.plot(ax=ax)
rs = ax.get_lines()[0].get_xdata()
assert not Index(rs).is_normalized
def test_dataframe(self):
bts = DataFrame({"a": tm.makeTimeSeries()})
_, ax = self.plt.subplots()
bts.plot(ax=ax)
idx = ax.get_lines()[0].get_xdata()
tm.assert_index_equal(bts.index.to_period(), PeriodIndex(idx))
def test_axis_limits(self):
def _test(ax):
xlim = ax.get_xlim()
ax.set_xlim(xlim[0] - 5, xlim[1] + 10)
result = ax.get_xlim()
assert result[0] == xlim[0] - 5
assert result[1] == xlim[1] + 10
# string
expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
ax.set_xlim("1/1/2000", "4/1/2000")
result = ax.get_xlim()
assert int(result[0]) == expected[0].ordinal
assert int(result[1]) == expected[1].ordinal
# datetime
expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
ax.set_xlim(datetime(2000, 1, 1), datetime(2000, 4, 1))
result = ax.get_xlim()
assert int(result[0]) == expected[0].ordinal
assert int(result[1]) == expected[1].ordinal
fig = ax.get_figure()
self.plt.close(fig)
ser = tm.makeTimeSeries()
_, ax = self.plt.subplots()
ser.plot(ax=ax)
_test(ax)
_, ax = self.plt.subplots()
df = DataFrame({"a": ser, "b": ser + 1})
df.plot(ax=ax)
_test(ax)
df = DataFrame({"a": ser, "b": ser + 1})
axes = df.plot(subplots=True)
for ax in axes:
_test(ax)
def test_get_finder(self):
import pandas.plotting._matplotlib.converter as conv
assert conv.get_finder(to_offset("B")) == conv._daily_finder
assert conv.get_finder(to_offset("D")) == conv._daily_finder
assert conv.get_finder(to_offset("M")) == conv._monthly_finder
assert conv.get_finder(to_offset("Q")) == conv._quarterly_finder
assert conv.get_finder(to_offset("A")) == conv._annual_finder
assert conv.get_finder(to_offset("W")) == conv._daily_finder
def test_finder_daily(self):
day_lst = [10, 40, 252, 400, 950, 2750, 10000]
xpl1 = xpl2 = [Period("1999-1-1", freq="B").ordinal] * len(day_lst)
rs1 = []
rs2 = []
for n in day_lst:
rng = bdate_range("1999-1-1", periods=n)
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs1.append(xaxis.get_majorticklocs()[0])
vmin, vmax = ax.get_xlim()
ax.set_xlim(vmin + 0.9, vmax)
rs2.append(xaxis.get_majorticklocs()[0])
self.plt.close(ax.get_figure())
assert rs1 == xpl1
assert rs2 == xpl2
def test_finder_quarterly(self):
yrs = [3.5, 11]
xpl1 = xpl2 = [Period("1988Q1").ordinal] * len(yrs)
rs1 = []
rs2 = []
for n in yrs:
rng = period_range("1987Q2", periods=int(n * 4), freq="Q")
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs1.append(xaxis.get_majorticklocs()[0])
(vmin, vmax) = ax.get_xlim()
ax.set_xlim(vmin + 0.9, vmax)
rs2.append(xaxis.get_majorticklocs()[0])
self.plt.close(ax.get_figure())
assert rs1 == xpl1
assert rs2 == xpl2
def test_finder_monthly(self):
yrs = [1.15, 2.5, 4, 11]
xpl1 = xpl2 = [Period("Jan 1988").ordinal] * len(yrs)
rs1 = []
rs2 = []
for n in yrs:
rng = period_range("1987Q2", periods=int(n * 12), freq="M")
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs1.append(xaxis.get_majorticklocs()[0])
vmin, vmax = ax.get_xlim()
ax.set_xlim(vmin + 0.9, vmax)
rs2.append(xaxis.get_majorticklocs()[0])
self.plt.close(ax.get_figure())
assert rs1 == xpl1
assert rs2 == xpl2
def test_finder_monthly_long(self):
rng = period_range("1988Q1", periods=24 * 12, freq="M")
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
xp = Period("1989Q1", "M").ordinal
assert rs == xp
def test_finder_annual(self):
xp = [1987, 1988, 1990, 1990, 1995, 2020, 2070, 2170]
xp = [Period(x, freq="A").ordinal for x in xp]
rs = []
for nyears in [5, 10, 19, 49, 99, 199, 599, 1001]:
rng = period_range("1987", periods=nyears, freq="A")
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs.append(xaxis.get_majorticklocs()[0])
self.plt.close(ax.get_figure())
assert rs == xp
@pytest.mark.slow
def test_finder_minutely(self):
nminutes = 50 * 24 * 60
rng = date_range("1/1/1999", freq="Min", periods=nminutes)
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
xp = Period("1/1/1999", freq="Min").ordinal
assert rs == xp
def test_finder_hourly(self):
nhours = 23
rng = date_range("1/1/1999", freq="H", periods=nhours)
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
xp = Period("1/1/1999", freq="H").ordinal
assert rs == xp
def test_gaps(self):
ts = tm.makeTimeSeries()
ts.iloc[5:25] = np.nan
_, ax = self.plt.subplots()
ts.plot(ax=ax)
lines = ax.get_lines()
assert len(lines) == 1
line = lines[0]
data = line.get_xydata()
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
assert isinstance(data, np.ma.core.MaskedArray)
mask = data.mask
assert mask[5:25, 1].all()
self.plt.close(ax.get_figure())
# irregular
ts = tm.makeTimeSeries()
ts = ts[[0, 1, 2, 5, 7, 9, 12, 15, 20]]
ts.iloc[2:5] = np.nan
_, ax = self.plt.subplots()
ax = ts.plot(ax=ax)
lines = ax.get_lines()
assert len(lines) == 1
line = lines[0]
data = line.get_xydata()
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
assert isinstance(data, np.ma.core.MaskedArray)
mask = data.mask
assert mask[2:5, 1].all()
self.plt.close(ax.get_figure())
# non-ts
idx = [0, 1, 2, 5, 7, 9, 12, 15, 20]
ser = Series(np.random.randn(len(idx)), idx)
ser.iloc[2:5] = np.nan
_, ax = self.plt.subplots()
ser.plot(ax=ax)
lines = ax.get_lines()
assert len(lines) == 1
line = lines[0]
data = line.get_xydata()
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
assert isinstance(data, np.ma.core.MaskedArray)
mask = data.mask
assert mask[2:5, 1].all()
def test_gap_upsample(self):
low = tm.makeTimeSeries()
low.iloc[5:25] = np.nan
_, ax = self.plt.subplots()
low.plot(ax=ax)
idxh = date_range(low.index[0], low.index[-1], freq="12h")
s = Series(np.random.randn(len(idxh)), idxh)
s.plot(secondary_y=True)
lines = ax.get_lines()
assert len(lines) == 1
assert len(ax.right_ax.get_lines()) == 1
line = lines[0]
data = line.get_xydata()
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
assert isinstance(data, np.ma.core.MaskedArray)
mask = data.mask
assert mask[5:25, 1].all()
def test_secondary_y(self):
ser = Series(np.random.randn(10))
ser2 = Series(np.random.randn(10))
fig, _ = self.plt.subplots()
ax = ser.plot(secondary_y=True)
assert hasattr(ax, "left_ax")
assert not hasattr(ax, "right_ax")
axes = fig.get_axes()
line = ax.get_lines()[0]
xp = Series(line.get_ydata(), line.get_xdata())
tm.assert_series_equal(ser, xp)
assert ax.get_yaxis().get_ticks_position() == "right"
assert not axes[0].get_yaxis().get_visible()
self.plt.close(fig)
_, ax2 = self.plt.subplots()
ser2.plot(ax=ax2)
assert ax2.get_yaxis().get_ticks_position() == "left"
self.plt.close(ax2.get_figure())
ax = ser2.plot()
ax2 = ser.plot(secondary_y=True)
assert ax.get_yaxis().get_visible()
assert not hasattr(ax, "left_ax")
assert hasattr(ax, "right_ax")
assert hasattr(ax2, "left_ax")
assert not hasattr(ax2, "right_ax")
def test_secondary_y_ts(self):
idx = date_range("1/1/2000", periods=10)
ser = Series(np.random.randn(10), idx)
ser2 = Series(np.random.randn(10), idx)
fig, _ = self.plt.subplots()
ax = ser.plot(secondary_y=True)
assert hasattr(ax, "left_ax")
assert not hasattr(ax, "right_ax")
axes = fig.get_axes()
line = ax.get_lines()[0]
xp = Series(line.get_ydata(), line.get_xdata()).to_timestamp()
tm.assert_series_equal(ser, xp)
assert ax.get_yaxis().get_ticks_position() == "right"
assert not axes[0].get_yaxis().get_visible()
self.plt.close(fig)
_, ax2 = self.plt.subplots()
ser2.plot(ax=ax2)
assert ax2.get_yaxis().get_ticks_position() == "left"
self.plt.close(ax2.get_figure())
ax = ser2.plot()
ax2 = ser.plot(secondary_y=True)
assert ax.get_yaxis().get_visible()
@td.skip_if_no_scipy
def test_secondary_kde(self):
ser = Series(np.random.randn(10))
fig, ax = self.plt.subplots()
ax = ser.plot(secondary_y=True, kind="density", ax=ax)
assert hasattr(ax, "left_ax")
assert not hasattr(ax, "right_ax")
axes = fig.get_axes()
assert axes[1].get_yaxis().get_ticks_position() == "right"
def test_secondary_bar(self):
ser = Series(np.random.randn(10))
fig, ax = self.plt.subplots()
ser.plot(secondary_y=True, kind="bar", ax=ax)
axes = fig.get_axes()
assert axes[1].get_yaxis().get_ticks_position() == "right"
def test_secondary_frame(self):
df = DataFrame(np.random.randn(5, 3), columns=["a", "b", "c"])
axes = df.plot(secondary_y=["a", "c"], subplots=True)
assert axes[0].get_yaxis().get_ticks_position() == "right"
assert axes[1].get_yaxis().get_ticks_position() == "left"
assert axes[2].get_yaxis().get_ticks_position() == "right"
def test_secondary_bar_frame(self):
df = DataFrame(np.random.randn(5, 3), columns=["a", "b", "c"])
axes = df.plot(kind="bar", secondary_y=["a", "c"], subplots=True)
assert axes[0].get_yaxis().get_ticks_position() == "right"
assert axes[1].get_yaxis().get_ticks_position() == "left"
assert axes[2].get_yaxis().get_ticks_position() == "right"
def test_mixed_freq_regular_first(self):
# TODO
s1 = tm.makeTimeSeries()
s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
# it works!
_, ax = self.plt.subplots()
s1.plot(ax=ax)
ax2 = s2.plot(style="g", ax=ax)
lines = ax2.get_lines()
idx1 = PeriodIndex(lines[0].get_xdata())
idx2 = PeriodIndex(lines[1].get_xdata())
tm.assert_index_equal(idx1, s1.index.to_period("B"))
tm.assert_index_equal(idx2, s2.index.to_period("B"))
left, right = ax2.get_xlim()
pidx = s1.index.to_period()
assert left <= pidx[0].ordinal
assert right >= pidx[-1].ordinal
def test_mixed_freq_irregular_first(self):
s1 = tm.makeTimeSeries()
s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
_, ax = self.plt.subplots()
s2.plot(style="g", ax=ax)
s1.plot(ax=ax)
assert not hasattr(ax, "freq")
lines = ax.get_lines()
x1 = lines[0].get_xdata()
tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
x2 = lines[1].get_xdata()
tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)
def test_mixed_freq_regular_first_df(self):
# GH 9852
s1 = tm.makeTimeSeries().to_frame()
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
_, ax = self.plt.subplots()
s1.plot(ax=ax)
ax2 = s2.plot(style="g", ax=ax)
lines = ax2.get_lines()
idx1 = PeriodIndex(lines[0].get_xdata())
idx2 = PeriodIndex(lines[1].get_xdata())
assert idx1.equals(s1.index.to_period("B"))
assert idx2.equals(s2.index.to_period("B"))
left, right = ax2.get_xlim()
pidx = s1.index.to_period()
assert left <= pidx[0].ordinal
assert right >= pidx[-1].ordinal
def test_mixed_freq_irregular_first_df(self):
# GH 9852
s1 = tm.makeTimeSeries().to_frame()
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
_, ax = self.plt.subplots()
s2.plot(style="g", ax=ax)
s1.plot(ax=ax)
assert not hasattr(ax, "freq")
lines = ax.get_lines()
x1 = lines[0].get_xdata()
tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
x2 = lines[1].get_xdata()
tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)
def test_mixed_freq_hf_first(self):
idxh = date_range("1/1/1999", periods=365, freq="D")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
high.plot(ax=ax)
low.plot(ax=ax)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "D"
def test_mixed_freq_alignment(self):
ts_ind = date_range("2012-01-01 13:00", "2012-01-02", freq="H")
ts_data = np.random.randn(12)
ts = Series(ts_data, index=ts_ind)
ts2 = ts.asfreq("T").interpolate()
_, ax = self.plt.subplots()
ax = ts.plot(ax=ax)
ts2.plot(style="r", ax=ax)
assert ax.lines[0].get_xdata()[0] == ax.lines[1].get_xdata()[0]
def test_mixed_freq_lf_first(self):
idxh = date_range("1/1/1999", periods=365, freq="D")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
low.plot(legend=True, ax=ax)
high.plot(legend=True, ax=ax)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "D"
leg = ax.get_legend()
assert len(leg.texts) == 2
self.plt.close(ax.get_figure())
idxh = date_range("1/1/1999", periods=240, freq="T")
idxl = date_range("1/1/1999", periods=4, freq="H")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
low.plot(ax=ax)
high.plot(ax=ax)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "T"
def test_mixed_freq_irreg_period(self):
ts = tm.makeTimeSeries()
irreg = ts[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 29]]
rng = period_range("1/3/2000", periods=30, freq="B")
ps = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
irreg.plot(ax=ax)
ps.plot(ax=ax)
def test_mixed_freq_shared_ax(self):
# GH13341, using sharex=True
idx1 = date_range("2015-01-01", periods=3, freq="M")
idx2 = idx1[:1].union(idx1[2:])
s1 = Series(range(len(idx1)), idx1)
s2 = Series(range(len(idx2)), idx2)
fig, (ax1, ax2) = self.plt.subplots(nrows=2, sharex=True)
s1.plot(ax=ax1)
s2.plot(ax=ax2)
assert ax1.freq == "M"
assert ax2.freq == "M"
assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]
# using twinx
fig, ax1 = self.plt.subplots()
ax2 = ax1.twinx()
s1.plot(ax=ax1)
s2.plot(ax=ax2)
assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]
# TODO (GH14330, GH14322)
# plotting the irregular first does not yet work
# fig, ax1 = plt.subplots()
# ax2 = ax1.twinx()
# s2.plot(ax=ax1)
# s1.plot(ax=ax2)
# assert (ax1.lines[0].get_xydata()[0, 0] ==
# ax2.lines[0].get_xydata()[0, 0])
def test_nat_handling(self):
_, ax = self.plt.subplots()
dti = DatetimeIndex(["2015-01-01", NaT, "2015-01-03"])
s = Series(range(len(dti)), dti)
s.plot(ax=ax)
xdata = ax.get_lines()[0].get_xdata()
# plot x data is bounded by index values
assert s.index.min() <= Series(xdata).min()
assert Series(xdata).max() <= s.index.max()
def test_to_weekly_resampling(self):
idxh = date_range("1/1/1999", periods=52, freq="W")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
high.plot(ax=ax)
low.plot(ax=ax)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
def test_from_weekly_resampling(self):
idxh = date_range("1/1/1999", periods=52, freq="W")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
low.plot(ax=ax)
high.plot(ax=ax)
expected_h = idxh.to_period().asi8.astype(np.float64)
expected_l = np.array(
[1514, 1519, 1523, 1527, 1531, 1536, 1540, 1544, 1549, 1553, 1558, 1562],
dtype=np.float64,
)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
xdata = line.get_xdata(orig=False)
if len(xdata) == 12: # idxl lines
tm.assert_numpy_array_equal(xdata, expected_l)
else:
tm.assert_numpy_array_equal(xdata, expected_h)
tm.close()
def test_from_resampling_area_line_mixed(self):
idxh = date_range("1/1/1999", periods=52, freq="W")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = DataFrame(np.random.rand(len(idxh), 3), index=idxh, columns=[0, 1, 2])
low = DataFrame(np.random.rand(len(idxl), 3), index=idxl, columns=[0, 1, 2])
# low to high
for kind1, kind2 in [("line", "area"), ("area", "line")]:
_, ax = self.plt.subplots()
low.plot(kind=kind1, stacked=True, ax=ax)
high.plot(kind=kind2, stacked=True, ax=ax)
# check low dataframe result
expected_x = np.array(
[
1514,
1519,
1523,
1527,
1531,
1536,
1540,
1544,
1549,
1553,
1558,
1562,
],
dtype=np.float64,
)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
line = ax.lines[i]
assert PeriodIndex(line.get_xdata()).freq == idxh.freq
tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
# check stacked values are correct
expected_y += low[i].values
tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
# check high dataframe result
expected_x = idxh.to_period().asi8.astype(np.float64)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
line = ax.lines[3 + i]
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
expected_y += high[i].values
tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
# high to low
for kind1, kind2 in [("line", "area"), ("area", "line")]:
_, ax = self.plt.subplots()
high.plot(kind=kind1, stacked=True, ax=ax)
low.plot(kind=kind2, stacked=True, ax=ax)
# check high dataframe result
expected_x = idxh.to_period().asi8.astype(np.float64)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
line = ax.lines[i]
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
expected_y += high[i].values
tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
# check low dataframe result
expected_x = np.array(
[
1514,
1519,
1523,
1527,
1531,
1536,
1540,
1544,
1549,
1553,
1558,
1562,
],
dtype=np.float64,
)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
lines = ax.lines[3 + i]
assert PeriodIndex(data=lines.get_xdata()).freq == idxh.freq
tm.assert_numpy_array_equal(lines.get_xdata(orig=False), expected_x)
expected_y += low[i].values
tm.assert_numpy_array_equal(lines.get_ydata(orig=False), expected_y)
def test_mixed_freq_second_millisecond(self):
# GH 7772, GH 7760
idxh = date_range("2014-07-01 09:00", freq="S", periods=50)
idxl = date_range("2014-07-01 09:00", freq="100L", periods=500)
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
# high to low
_, ax = self.plt.subplots()
high.plot(ax=ax)
low.plot(ax=ax)
assert len(ax.get_lines()) == 2
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "L"
tm.close()
# low to high
_, ax = self.plt.subplots()
low.plot(ax=ax)
high.plot(ax=ax)
assert len(ax.get_lines()) == 2
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "L"
def test_irreg_dtypes(self):
# date
idx = [date(2000, 1, 1), date(2000, 1, 5), date(2000, 1, 20)]
df = DataFrame(np.random.randn(len(idx), 3), Index(idx, dtype=object))
_check_plot_works(df.plot)
# np.datetime64
idx = date_range("1/1/2000", periods=10)
idx = idx[[0, 2, 5, 9]].astype(object)
df = DataFrame(np.random.randn(len(idx), 3), idx)
_, ax = self.plt.subplots()
_check_plot_works(df.plot, ax=ax)
def test_time(self):
t = datetime(1, 1, 1, 3, 30, 0)
deltas = np.random.randint(1, 20, 3).cumsum()
ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
df = DataFrame(
{"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
)
fig, ax = self.plt.subplots()
df.plot(ax=ax)
# verify tick labels
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for _tick, _label in zip(ticks, labels):
m, s = divmod(int(_tick), 60)
h, m = divmod(m, 60)
rs = _label.get_text()
if len(rs) > 0:
if s != 0:
xp = time(h, m, s).strftime("%H:%M:%S")
else:
xp = time(h, m, s).strftime("%H:%M")
assert xp == rs
def test_time_change_xlim(self):
t = datetime(1, 1, 1, 3, 30, 0)
deltas = np.random.randint(1, 20, 3).cumsum()
ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
df = DataFrame(
{"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
)
fig, ax = self.plt.subplots()
df.plot(ax=ax)
# verify tick labels
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for _tick, _label in zip(ticks, labels):
m, s = divmod(int(_tick), 60)
h, m = divmod(m, 60)
rs = _label.get_text()
if len(rs) > 0:
if s != 0:
xp = time(h, m, s).strftime("%H:%M:%S")
else:
xp = time(h, m, s).strftime("%H:%M")
assert xp == rs
# change xlim
ax.set_xlim("1:30", "5:00")
# check tick labels again
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for _tick, _label in zip(ticks, labels):
m, s = divmod(int(_tick), 60)
h, m = divmod(m, 60)
rs = _label.get_text()
if len(rs) > 0:
if s != 0:
xp = time(h, m, s).strftime("%H:%M:%S")
else:
xp = time(h, m, s).strftime("%H:%M")
assert xp == rs
def test_time_musec(self):
t = datetime(1, 1, 1, 3, 30, 0)
deltas = np.random.randint(1, 20, 3).cumsum()
ts = np.array([(t + timedelta(microseconds=int(x))).time() for x in deltas])
df = DataFrame(
{"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
)
fig, ax = self.plt.subplots()
ax = df.plot(ax=ax)
# verify tick labels
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for _tick, _label in zip(ticks, labels):
m, s = divmod(int(_tick), 60)
us = round((_tick - int(_tick)) * 1e6)
h, m = divmod(m, 60)
rs = _label.get_text()
if len(rs) > 0:
if (us % 1000) != 0:
xp = time(h, m, s, us).strftime("%H:%M:%S.%f")
elif (us // 1000) != 0:
xp = time(h, m, s, us).strftime("%H:%M:%S.%f")[:-3]
elif s != 0:
xp = time(h, m, s, us).strftime("%H:%M:%S")
else:
xp = time(h, m, s, us).strftime("%H:%M")
assert xp == rs
def test_secondary_upsample(self):
idxh = date_range("1/1/1999", periods=365, freq="D")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
low.plot(ax=ax)
ax = high.plot(secondary_y=True, ax=ax)
for line in ax.get_lines():
assert PeriodIndex(line.get_xdata()).freq == "D"
assert hasattr(ax, "left_ax")
assert not hasattr(ax, "right_ax")
for line in ax.left_ax.get_lines():
assert PeriodIndex(line.get_xdata()).freq == "D"
def test_secondary_legend(self):
fig = self.plt.figure()
ax = fig.add_subplot(211)
# ts
df = tm.makeTimeDataFrame()
df.plot(secondary_y=["A", "B"], ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert leg.get_texts()[0].get_text() == "A (right)"
assert leg.get_texts()[1].get_text() == "B (right)"
assert leg.get_texts()[2].get_text() == "C"
assert leg.get_texts()[3].get_text() == "D"
assert ax.right_ax.get_legend() is None
colors = set()
for line in leg.get_lines():
colors.add(line.get_color())
# TODO: color cycle problems
assert len(colors) == 4
self.plt.close(fig)
fig = self.plt.figure()
ax = fig.add_subplot(211)
df.plot(secondary_y=["A", "C"], mark_right=False, ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert leg.get_texts()[0].get_text() == "A"
assert leg.get_texts()[1].get_text() == "B"
assert leg.get_texts()[2].get_text() == "C"
assert leg.get_texts()[3].get_text() == "D"
self.plt.close(fig)
fig, ax = self.plt.subplots()
df.plot(kind="bar", secondary_y=["A"], ax=ax)
leg = ax.get_legend()
assert leg.get_texts()[0].get_text() == "A (right)"
assert leg.get_texts()[1].get_text() == "B"
self.plt.close(fig)
fig, ax = self.plt.subplots()
df.plot(kind="bar", secondary_y=["A"], mark_right=False, ax=ax)
leg = ax.get_legend()
assert leg.get_texts()[0].get_text() == "A"
assert leg.get_texts()[1].get_text() == "B"
self.plt.close(fig)
fig = self.plt.figure()
ax = fig.add_subplot(211)
df = tm.makeTimeDataFrame()
ax = df.plot(secondary_y=["C", "D"], ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert ax.right_ax.get_legend() is None
colors = set()
for line in leg.get_lines():
colors.add(line.get_color())
# TODO: color cycle problems
assert len(colors) == 4
self.plt.close(fig)
# non-ts
df = tm.makeDataFrame()
fig = self.plt.figure()
ax = fig.add_subplot(211)
ax = df.plot(secondary_y=["A", "B"], ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert ax.right_ax.get_legend() is None
colors = set()
for line in leg.get_lines():
colors.add(line.get_color())
# TODO: color cycle problems
assert len(colors) == 4
self.plt.close()
fig = self.plt.figure()
ax = fig.add_subplot(211)
ax = df.plot(secondary_y=["C", "D"], ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert ax.right_ax.get_legend() is None
colors = set()
for line in leg.get_lines():
colors.add(line.get_color())
# TODO: color cycle problems
assert len(colors) == 4
@pytest.mark.xfail(reason="Api changed in 3.6.0")
def test_format_date_axis(self):
rng = date_range("1/1/2012", periods=12, freq="M")
df = DataFrame(np.random.randn(len(rng), 3), rng)
_, ax = self.plt.subplots()
ax = df.plot(ax=ax)
xaxis = ax.get_xaxis()
for line in xaxis.get_ticklabels():
if len(line.get_text()) > 0:
assert line.get_rotation() == 30
def test_ax_plot(self):
x = date_range(start="2012-01-02", periods=10, freq="D")
y = list(range(len(x)))
_, ax = self.plt.subplots()
lines = ax.plot(x, y, label="Y")
tm.assert_index_equal(DatetimeIndex(lines[0].get_xdata()), x)
def test_mpl_nopandas(self):
dates = [date(2008, 12, 31), date(2009, 1, 31)]
values1 = np.arange(10.0, 11.0, 0.5)
values2 = np.arange(11.0, 12.0, 0.5)
kw = {"fmt": "-", "lw": 4}
_, ax = self.plt.subplots()
ax.plot_date([x.toordinal() for x in dates], values1, **kw)
ax.plot_date([x.toordinal() for x in dates], values2, **kw)
line1, line2 = ax.get_lines()
exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
tm.assert_numpy_array_equal(line1.get_xydata()[:, 0], exp)
exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
tm.assert_numpy_array_equal(line2.get_xydata()[:, 0], exp)
def test_irregular_ts_shared_ax_xlim(self):
# GH 2960
from pandas.plotting._matplotlib.converter import DatetimeConverter
ts = tm.makeTimeSeries()[:20]
ts_irregular = ts[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]
# plot the left section of the irregular series, then the right section
_, ax = self.plt.subplots()
ts_irregular[:5].plot(ax=ax)
ts_irregular[5:].plot(ax=ax)
# check that axis limits are correct
left, right = ax.get_xlim()
assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)
def test_secondary_y_non_ts_xlim(self):
# GH 3490 - non-timeseries with secondary y
index_1 = [1, 2, 3, 4]
index_2 = [5, 6, 7, 8]
s1 = Series(1, index=index_1)
s2 = Series(2, index=index_2)
_, ax = self.plt.subplots()
s1.plot(ax=ax)
left_before, right_before = ax.get_xlim()
s2.plot(secondary_y=True, ax=ax)
left_after, right_after = ax.get_xlim()
assert left_before >= left_after
assert right_before < right_after
def test_secondary_y_regular_ts_xlim(self):
# GH 3490 - regular-timeseries with secondary y
index_1 = date_range(start="2000-01-01", periods=4, freq="D")
index_2 = date_range(start="2000-01-05", periods=4, freq="D")
s1 = Series(1, index=index_1)
s2 = Series(2, index=index_2)
_, ax = self.plt.subplots()
s1.plot(ax=ax)
left_before, right_before = ax.get_xlim()
s2.plot(secondary_y=True, ax=ax)
left_after, right_after = ax.get_xlim()
assert left_before >= left_after
assert right_before < right_after
def test_secondary_y_mixed_freq_ts_xlim(self):
# GH 3490 - mixed frequency timeseries with secondary y
rng = date_range("2000-01-01", periods=10000, freq="min")
ts = Series(1, index=rng)
_, ax = self.plt.subplots()
ts.plot(ax=ax)
left_before, right_before = ax.get_xlim()
ts.resample("D").mean().plot(secondary_y=True, ax=ax)
left_after, right_after = ax.get_xlim()
# a downsample should not have changed either limit
assert left_before == left_after
assert right_before == right_after
def test_secondary_y_irregular_ts_xlim(self):
# GH 3490 - irregular-timeseries with secondary y
from pandas.plotting._matplotlib.converter import DatetimeConverter
ts = tm.makeTimeSeries()[:20]
ts_irregular = ts[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]
_, ax = self.plt.subplots()
ts_irregular[:5].plot(ax=ax)
# plot higher-x values on secondary axis
ts_irregular[5:].plot(secondary_y=True, ax=ax)
# ensure secondary limits aren't overwritten by plot on primary
ts_irregular[:5].plot(ax=ax)
left, right = ax.get_xlim()
assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)
def test_plot_outofbounds_datetime(self):
# 2579 - checking this does not raise
values = [date(1677, 1, 1), date(1677, 1, 2)]
_, ax = self.plt.subplots()
ax.plot(values)
values = [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)]
ax.plot(values)
def test_format_timedelta_ticks_narrow(self):
expected_labels = [f"00:00:00.0000000{i:0>2d}" for i in np.arange(10)]
rng = timedelta_range("0", periods=10, freq="ns")
df = DataFrame(np.random.randn(len(rng), 3), rng)
fig, ax = self.plt.subplots()
df.plot(fontsize=2, ax=ax)
self.plt.draw()
labels = ax.get_xticklabels()
result_labels = [x.get_text() for x in labels]
assert len(result_labels) == len(expected_labels)
assert result_labels == expected_labels
def test_format_timedelta_ticks_wide(self):
expected_labels = [
"00:00:00",
"1 days 03:46:40",
"2 days 07:33:20",
"3 days 11:20:00",
"4 days 15:06:40",
"5 days 18:53:20",
"6 days 22:40:00",
"8 days 02:26:40",
"9 days 06:13:20",
]
rng = timedelta_range("0", periods=10, freq="1 d")
df = DataFrame(np.random.randn(len(rng), 3), rng)
fig, ax = self.plt.subplots()
ax = df.plot(fontsize=2, ax=ax)
self.plt.draw()
labels = ax.get_xticklabels()
result_labels = [x.get_text() for x in labels]
assert len(result_labels) == len(expected_labels)
assert result_labels == expected_labels
def test_timedelta_plot(self):
# test issue #8711
s = Series(range(5), timedelta_range("1day", periods=5))
_, ax = self.plt.subplots()
_check_plot_works(s.plot, ax=ax)
# test long period
index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 d")
s = Series(np.random.randn(len(index)), index)
_, ax = self.plt.subplots()
_check_plot_works(s.plot, ax=ax)
# test short period
index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 ns")
s = Series(np.random.randn(len(index)), index)
_, ax = self.plt.subplots()
_check_plot_works(s.plot, ax=ax)
def test_hist(self):
# https://github.com/matplotlib/matplotlib/issues/8459
rng = date_range("1/1/2011", periods=10, freq="H")
x = rng
w1 = np.arange(0, 1, 0.1)
w2 = np.arange(0, 1, 0.1)[::-1]
_, ax = self.plt.subplots()
ax.hist([x, x], weights=[w1, w2])
def test_overlapping_datetime(self):
# GB 6608
s1 = Series(
[1, 2, 3],
index=[
datetime(1995, 12, 31),
datetime(2000, 12, 31),
datetime(2005, 12, 31),
],
)
s2 = Series(
[1, 2, 3],
index=[
datetime(1997, 12, 31),
datetime(2003, 12, 31),
datetime(2008, 12, 31),
],
)
# plot first series, then add the second series to those axes,
# then try adding the first series again
_, ax = self.plt.subplots()
s1.plot(ax=ax)
s2.plot(ax=ax)
s1.plot(ax=ax)
@pytest.mark.xfail(reason="GH9053 matplotlib does not use ax.xaxis.converter")
def test_add_matplotlib_datetime64(self):
# GH9053 - ensure that a plot with PeriodConverter still understands
# datetime64 data. This still fails because matplotlib overrides the
# ax.xaxis.converter with a DatetimeConverter
s = Series(np.random.randn(10), index=date_range("1970-01-02", periods=10))
ax = s.plot()
with tm.assert_produces_warning(DeprecationWarning):
# multi-dimensional indexing
ax.plot(s.index, s.values, color="g")
l1, l2 = ax.lines
tm.assert_numpy_array_equal(l1.get_xydata(), l2.get_xydata())
def test_matplotlib_scatter_datetime64(self):
# https://github.com/matplotlib/matplotlib/issues/11391
df = DataFrame(np.random.RandomState(0).rand(10, 2), columns=["x", "y"])
df["time"] = date_range("2018-01-01", periods=10, freq="D")
fig, ax = self.plt.subplots()
ax.scatter(x="time", y="y", data=df)
self.plt.draw()
label = ax.get_xticklabels()[0]
expected = "2018-01-01"
assert label.get_text() == expected
def test_check_xticks_rot(self):
# https://github.com/pandas-dev/pandas/issues/29460
# regular time series
x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-03"])
df = DataFrame({"x": x, "y": [1, 2, 3]})
axes = df.plot(x="x", y="y")
self._check_ticks_props(axes, xrot=0)
# irregular time series
x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"])
df = DataFrame({"x": x, "y": [1, 2, 3]})
axes = df.plot(x="x", y="y")
self._check_ticks_props(axes, xrot=30)
# use timeseries index or not
axes = df.set_index("x").plot(y="y", use_index=True)
self._check_ticks_props(axes, xrot=30)
axes = df.set_index("x").plot(y="y", use_index=False)
self._check_ticks_props(axes, xrot=0)
# separate subplots
axes = df.plot(x="x", y="y", subplots=True, sharex=True)
self._check_ticks_props(axes, xrot=30)
axes = df.plot(x="x", y="y", subplots=True, sharex=False)
self._check_ticks_props(axes, xrot=0)
def _check_plot_works(f, freq=None, series=None, *args, **kwargs):
import matplotlib.pyplot as plt
fig = plt.gcf()
try:
plt.clf()
ax = fig.add_subplot(211)
orig_ax = kwargs.pop("ax", plt.gca())
orig_axfreq = getattr(orig_ax, "freq", None)
ret = f(*args, **kwargs)
assert ret is not None # do something more intelligent
ax = kwargs.pop("ax", plt.gca())
if series is not None:
dfreq = series.index.freq
if isinstance(dfreq, BaseOffset):
dfreq = dfreq.rule_code
if orig_axfreq is None:
assert ax.freq == dfreq
if freq is not None and orig_axfreq is None:
assert ax.freq == freq
ax = fig.add_subplot(212)
kwargs["ax"] = ax
ret = f(*args, **kwargs)
assert ret is not None # TODO: do something more intelligent
with tm.ensure_clean(return_filelike=True) as path:
plt.savefig(path)
# GH18439, GH#24088, statsmodels#4772
with tm.ensure_clean(return_filelike=True) as path:
pickle.dump(fig, path)
finally:
plt.close(fig)