3919 lines
132 KiB
Python
3919 lines
132 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from functools import wraps
|
||
|
from sys import getsizeof
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Any,
|
||
|
Callable,
|
||
|
Collection,
|
||
|
Generator,
|
||
|
Hashable,
|
||
|
Iterable,
|
||
|
List,
|
||
|
Literal,
|
||
|
Sequence,
|
||
|
Tuple,
|
||
|
cast,
|
||
|
)
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._config import get_option
|
||
|
|
||
|
from pandas._libs import (
|
||
|
algos as libalgos,
|
||
|
index as libindex,
|
||
|
lib,
|
||
|
)
|
||
|
from pandas._libs.hashtable import duplicated
|
||
|
from pandas._typing import (
|
||
|
AnyAll,
|
||
|
AnyArrayLike,
|
||
|
Axis,
|
||
|
DropKeep,
|
||
|
DtypeObj,
|
||
|
F,
|
||
|
IgnoreRaise,
|
||
|
IndexLabel,
|
||
|
Scalar,
|
||
|
Shape,
|
||
|
npt,
|
||
|
)
|
||
|
from pandas.compat.numpy import function as nv
|
||
|
from pandas.errors import (
|
||
|
InvalidIndexError,
|
||
|
PerformanceWarning,
|
||
|
UnsortedIndexError,
|
||
|
)
|
||
|
from pandas.util._decorators import (
|
||
|
Appender,
|
||
|
cache_readonly,
|
||
|
doc,
|
||
|
)
|
||
|
from pandas.util._exceptions import find_stack_level
|
||
|
|
||
|
from pandas.core.dtypes.cast import coerce_indexer_dtype
|
||
|
from pandas.core.dtypes.common import (
|
||
|
ensure_int64,
|
||
|
ensure_platform_int,
|
||
|
is_categorical_dtype,
|
||
|
is_extension_array_dtype,
|
||
|
is_hashable,
|
||
|
is_integer,
|
||
|
is_iterator,
|
||
|
is_list_like,
|
||
|
is_object_dtype,
|
||
|
is_scalar,
|
||
|
pandas_dtype,
|
||
|
)
|
||
|
from pandas.core.dtypes.dtypes import ExtensionDtype
|
||
|
from pandas.core.dtypes.generic import (
|
||
|
ABCDataFrame,
|
||
|
ABCDatetimeIndex,
|
||
|
ABCTimedeltaIndex,
|
||
|
)
|
||
|
from pandas.core.dtypes.missing import (
|
||
|
array_equivalent,
|
||
|
isna,
|
||
|
)
|
||
|
|
||
|
import pandas.core.algorithms as algos
|
||
|
from pandas.core.array_algos.putmask import validate_putmask
|
||
|
from pandas.core.arrays import Categorical
|
||
|
from pandas.core.arrays.categorical import factorize_from_iterables
|
||
|
import pandas.core.common as com
|
||
|
import pandas.core.indexes.base as ibase
|
||
|
from pandas.core.indexes.base import (
|
||
|
Index,
|
||
|
_index_shared_docs,
|
||
|
ensure_index,
|
||
|
get_unanimous_names,
|
||
|
)
|
||
|
from pandas.core.indexes.frozen import FrozenList
|
||
|
from pandas.core.ops.invalid import make_invalid_op
|
||
|
from pandas.core.sorting import (
|
||
|
get_group_index,
|
||
|
indexer_from_factorized,
|
||
|
lexsort_indexer,
|
||
|
)
|
||
|
|
||
|
from pandas.io.formats.printing import pprint_thing
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from pandas import (
|
||
|
CategoricalIndex,
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
)
|
||
|
|
||
|
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
|
||
|
_index_doc_kwargs.update(
|
||
|
{"klass": "MultiIndex", "target_klass": "MultiIndex or list of tuples"}
|
||
|
)
|
||
|
|
||
|
|
||
|
class MultiIndexUIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.UInt64Engine):
|
||
|
"""
|
||
|
This class manages a MultiIndex by mapping label combinations to positive
|
||
|
integers.
|
||
|
"""
|
||
|
|
||
|
_base = libindex.UInt64Engine
|
||
|
|
||
|
def _codes_to_ints(self, codes):
|
||
|
"""
|
||
|
Transform combination(s) of uint64 in one uint64 (each), in a strictly
|
||
|
monotonic way (i.e. respecting the lexicographic order of integer
|
||
|
combinations): see BaseMultiIndexCodesEngine documentation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
codes : 1- or 2-dimensional array of dtype uint64
|
||
|
Combinations of integers (one per row)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or 1-dimensional array, of dtype uint64
|
||
|
Integer(s) representing one combination (each).
|
||
|
"""
|
||
|
# Shift the representation of each level by the pre-calculated number
|
||
|
# of bits:
|
||
|
codes <<= self.offsets
|
||
|
|
||
|
# Now sum and OR are in fact interchangeable. This is a simple
|
||
|
# composition of the (disjunct) significant bits of each level (i.e.
|
||
|
# each column in "codes") in a single positive integer:
|
||
|
if codes.ndim == 1:
|
||
|
# Single key
|
||
|
return np.bitwise_or.reduce(codes)
|
||
|
|
||
|
# Multiple keys
|
||
|
return np.bitwise_or.reduce(codes, axis=1)
|
||
|
|
||
|
|
||
|
class MultiIndexPyIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.ObjectEngine):
|
||
|
"""
|
||
|
This class manages those (extreme) cases in which the number of possible
|
||
|
label combinations overflows the 64 bits integers, and uses an ObjectEngine
|
||
|
containing Python integers.
|
||
|
"""
|
||
|
|
||
|
_base = libindex.ObjectEngine
|
||
|
|
||
|
def _codes_to_ints(self, codes):
|
||
|
"""
|
||
|
Transform combination(s) of uint64 in one Python integer (each), in a
|
||
|
strictly monotonic way (i.e. respecting the lexicographic order of
|
||
|
integer combinations): see BaseMultiIndexCodesEngine documentation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
codes : 1- or 2-dimensional array of dtype uint64
|
||
|
Combinations of integers (one per row)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int, or 1-dimensional array of dtype object
|
||
|
Integer(s) representing one combination (each).
|
||
|
"""
|
||
|
# Shift the representation of each level by the pre-calculated number
|
||
|
# of bits. Since this can overflow uint64, first make sure we are
|
||
|
# working with Python integers:
|
||
|
codes = codes.astype("object") << self.offsets
|
||
|
|
||
|
# Now sum and OR are in fact interchangeable. This is a simple
|
||
|
# composition of the (disjunct) significant bits of each level (i.e.
|
||
|
# each column in "codes") in a single positive integer (per row):
|
||
|
if codes.ndim == 1:
|
||
|
# Single key
|
||
|
return np.bitwise_or.reduce(codes)
|
||
|
|
||
|
# Multiple keys
|
||
|
return np.bitwise_or.reduce(codes, axis=1)
|
||
|
|
||
|
|
||
|
def names_compat(meth: F) -> F:
|
||
|
"""
|
||
|
A decorator to allow either `name` or `names` keyword but not both.
|
||
|
|
||
|
This makes it easier to share code with base class.
|
||
|
"""
|
||
|
|
||
|
@wraps(meth)
|
||
|
def new_meth(self_or_cls, *args, **kwargs):
|
||
|
if "name" in kwargs and "names" in kwargs:
|
||
|
raise TypeError("Can only provide one of `names` and `name`")
|
||
|
if "name" in kwargs:
|
||
|
kwargs["names"] = kwargs.pop("name")
|
||
|
|
||
|
return meth(self_or_cls, *args, **kwargs)
|
||
|
|
||
|
return cast(F, new_meth)
|
||
|
|
||
|
|
||
|
class MultiIndex(Index):
|
||
|
"""
|
||
|
A multi-level, or hierarchical, index object for pandas objects.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
levels : sequence of arrays
|
||
|
The unique labels for each level.
|
||
|
codes : sequence of arrays
|
||
|
Integers for each level designating which label at each location.
|
||
|
sortorder : optional int
|
||
|
Level of sortedness (must be lexicographically sorted by that
|
||
|
level).
|
||
|
names : optional sequence of objects
|
||
|
Names for each of the index levels. (name is accepted for compat).
|
||
|
copy : bool, default False
|
||
|
Copy the meta-data.
|
||
|
verify_integrity : bool, default True
|
||
|
Check that the levels/codes are consistent and valid.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
names
|
||
|
levels
|
||
|
codes
|
||
|
nlevels
|
||
|
levshape
|
||
|
dtypes
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
from_arrays
|
||
|
from_tuples
|
||
|
from_product
|
||
|
from_frame
|
||
|
set_levels
|
||
|
set_codes
|
||
|
to_frame
|
||
|
to_flat_index
|
||
|
sortlevel
|
||
|
droplevel
|
||
|
swaplevel
|
||
|
reorder_levels
|
||
|
remove_unused_levels
|
||
|
get_level_values
|
||
|
get_indexer
|
||
|
get_loc
|
||
|
get_locs
|
||
|
get_loc_level
|
||
|
drop
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
|
||
|
MultiIndex.from_product : Create a MultiIndex from the cartesian product
|
||
|
of iterables.
|
||
|
MultiIndex.from_tuples : Convert list of tuples to a MultiIndex.
|
||
|
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
|
||
|
Index : The base pandas Index type.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
See the `user guide
|
||
|
<https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html>`__
|
||
|
for more.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
A new ``MultiIndex`` is typically constructed using one of the helper
|
||
|
methods :meth:`MultiIndex.from_arrays`, :meth:`MultiIndex.from_product`
|
||
|
and :meth:`MultiIndex.from_tuples`. For example (using ``.from_arrays``):
|
||
|
|
||
|
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
|
||
|
>>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
|
||
|
MultiIndex([(1, 'red'),
|
||
|
(1, 'blue'),
|
||
|
(2, 'red'),
|
||
|
(2, 'blue')],
|
||
|
names=['number', 'color'])
|
||
|
|
||
|
See further examples for how to construct a MultiIndex in the doc strings
|
||
|
of the mentioned helper methods.
|
||
|
"""
|
||
|
|
||
|
_hidden_attrs = Index._hidden_attrs | frozenset()
|
||
|
|
||
|
# initialize to zero-length tuples to make everything work
|
||
|
_typ = "multiindex"
|
||
|
_names: list[Hashable | None] = []
|
||
|
_levels = FrozenList()
|
||
|
_codes = FrozenList()
|
||
|
_comparables = ["names"]
|
||
|
|
||
|
sortorder: int | None
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# Constructors
|
||
|
|
||
|
def __new__(
|
||
|
cls,
|
||
|
levels=None,
|
||
|
codes=None,
|
||
|
sortorder=None,
|
||
|
names=None,
|
||
|
dtype=None,
|
||
|
copy: bool = False,
|
||
|
name=None,
|
||
|
verify_integrity: bool = True,
|
||
|
) -> MultiIndex:
|
||
|
# compat with Index
|
||
|
if name is not None:
|
||
|
names = name
|
||
|
if levels is None or codes is None:
|
||
|
raise TypeError("Must pass both levels and codes")
|
||
|
if len(levels) != len(codes):
|
||
|
raise ValueError("Length of levels and codes must be the same.")
|
||
|
if len(levels) == 0:
|
||
|
raise ValueError("Must pass non-zero number of levels/codes")
|
||
|
|
||
|
result = object.__new__(cls)
|
||
|
result._cache = {}
|
||
|
|
||
|
# we've already validated levels and codes, so shortcut here
|
||
|
result._set_levels(levels, copy=copy, validate=False)
|
||
|
result._set_codes(codes, copy=copy, validate=False)
|
||
|
|
||
|
result._names = [None] * len(levels)
|
||
|
if names is not None:
|
||
|
# handles name validation
|
||
|
result._set_names(names)
|
||
|
|
||
|
if sortorder is not None:
|
||
|
result.sortorder = int(sortorder)
|
||
|
else:
|
||
|
result.sortorder = sortorder
|
||
|
|
||
|
if verify_integrity:
|
||
|
new_codes = result._verify_integrity()
|
||
|
result._codes = new_codes
|
||
|
|
||
|
result._reset_identity()
|
||
|
result._references = None
|
||
|
|
||
|
return result
|
||
|
|
||
|
def _validate_codes(self, level: list, code: list):
|
||
|
"""
|
||
|
Reassign code values as -1 if their corresponding levels are NaN.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
code : list
|
||
|
Code to reassign.
|
||
|
level : list
|
||
|
Level to check for missing values (NaN, NaT, None).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
new code where code value = -1 if it corresponds
|
||
|
to a level with missing values (NaN, NaT, None).
|
||
|
"""
|
||
|
null_mask = isna(level)
|
||
|
if np.any(null_mask):
|
||
|
# error: Incompatible types in assignment
|
||
|
# (expression has type "ndarray[Any, dtype[Any]]",
|
||
|
# variable has type "List[Any]")
|
||
|
code = np.where(null_mask[code], -1, code) # type: ignore[assignment]
|
||
|
return code
|
||
|
|
||
|
def _verify_integrity(self, codes: list | None = None, levels: list | None = None):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
codes : optional list
|
||
|
Codes to check for validity. Defaults to current codes.
|
||
|
levels : optional list
|
||
|
Levels to check for validity. Defaults to current levels.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If length of levels and codes don't match, if the codes for any
|
||
|
level would exceed level bounds, or there are any duplicate levels.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
new codes where code value = -1 if it corresponds to a
|
||
|
NaN level.
|
||
|
"""
|
||
|
# NOTE: Currently does not check, among other things, that cached
|
||
|
# nlevels matches nor that sortorder matches actually sortorder.
|
||
|
codes = codes or self.codes
|
||
|
levels = levels or self.levels
|
||
|
|
||
|
if len(levels) != len(codes):
|
||
|
raise ValueError(
|
||
|
"Length of levels and codes must match. NOTE: "
|
||
|
"this index is in an inconsistent state."
|
||
|
)
|
||
|
codes_length = len(codes[0])
|
||
|
for i, (level, level_codes) in enumerate(zip(levels, codes)):
|
||
|
if len(level_codes) != codes_length:
|
||
|
raise ValueError(
|
||
|
f"Unequal code lengths: {[len(code_) for code_ in codes]}"
|
||
|
)
|
||
|
if len(level_codes) and level_codes.max() >= len(level):
|
||
|
raise ValueError(
|
||
|
f"On level {i}, code max ({level_codes.max()}) >= length of "
|
||
|
f"level ({len(level)}). NOTE: this index is in an "
|
||
|
"inconsistent state"
|
||
|
)
|
||
|
if len(level_codes) and level_codes.min() < -1:
|
||
|
raise ValueError(f"On level {i}, code value ({level_codes.min()}) < -1")
|
||
|
if not level.is_unique:
|
||
|
raise ValueError(
|
||
|
f"Level values must be unique: {list(level)} on level {i}"
|
||
|
)
|
||
|
if self.sortorder is not None:
|
||
|
if self.sortorder > _lexsort_depth(self.codes, self.nlevels):
|
||
|
raise ValueError(
|
||
|
"Value for sortorder must be inferior or equal to actual "
|
||
|
f"lexsort_depth: sortorder {self.sortorder} "
|
||
|
f"with lexsort_depth {_lexsort_depth(self.codes, self.nlevels)}"
|
||
|
)
|
||
|
|
||
|
codes = [
|
||
|
self._validate_codes(level, code) for level, code in zip(levels, codes)
|
||
|
]
|
||
|
new_codes = FrozenList(codes)
|
||
|
return new_codes
|
||
|
|
||
|
@classmethod
|
||
|
def from_arrays(
|
||
|
cls,
|
||
|
arrays,
|
||
|
sortorder=None,
|
||
|
names: Sequence[Hashable] | Hashable | lib.NoDefault = lib.no_default,
|
||
|
) -> MultiIndex:
|
||
|
"""
|
||
|
Convert arrays to MultiIndex.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arrays : list / sequence of array-likes
|
||
|
Each array-like gives one level's value for each data point.
|
||
|
len(arrays) is the number of levels.
|
||
|
sortorder : int or None
|
||
|
Level of sortedness (must be lexicographically sorted by that
|
||
|
level).
|
||
|
names : list / sequence of str, optional
|
||
|
Names for the levels in the index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
|
||
|
MultiIndex.from_product : Make a MultiIndex from cartesian product
|
||
|
of iterables.
|
||
|
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
|
||
|
>>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
|
||
|
MultiIndex([(1, 'red'),
|
||
|
(1, 'blue'),
|
||
|
(2, 'red'),
|
||
|
(2, 'blue')],
|
||
|
names=['number', 'color'])
|
||
|
"""
|
||
|
error_msg = "Input must be a list / sequence of array-likes."
|
||
|
if not is_list_like(arrays):
|
||
|
raise TypeError(error_msg)
|
||
|
if is_iterator(arrays):
|
||
|
arrays = list(arrays)
|
||
|
|
||
|
# Check if elements of array are list-like
|
||
|
for array in arrays:
|
||
|
if not is_list_like(array):
|
||
|
raise TypeError(error_msg)
|
||
|
|
||
|
# Check if lengths of all arrays are equal or not,
|
||
|
# raise ValueError, if not
|
||
|
for i in range(1, len(arrays)):
|
||
|
if len(arrays[i]) != len(arrays[i - 1]):
|
||
|
raise ValueError("all arrays must be same length")
|
||
|
|
||
|
codes, levels = factorize_from_iterables(arrays)
|
||
|
if names is lib.no_default:
|
||
|
names = [getattr(arr, "name", None) for arr in arrays]
|
||
|
|
||
|
return cls(
|
||
|
levels=levels,
|
||
|
codes=codes,
|
||
|
sortorder=sortorder,
|
||
|
names=names,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
@names_compat
|
||
|
def from_tuples(
|
||
|
cls,
|
||
|
tuples: Iterable[tuple[Hashable, ...]],
|
||
|
sortorder: int | None = None,
|
||
|
names: Sequence[Hashable] | Hashable = None,
|
||
|
) -> MultiIndex:
|
||
|
"""
|
||
|
Convert list of tuples to MultiIndex.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tuples : list / sequence of tuple-likes
|
||
|
Each tuple is the index of one row/column.
|
||
|
sortorder : int or None
|
||
|
Level of sortedness (must be lexicographically sorted by that
|
||
|
level).
|
||
|
names : list / sequence of str, optional
|
||
|
Names for the levels in the index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
|
||
|
MultiIndex.from_product : Make a MultiIndex from cartesian product
|
||
|
of iterables.
|
||
|
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> tuples = [(1, 'red'), (1, 'blue'),
|
||
|
... (2, 'red'), (2, 'blue')]
|
||
|
>>> pd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
|
||
|
MultiIndex([(1, 'red'),
|
||
|
(1, 'blue'),
|
||
|
(2, 'red'),
|
||
|
(2, 'blue')],
|
||
|
names=['number', 'color'])
|
||
|
"""
|
||
|
if not is_list_like(tuples):
|
||
|
raise TypeError("Input must be a list / sequence of tuple-likes.")
|
||
|
if is_iterator(tuples):
|
||
|
tuples = list(tuples)
|
||
|
tuples = cast(Collection[Tuple[Hashable, ...]], tuples)
|
||
|
|
||
|
# handling the empty tuple cases
|
||
|
if len(tuples) and all(isinstance(e, tuple) and not e for e in tuples):
|
||
|
codes = [np.zeros(len(tuples))]
|
||
|
levels = [Index(com.asarray_tuplesafe(tuples, dtype=np.dtype("object")))]
|
||
|
return cls(
|
||
|
levels=levels,
|
||
|
codes=codes,
|
||
|
sortorder=sortorder,
|
||
|
names=names,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
arrays: list[Sequence[Hashable]]
|
||
|
if len(tuples) == 0:
|
||
|
if names is None:
|
||
|
raise TypeError("Cannot infer number of levels from empty list")
|
||
|
# error: Argument 1 to "len" has incompatible type "Hashable";
|
||
|
# expected "Sized"
|
||
|
arrays = [[]] * len(names) # type: ignore[arg-type]
|
||
|
elif isinstance(tuples, (np.ndarray, Index)):
|
||
|
if isinstance(tuples, Index):
|
||
|
tuples = np.asarray(tuples._values)
|
||
|
|
||
|
arrays = list(lib.tuples_to_object_array(tuples).T)
|
||
|
elif isinstance(tuples, list):
|
||
|
arrays = list(lib.to_object_array_tuples(tuples).T)
|
||
|
else:
|
||
|
arrs = zip(*tuples)
|
||
|
arrays = cast(List[Sequence[Hashable]], arrs)
|
||
|
|
||
|
return cls.from_arrays(arrays, sortorder=sortorder, names=names)
|
||
|
|
||
|
@classmethod
|
||
|
def from_product(
|
||
|
cls,
|
||
|
iterables: Sequence[Iterable[Hashable]],
|
||
|
sortorder: int | None = None,
|
||
|
names: Sequence[Hashable] | Hashable | lib.NoDefault = lib.no_default,
|
||
|
) -> MultiIndex:
|
||
|
"""
|
||
|
Make a MultiIndex from the cartesian product of multiple iterables.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
iterables : list / sequence of iterables
|
||
|
Each iterable has unique labels for each level of the index.
|
||
|
sortorder : int or None
|
||
|
Level of sortedness (must be lexicographically sorted by that
|
||
|
level).
|
||
|
names : list / sequence of str, optional
|
||
|
Names for the levels in the index.
|
||
|
If not explicitly provided, names will be inferred from the
|
||
|
elements of iterables if an element has a name attribute.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
|
||
|
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
|
||
|
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> numbers = [0, 1, 2]
|
||
|
>>> colors = ['green', 'purple']
|
||
|
>>> pd.MultiIndex.from_product([numbers, colors],
|
||
|
... names=['number', 'color'])
|
||
|
MultiIndex([(0, 'green'),
|
||
|
(0, 'purple'),
|
||
|
(1, 'green'),
|
||
|
(1, 'purple'),
|
||
|
(2, 'green'),
|
||
|
(2, 'purple')],
|
||
|
names=['number', 'color'])
|
||
|
"""
|
||
|
from pandas.core.reshape.util import cartesian_product
|
||
|
|
||
|
if not is_list_like(iterables):
|
||
|
raise TypeError("Input must be a list / sequence of iterables.")
|
||
|
if is_iterator(iterables):
|
||
|
iterables = list(iterables)
|
||
|
|
||
|
codes, levels = factorize_from_iterables(iterables)
|
||
|
if names is lib.no_default:
|
||
|
names = [getattr(it, "name", None) for it in iterables]
|
||
|
|
||
|
# codes are all ndarrays, so cartesian_product is lossless
|
||
|
codes = cartesian_product(codes)
|
||
|
return cls(levels, codes, sortorder=sortorder, names=names)
|
||
|
|
||
|
@classmethod
|
||
|
def from_frame(cls, df: DataFrame, sortorder=None, names=None) -> MultiIndex:
|
||
|
"""
|
||
|
Make a MultiIndex from a DataFrame.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : DataFrame
|
||
|
DataFrame to be converted to MultiIndex.
|
||
|
sortorder : int, optional
|
||
|
Level of sortedness (must be lexicographically sorted by that
|
||
|
level).
|
||
|
names : list-like, optional
|
||
|
If no names are provided, use the column names, or tuple of column
|
||
|
names if the columns is a MultiIndex. If a sequence, overwrite
|
||
|
names with the given sequence.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
The MultiIndex representation of the given DataFrame.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
|
||
|
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
|
||
|
MultiIndex.from_product : Make a MultiIndex from cartesian product
|
||
|
of iterables.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
|
||
|
... ['NJ', 'Temp'], ['NJ', 'Precip']],
|
||
|
... columns=['a', 'b'])
|
||
|
>>> df
|
||
|
a b
|
||
|
0 HI Temp
|
||
|
1 HI Precip
|
||
|
2 NJ Temp
|
||
|
3 NJ Precip
|
||
|
|
||
|
>>> pd.MultiIndex.from_frame(df)
|
||
|
MultiIndex([('HI', 'Temp'),
|
||
|
('HI', 'Precip'),
|
||
|
('NJ', 'Temp'),
|
||
|
('NJ', 'Precip')],
|
||
|
names=['a', 'b'])
|
||
|
|
||
|
Using explicit names, instead of the column names
|
||
|
|
||
|
>>> pd.MultiIndex.from_frame(df, names=['state', 'observation'])
|
||
|
MultiIndex([('HI', 'Temp'),
|
||
|
('HI', 'Precip'),
|
||
|
('NJ', 'Temp'),
|
||
|
('NJ', 'Precip')],
|
||
|
names=['state', 'observation'])
|
||
|
"""
|
||
|
if not isinstance(df, ABCDataFrame):
|
||
|
raise TypeError("Input must be a DataFrame")
|
||
|
|
||
|
column_names, columns = zip(*df.items())
|
||
|
names = column_names if names is None else names
|
||
|
return cls.from_arrays(columns, sortorder=sortorder, names=names)
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
@cache_readonly
|
||
|
def _values(self) -> np.ndarray:
|
||
|
# We override here, since our parent uses _data, which we don't use.
|
||
|
values = []
|
||
|
|
||
|
for i in range(self.nlevels):
|
||
|
index = self.levels[i]
|
||
|
codes = self.codes[i]
|
||
|
|
||
|
vals = index
|
||
|
if is_categorical_dtype(vals.dtype):
|
||
|
vals = cast("CategoricalIndex", vals)
|
||
|
vals = vals._data._internal_get_values()
|
||
|
|
||
|
if isinstance(vals.dtype, ExtensionDtype) or isinstance(
|
||
|
vals, (ABCDatetimeIndex, ABCTimedeltaIndex)
|
||
|
):
|
||
|
vals = vals.astype(object)
|
||
|
|
||
|
vals = np.array(vals, copy=False)
|
||
|
vals = algos.take_nd(vals, codes, fill_value=index._na_value)
|
||
|
values.append(vals)
|
||
|
|
||
|
arr = lib.fast_zip(values)
|
||
|
return arr
|
||
|
|
||
|
@property
|
||
|
def values(self) -> np.ndarray:
|
||
|
return self._values
|
||
|
|
||
|
@property
|
||
|
def array(self):
|
||
|
"""
|
||
|
Raises a ValueError for `MultiIndex` because there's no single
|
||
|
array backing a MultiIndex.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
"""
|
||
|
raise ValueError(
|
||
|
"MultiIndex has no single backing array. Use "
|
||
|
"'MultiIndex.to_numpy()' to get a NumPy array of tuples."
|
||
|
)
|
||
|
|
||
|
@cache_readonly
|
||
|
def dtypes(self) -> Series:
|
||
|
"""
|
||
|
Return the dtypes as a Series for the underlying MultiIndex.
|
||
|
"""
|
||
|
from pandas import Series
|
||
|
|
||
|
names = com.fill_missing_names([level.name for level in self.levels])
|
||
|
return Series([level.dtype for level in self.levels], index=Index(names))
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self.codes[0])
|
||
|
|
||
|
@property
|
||
|
def size(self) -> int:
|
||
|
"""
|
||
|
Return the number of elements in the underlying data.
|
||
|
"""
|
||
|
# override Index.size to avoid materializing _values
|
||
|
return len(self)
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# Levels Methods
|
||
|
|
||
|
@cache_readonly
|
||
|
def levels(self) -> FrozenList:
|
||
|
# Use cache_readonly to ensure that self.get_locs doesn't repeatedly
|
||
|
# create new IndexEngine
|
||
|
# https://github.com/pandas-dev/pandas/issues/31648
|
||
|
result = [x._rename(name=name) for x, name in zip(self._levels, self._names)]
|
||
|
for level in result:
|
||
|
# disallow midx.levels[0].name = "foo"
|
||
|
level._no_setting_name = True
|
||
|
return FrozenList(result)
|
||
|
|
||
|
def _set_levels(
|
||
|
self,
|
||
|
levels,
|
||
|
*,
|
||
|
level=None,
|
||
|
copy: bool = False,
|
||
|
validate: bool = True,
|
||
|
verify_integrity: bool = False,
|
||
|
) -> None:
|
||
|
# This is NOT part of the levels property because it should be
|
||
|
# externally not allowed to set levels. User beware if you change
|
||
|
# _levels directly
|
||
|
if validate:
|
||
|
if len(levels) == 0:
|
||
|
raise ValueError("Must set non-zero number of levels.")
|
||
|
if level is None and len(levels) != self.nlevels:
|
||
|
raise ValueError("Length of levels must match number of levels.")
|
||
|
if level is not None and len(levels) != len(level):
|
||
|
raise ValueError("Length of levels must match length of level.")
|
||
|
|
||
|
if level is None:
|
||
|
new_levels = FrozenList(
|
||
|
ensure_index(lev, copy=copy)._view() for lev in levels
|
||
|
)
|
||
|
else:
|
||
|
level_numbers = [self._get_level_number(lev) for lev in level]
|
||
|
new_levels_list = list(self._levels)
|
||
|
for lev_num, lev in zip(level_numbers, levels):
|
||
|
new_levels_list[lev_num] = ensure_index(lev, copy=copy)._view()
|
||
|
new_levels = FrozenList(new_levels_list)
|
||
|
|
||
|
if verify_integrity:
|
||
|
new_codes = self._verify_integrity(levels=new_levels)
|
||
|
self._codes = new_codes
|
||
|
|
||
|
names = self.names
|
||
|
self._levels = new_levels
|
||
|
if any(names):
|
||
|
self._set_names(names)
|
||
|
|
||
|
self._reset_cache()
|
||
|
|
||
|
def set_levels(
|
||
|
self, levels, *, level=None, verify_integrity: bool = True
|
||
|
) -> MultiIndex:
|
||
|
"""
|
||
|
Set new levels on MultiIndex. Defaults to returning new index.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
levels : sequence or list of sequence
|
||
|
New level(s) to apply.
|
||
|
level : int, level name, or sequence of int/level names (default None)
|
||
|
Level(s) to set (None for all levels).
|
||
|
verify_integrity : bool, default True
|
||
|
If True, checks that levels and codes are compatible.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> idx = pd.MultiIndex.from_tuples(
|
||
|
... [
|
||
|
... (1, "one"),
|
||
|
... (1, "two"),
|
||
|
... (2, "one"),
|
||
|
... (2, "two"),
|
||
|
... (3, "one"),
|
||
|
... (3, "two")
|
||
|
... ],
|
||
|
... names=["foo", "bar"]
|
||
|
... )
|
||
|
>>> idx
|
||
|
MultiIndex([(1, 'one'),
|
||
|
(1, 'two'),
|
||
|
(2, 'one'),
|
||
|
(2, 'two'),
|
||
|
(3, 'one'),
|
||
|
(3, 'two')],
|
||
|
names=['foo', 'bar'])
|
||
|
|
||
|
>>> idx.set_levels([['a', 'b', 'c'], [1, 2]])
|
||
|
MultiIndex([('a', 1),
|
||
|
('a', 2),
|
||
|
('b', 1),
|
||
|
('b', 2),
|
||
|
('c', 1),
|
||
|
('c', 2)],
|
||
|
names=['foo', 'bar'])
|
||
|
>>> idx.set_levels(['a', 'b', 'c'], level=0)
|
||
|
MultiIndex([('a', 'one'),
|
||
|
('a', 'two'),
|
||
|
('b', 'one'),
|
||
|
('b', 'two'),
|
||
|
('c', 'one'),
|
||
|
('c', 'two')],
|
||
|
names=['foo', 'bar'])
|
||
|
>>> idx.set_levels(['a', 'b'], level='bar')
|
||
|
MultiIndex([(1, 'a'),
|
||
|
(1, 'b'),
|
||
|
(2, 'a'),
|
||
|
(2, 'b'),
|
||
|
(3, 'a'),
|
||
|
(3, 'b')],
|
||
|
names=['foo', 'bar'])
|
||
|
|
||
|
If any of the levels passed to ``set_levels()`` exceeds the
|
||
|
existing length, all of the values from that argument will
|
||
|
be stored in the MultiIndex levels, though the values will
|
||
|
be truncated in the MultiIndex output.
|
||
|
|
||
|
>>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1])
|
||
|
MultiIndex([('a', 1),
|
||
|
('a', 2),
|
||
|
('b', 1),
|
||
|
('b', 2),
|
||
|
('c', 1),
|
||
|
('c', 2)],
|
||
|
names=['foo', 'bar'])
|
||
|
>>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]).levels
|
||
|
FrozenList([['a', 'b', 'c'], [1, 2, 3, 4]])
|
||
|
"""
|
||
|
|
||
|
if is_list_like(levels) and not isinstance(levels, Index):
|
||
|
levels = list(levels)
|
||
|
|
||
|
level, levels = _require_listlike(level, levels, "Levels")
|
||
|
idx = self._view()
|
||
|
idx._reset_identity()
|
||
|
idx._set_levels(
|
||
|
levels, level=level, validate=True, verify_integrity=verify_integrity
|
||
|
)
|
||
|
return idx
|
||
|
|
||
|
@property
|
||
|
def nlevels(self) -> int:
|
||
|
"""
|
||
|
Integer number of levels in this MultiIndex.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([['a'], ['b'], ['c']])
|
||
|
>>> mi
|
||
|
MultiIndex([('a', 'b', 'c')],
|
||
|
)
|
||
|
>>> mi.nlevels
|
||
|
3
|
||
|
"""
|
||
|
return len(self._levels)
|
||
|
|
||
|
@property
|
||
|
def levshape(self) -> Shape:
|
||
|
"""
|
||
|
A tuple with the length of each level.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([['a'], ['b'], ['c']])
|
||
|
>>> mi
|
||
|
MultiIndex([('a', 'b', 'c')],
|
||
|
)
|
||
|
>>> mi.levshape
|
||
|
(1, 1, 1)
|
||
|
"""
|
||
|
return tuple(len(x) for x in self.levels)
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# Codes Methods
|
||
|
|
||
|
@property
|
||
|
def codes(self):
|
||
|
return self._codes
|
||
|
|
||
|
def _set_codes(
|
||
|
self,
|
||
|
codes,
|
||
|
*,
|
||
|
level=None,
|
||
|
copy: bool = False,
|
||
|
validate: bool = True,
|
||
|
verify_integrity: bool = False,
|
||
|
) -> None:
|
||
|
if validate:
|
||
|
if level is None and len(codes) != self.nlevels:
|
||
|
raise ValueError("Length of codes must match number of levels")
|
||
|
if level is not None and len(codes) != len(level):
|
||
|
raise ValueError("Length of codes must match length of levels.")
|
||
|
|
||
|
if level is None:
|
||
|
new_codes = FrozenList(
|
||
|
_coerce_indexer_frozen(level_codes, lev, copy=copy).view()
|
||
|
for lev, level_codes in zip(self._levels, codes)
|
||
|
)
|
||
|
else:
|
||
|
level_numbers = [self._get_level_number(lev) for lev in level]
|
||
|
new_codes_list = list(self._codes)
|
||
|
for lev_num, level_codes in zip(level_numbers, codes):
|
||
|
lev = self.levels[lev_num]
|
||
|
new_codes_list[lev_num] = _coerce_indexer_frozen(
|
||
|
level_codes, lev, copy=copy
|
||
|
)
|
||
|
new_codes = FrozenList(new_codes_list)
|
||
|
|
||
|
if verify_integrity:
|
||
|
new_codes = self._verify_integrity(codes=new_codes)
|
||
|
|
||
|
self._codes = new_codes
|
||
|
|
||
|
self._reset_cache()
|
||
|
|
||
|
def set_codes(self, codes, *, level=None, verify_integrity: bool = True):
|
||
|
"""
|
||
|
Set new codes on MultiIndex. Defaults to returning new index.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
codes : sequence or list of sequence
|
||
|
New codes to apply.
|
||
|
level : int, level name, or sequence of int/level names (default None)
|
||
|
Level(s) to set (None for all levels).
|
||
|
verify_integrity : bool, default True
|
||
|
If True, checks that levels and codes are compatible.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
new index (of same type and class...etc) or None
|
||
|
The same type as the caller or None if ``inplace=True``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> idx = pd.MultiIndex.from_tuples(
|
||
|
... [(1, "one"), (1, "two"), (2, "one"), (2, "two")], names=["foo", "bar"]
|
||
|
... )
|
||
|
>>> idx
|
||
|
MultiIndex([(1, 'one'),
|
||
|
(1, 'two'),
|
||
|
(2, 'one'),
|
||
|
(2, 'two')],
|
||
|
names=['foo', 'bar'])
|
||
|
|
||
|
>>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]])
|
||
|
MultiIndex([(2, 'one'),
|
||
|
(1, 'one'),
|
||
|
(2, 'two'),
|
||
|
(1, 'two')],
|
||
|
names=['foo', 'bar'])
|
||
|
>>> idx.set_codes([1, 0, 1, 0], level=0)
|
||
|
MultiIndex([(2, 'one'),
|
||
|
(1, 'two'),
|
||
|
(2, 'one'),
|
||
|
(1, 'two')],
|
||
|
names=['foo', 'bar'])
|
||
|
>>> idx.set_codes([0, 0, 1, 1], level='bar')
|
||
|
MultiIndex([(1, 'one'),
|
||
|
(1, 'one'),
|
||
|
(2, 'two'),
|
||
|
(2, 'two')],
|
||
|
names=['foo', 'bar'])
|
||
|
>>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]], level=[0, 1])
|
||
|
MultiIndex([(2, 'one'),
|
||
|
(1, 'one'),
|
||
|
(2, 'two'),
|
||
|
(1, 'two')],
|
||
|
names=['foo', 'bar'])
|
||
|
"""
|
||
|
|
||
|
level, codes = _require_listlike(level, codes, "Codes")
|
||
|
idx = self._view()
|
||
|
idx._reset_identity()
|
||
|
idx._set_codes(codes, level=level, verify_integrity=verify_integrity)
|
||
|
return idx
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# Index Internals
|
||
|
|
||
|
@cache_readonly
|
||
|
def _engine(self):
|
||
|
# Calculate the number of bits needed to represent labels in each
|
||
|
# level, as log2 of their sizes:
|
||
|
# NaN values are shifted to 1 and missing values in other while
|
||
|
# calculating the indexer are shifted to 0
|
||
|
sizes = np.ceil(
|
||
|
np.log2(
|
||
|
[
|
||
|
len(level)
|
||
|
+ libindex.multiindex_nulls_shift # type: ignore[attr-defined]
|
||
|
for level in self.levels
|
||
|
]
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# Sum bit counts, starting from the _right_....
|
||
|
lev_bits = np.cumsum(sizes[::-1])[::-1]
|
||
|
|
||
|
# ... in order to obtain offsets such that sorting the combination of
|
||
|
# shifted codes (one for each level, resulting in a unique integer) is
|
||
|
# equivalent to sorting lexicographically the codes themselves. Notice
|
||
|
# that each level needs to be shifted by the number of bits needed to
|
||
|
# represent the _previous_ ones:
|
||
|
offsets = np.concatenate([lev_bits[1:], [0]]).astype("uint64")
|
||
|
|
||
|
# Check the total number of bits needed for our representation:
|
||
|
if lev_bits[0] > 64:
|
||
|
# The levels would overflow a 64 bit uint - use Python integers:
|
||
|
return MultiIndexPyIntEngine(self.levels, self.codes, offsets)
|
||
|
return MultiIndexUIntEngine(self.levels, self.codes, offsets)
|
||
|
|
||
|
# Return type "Callable[..., MultiIndex]" of "_constructor" incompatible with return
|
||
|
# type "Type[MultiIndex]" in supertype "Index"
|
||
|
@property
|
||
|
def _constructor(self) -> Callable[..., MultiIndex]: # type: ignore[override]
|
||
|
return type(self).from_tuples
|
||
|
|
||
|
@doc(Index._shallow_copy)
|
||
|
def _shallow_copy(self, values: np.ndarray, name=lib.no_default) -> MultiIndex:
|
||
|
names = name if name is not lib.no_default else self.names
|
||
|
|
||
|
return type(self).from_tuples(values, sortorder=None, names=names)
|
||
|
|
||
|
def _view(self) -> MultiIndex:
|
||
|
result = type(self)(
|
||
|
levels=self.levels,
|
||
|
codes=self.codes,
|
||
|
sortorder=self.sortorder,
|
||
|
names=self.names,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
result._cache = self._cache.copy()
|
||
|
result._cache.pop("levels", None) # GH32669
|
||
|
return result
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
# error: Signature of "copy" incompatible with supertype "Index"
|
||
|
def copy( # type: ignore[override]
|
||
|
self,
|
||
|
names=None,
|
||
|
deep: bool = False,
|
||
|
name=None,
|
||
|
):
|
||
|
"""
|
||
|
Make a copy of this object.
|
||
|
|
||
|
Names, dtype, levels and codes can be passed and will be set on new copy.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
names : sequence, optional
|
||
|
deep : bool, default False
|
||
|
name : Label
|
||
|
Kept for compatibility with 1-dimensional Index. Should not be used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
In most cases, there should be no functional difference from using
|
||
|
``deep``, but if ``deep`` is passed it will attempt to deepcopy.
|
||
|
This could be potentially expensive on large MultiIndex objects.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([['a'], ['b'], ['c']])
|
||
|
>>> mi
|
||
|
MultiIndex([('a', 'b', 'c')],
|
||
|
)
|
||
|
>>> mi.copy()
|
||
|
MultiIndex([('a', 'b', 'c')],
|
||
|
)
|
||
|
"""
|
||
|
names = self._validate_names(name=name, names=names, deep=deep)
|
||
|
keep_id = not deep
|
||
|
levels, codes = None, None
|
||
|
|
||
|
if deep:
|
||
|
from copy import deepcopy
|
||
|
|
||
|
levels = deepcopy(self.levels)
|
||
|
codes = deepcopy(self.codes)
|
||
|
|
||
|
levels = levels if levels is not None else self.levels
|
||
|
codes = codes if codes is not None else self.codes
|
||
|
|
||
|
new_index = type(self)(
|
||
|
levels=levels,
|
||
|
codes=codes,
|
||
|
sortorder=self.sortorder,
|
||
|
names=names,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
new_index._cache = self._cache.copy()
|
||
|
new_index._cache.pop("levels", None) # GH32669
|
||
|
if keep_id:
|
||
|
new_index._id = self._id
|
||
|
return new_index
|
||
|
|
||
|
def __array__(self, dtype=None) -> np.ndarray:
|
||
|
"""the array interface, return my values"""
|
||
|
return self.values
|
||
|
|
||
|
def view(self, cls=None):
|
||
|
"""this is defined as a copy with the same identity"""
|
||
|
result = self.copy()
|
||
|
result._id = self._id
|
||
|
return result
|
||
|
|
||
|
@doc(Index.__contains__)
|
||
|
def __contains__(self, key: Any) -> bool:
|
||
|
hash(key)
|
||
|
try:
|
||
|
self.get_loc(key)
|
||
|
return True
|
||
|
except (LookupError, TypeError, ValueError):
|
||
|
return False
|
||
|
|
||
|
@cache_readonly
|
||
|
def dtype(self) -> np.dtype:
|
||
|
return np.dtype("O")
|
||
|
|
||
|
def _is_memory_usage_qualified(self) -> bool:
|
||
|
"""return a boolean if we need a qualified .info display"""
|
||
|
|
||
|
def f(level) -> bool:
|
||
|
return "mixed" in level or "string" in level or "unicode" in level
|
||
|
|
||
|
return any(f(level) for level in self._inferred_type_levels)
|
||
|
|
||
|
# Cannot determine type of "memory_usage"
|
||
|
@doc(Index.memory_usage) # type: ignore[has-type]
|
||
|
def memory_usage(self, deep: bool = False) -> int:
|
||
|
# we are overwriting our base class to avoid
|
||
|
# computing .values here which could materialize
|
||
|
# a tuple representation unnecessarily
|
||
|
return self._nbytes(deep)
|
||
|
|
||
|
@cache_readonly
|
||
|
def nbytes(self) -> int:
|
||
|
"""return the number of bytes in the underlying data"""
|
||
|
return self._nbytes(False)
|
||
|
|
||
|
def _nbytes(self, deep: bool = False) -> int:
|
||
|
"""
|
||
|
return the number of bytes in the underlying data
|
||
|
deeply introspect the level data if deep=True
|
||
|
|
||
|
include the engine hashtable
|
||
|
|
||
|
*this is in internal routine*
|
||
|
|
||
|
"""
|
||
|
# for implementations with no useful getsizeof (PyPy)
|
||
|
objsize = 24
|
||
|
|
||
|
level_nbytes = sum(i.memory_usage(deep=deep) for i in self.levels)
|
||
|
label_nbytes = sum(i.nbytes for i in self.codes)
|
||
|
names_nbytes = sum(getsizeof(i, objsize) for i in self.names)
|
||
|
result = level_nbytes + label_nbytes + names_nbytes
|
||
|
|
||
|
# include our engine hashtable
|
||
|
result += self._engine.sizeof(deep=deep)
|
||
|
return result
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# Rendering Methods
|
||
|
|
||
|
def _formatter_func(self, tup):
|
||
|
"""
|
||
|
Formats each item in tup according to its level's formatter function.
|
||
|
"""
|
||
|
formatter_funcs = [level._formatter_func for level in self.levels]
|
||
|
return tuple(func(val) for func, val in zip(formatter_funcs, tup))
|
||
|
|
||
|
def _format_native_types(
|
||
|
self, *, na_rep: str = "nan", **kwargs
|
||
|
) -> npt.NDArray[np.object_]:
|
||
|
new_levels = []
|
||
|
new_codes = []
|
||
|
|
||
|
# go through the levels and format them
|
||
|
for level, level_codes in zip(self.levels, self.codes):
|
||
|
level_strs = level._format_native_types(na_rep=na_rep, **kwargs)
|
||
|
# add nan values, if there are any
|
||
|
mask = level_codes == -1
|
||
|
if mask.any():
|
||
|
nan_index = len(level_strs)
|
||
|
# numpy 1.21 deprecated implicit string casting
|
||
|
level_strs = level_strs.astype(str)
|
||
|
level_strs = np.append(level_strs, na_rep)
|
||
|
assert not level_codes.flags.writeable # i.e. copy is needed
|
||
|
level_codes = level_codes.copy() # make writeable
|
||
|
level_codes[mask] = nan_index
|
||
|
new_levels.append(level_strs)
|
||
|
new_codes.append(level_codes)
|
||
|
|
||
|
if len(new_levels) == 1:
|
||
|
# a single-level multi-index
|
||
|
return Index(new_levels[0].take(new_codes[0]))._format_native_types()
|
||
|
else:
|
||
|
# reconstruct the multi-index
|
||
|
mi = MultiIndex(
|
||
|
levels=new_levels,
|
||
|
codes=new_codes,
|
||
|
names=self.names,
|
||
|
sortorder=self.sortorder,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
return mi._values
|
||
|
|
||
|
def format(
|
||
|
self,
|
||
|
name: bool | None = None,
|
||
|
formatter: Callable | None = None,
|
||
|
na_rep: str | None = None,
|
||
|
names: bool = False,
|
||
|
space: int = 2,
|
||
|
sparsify=None,
|
||
|
adjoin: bool = True,
|
||
|
) -> list:
|
||
|
if name is not None:
|
||
|
names = name
|
||
|
|
||
|
if len(self) == 0:
|
||
|
return []
|
||
|
|
||
|
stringified_levels = []
|
||
|
for lev, level_codes in zip(self.levels, self.codes):
|
||
|
na = na_rep if na_rep is not None else _get_na_rep(lev.dtype)
|
||
|
|
||
|
if len(lev) > 0:
|
||
|
formatted = lev.take(level_codes).format(formatter=formatter)
|
||
|
|
||
|
# we have some NA
|
||
|
mask = level_codes == -1
|
||
|
if mask.any():
|
||
|
formatted = np.array(formatted, dtype=object)
|
||
|
formatted[mask] = na
|
||
|
formatted = formatted.tolist()
|
||
|
|
||
|
else:
|
||
|
# weird all NA case
|
||
|
formatted = [
|
||
|
pprint_thing(na if isna(x) else x, escape_chars=("\t", "\r", "\n"))
|
||
|
for x in algos.take_nd(lev._values, level_codes)
|
||
|
]
|
||
|
stringified_levels.append(formatted)
|
||
|
|
||
|
result_levels = []
|
||
|
for lev, lev_name in zip(stringified_levels, self.names):
|
||
|
level = []
|
||
|
|
||
|
if names:
|
||
|
level.append(
|
||
|
pprint_thing(lev_name, escape_chars=("\t", "\r", "\n"))
|
||
|
if lev_name is not None
|
||
|
else ""
|
||
|
)
|
||
|
|
||
|
level.extend(np.array(lev, dtype=object))
|
||
|
result_levels.append(level)
|
||
|
|
||
|
if sparsify is None:
|
||
|
sparsify = get_option("display.multi_sparse")
|
||
|
|
||
|
if sparsify:
|
||
|
sentinel: Literal[""] | bool | lib.NoDefault = ""
|
||
|
# GH3547 use value of sparsify as sentinel if it's "Falsey"
|
||
|
assert isinstance(sparsify, bool) or sparsify is lib.no_default
|
||
|
if sparsify in [False, lib.no_default]:
|
||
|
sentinel = sparsify
|
||
|
# little bit of a kludge job for #1217
|
||
|
result_levels = sparsify_labels(
|
||
|
result_levels, start=int(names), sentinel=sentinel
|
||
|
)
|
||
|
|
||
|
if adjoin:
|
||
|
from pandas.io.formats.format import get_adjustment
|
||
|
|
||
|
adj = get_adjustment()
|
||
|
return adj.adjoin(space, *result_levels).split("\n")
|
||
|
else:
|
||
|
return result_levels
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# Names Methods
|
||
|
|
||
|
def _get_names(self) -> FrozenList:
|
||
|
return FrozenList(self._names)
|
||
|
|
||
|
def _set_names(self, names, *, level=None, validate: bool = True):
|
||
|
"""
|
||
|
Set new names on index. Each name has to be a hashable type.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values : str or sequence
|
||
|
name(s) to set
|
||
|
level : int, level name, or sequence of int/level names (default None)
|
||
|
If the index is a MultiIndex (hierarchical), level(s) to set (None
|
||
|
for all levels). Otherwise level must be None
|
||
|
validate : bool, default True
|
||
|
validate that the names match level lengths
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError if each name is not hashable.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
sets names on levels. WARNING: mutates!
|
||
|
|
||
|
Note that you generally want to set this *after* changing levels, so
|
||
|
that it only acts on copies
|
||
|
"""
|
||
|
# GH 15110
|
||
|
# Don't allow a single string for names in a MultiIndex
|
||
|
if names is not None and not is_list_like(names):
|
||
|
raise ValueError("Names should be list-like for a MultiIndex")
|
||
|
names = list(names)
|
||
|
|
||
|
if validate:
|
||
|
if level is not None and len(names) != len(level):
|
||
|
raise ValueError("Length of names must match length of level.")
|
||
|
if level is None and len(names) != self.nlevels:
|
||
|
raise ValueError(
|
||
|
"Length of names must match number of levels in MultiIndex."
|
||
|
)
|
||
|
|
||
|
if level is None:
|
||
|
level = range(self.nlevels)
|
||
|
else:
|
||
|
level = [self._get_level_number(lev) for lev in level]
|
||
|
|
||
|
# set the name
|
||
|
for lev, name in zip(level, names):
|
||
|
if name is not None:
|
||
|
# GH 20527
|
||
|
# All items in 'names' need to be hashable:
|
||
|
if not is_hashable(name):
|
||
|
raise TypeError(
|
||
|
f"{type(self).__name__}.name must be a hashable type"
|
||
|
)
|
||
|
self._names[lev] = name
|
||
|
|
||
|
# If .levels has been accessed, the names in our cache will be stale.
|
||
|
self._reset_cache()
|
||
|
|
||
|
names = property(
|
||
|
fset=_set_names,
|
||
|
fget=_get_names,
|
||
|
doc="""
|
||
|
Names of levels in MultiIndex.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays(
|
||
|
... [[1, 2], [3, 4], [5, 6]], names=['x', 'y', 'z'])
|
||
|
>>> mi
|
||
|
MultiIndex([(1, 3, 5),
|
||
|
(2, 4, 6)],
|
||
|
names=['x', 'y', 'z'])
|
||
|
>>> mi.names
|
||
|
FrozenList(['x', 'y', 'z'])
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
@cache_readonly
|
||
|
def inferred_type(self) -> str:
|
||
|
return "mixed"
|
||
|
|
||
|
def _get_level_number(self, level) -> int:
|
||
|
count = self.names.count(level)
|
||
|
if (count > 1) and not is_integer(level):
|
||
|
raise ValueError(
|
||
|
f"The name {level} occurs multiple times, use a level number"
|
||
|
)
|
||
|
try:
|
||
|
level = self.names.index(level)
|
||
|
except ValueError as err:
|
||
|
if not is_integer(level):
|
||
|
raise KeyError(f"Level {level} not found") from err
|
||
|
if level < 0:
|
||
|
level += self.nlevels
|
||
|
if level < 0:
|
||
|
orig_level = level - self.nlevels
|
||
|
raise IndexError(
|
||
|
f"Too many levels: Index has only {self.nlevels} levels, "
|
||
|
f"{orig_level} is not a valid level number"
|
||
|
) from err
|
||
|
# Note: levels are zero-based
|
||
|
elif level >= self.nlevels:
|
||
|
raise IndexError(
|
||
|
f"Too many levels: Index has only {self.nlevels} levels, "
|
||
|
f"not {level + 1}"
|
||
|
) from err
|
||
|
return level
|
||
|
|
||
|
@cache_readonly
|
||
|
def is_monotonic_increasing(self) -> bool:
|
||
|
"""
|
||
|
Return a boolean if the values are equal or increasing.
|
||
|
"""
|
||
|
if any(-1 in code for code in self.codes):
|
||
|
return False
|
||
|
|
||
|
if all(level.is_monotonic_increasing for level in self.levels):
|
||
|
# If each level is sorted, we can operate on the codes directly. GH27495
|
||
|
return libalgos.is_lexsorted(
|
||
|
[x.astype("int64", copy=False) for x in self.codes]
|
||
|
)
|
||
|
|
||
|
# reversed() because lexsort() wants the most significant key last.
|
||
|
values = [
|
||
|
self._get_level_values(i)._values for i in reversed(range(len(self.levels)))
|
||
|
]
|
||
|
try:
|
||
|
# error: Argument 1 to "lexsort" has incompatible type
|
||
|
# "List[Union[ExtensionArray, ndarray[Any, Any]]]";
|
||
|
# expected "Union[_SupportsArray[dtype[Any]],
|
||
|
# _NestedSequence[_SupportsArray[dtype[Any]]], bool,
|
||
|
# int, float, complex, str, bytes, _NestedSequence[Union
|
||
|
# [bool, int, float, complex, str, bytes]]]"
|
||
|
sort_order = np.lexsort(values) # type: ignore[arg-type]
|
||
|
return Index(sort_order).is_monotonic_increasing
|
||
|
except TypeError:
|
||
|
# we have mixed types and np.lexsort is not happy
|
||
|
return Index(self._values).is_monotonic_increasing
|
||
|
|
||
|
@cache_readonly
|
||
|
def is_monotonic_decreasing(self) -> bool:
|
||
|
"""
|
||
|
Return a boolean if the values are equal or decreasing.
|
||
|
"""
|
||
|
# monotonic decreasing if and only if reverse is monotonic increasing
|
||
|
return self[::-1].is_monotonic_increasing
|
||
|
|
||
|
@cache_readonly
|
||
|
def _inferred_type_levels(self) -> list[str]:
|
||
|
"""return a list of the inferred types, one for each level"""
|
||
|
return [i.inferred_type for i in self.levels]
|
||
|
|
||
|
@doc(Index.duplicated)
|
||
|
def duplicated(self, keep: DropKeep = "first") -> npt.NDArray[np.bool_]:
|
||
|
shape = tuple(len(lev) for lev in self.levels)
|
||
|
ids = get_group_index(self.codes, shape, sort=False, xnull=False)
|
||
|
|
||
|
return duplicated(ids, keep)
|
||
|
|
||
|
# error: Cannot override final attribute "_duplicated"
|
||
|
# (previously declared in base class "IndexOpsMixin")
|
||
|
_duplicated = duplicated # type: ignore[misc]
|
||
|
|
||
|
def fillna(self, value=None, downcast=None):
|
||
|
"""
|
||
|
fillna is not implemented for MultiIndex
|
||
|
"""
|
||
|
raise NotImplementedError("isna is not defined for MultiIndex")
|
||
|
|
||
|
@doc(Index.dropna)
|
||
|
def dropna(self, how: AnyAll = "any") -> MultiIndex:
|
||
|
nans = [level_codes == -1 for level_codes in self.codes]
|
||
|
if how == "any":
|
||
|
indexer = np.any(nans, axis=0)
|
||
|
elif how == "all":
|
||
|
indexer = np.all(nans, axis=0)
|
||
|
else:
|
||
|
raise ValueError(f"invalid how option: {how}")
|
||
|
|
||
|
new_codes = [level_codes[~indexer] for level_codes in self.codes]
|
||
|
return self.set_codes(codes=new_codes)
|
||
|
|
||
|
def _get_level_values(self, level: int, unique: bool = False) -> Index:
|
||
|
"""
|
||
|
Return vector of label values for requested level,
|
||
|
equal to the length of the index
|
||
|
|
||
|
**this is an internal method**
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
level : int
|
||
|
unique : bool, default False
|
||
|
if True, drop duplicated values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Index
|
||
|
"""
|
||
|
lev = self.levels[level]
|
||
|
level_codes = self.codes[level]
|
||
|
name = self._names[level]
|
||
|
if unique:
|
||
|
level_codes = algos.unique(level_codes)
|
||
|
filled = algos.take_nd(lev._values, level_codes, fill_value=lev._na_value)
|
||
|
return lev._shallow_copy(filled, name=name)
|
||
|
|
||
|
def get_level_values(self, level):
|
||
|
"""
|
||
|
Return vector of label values for requested level.
|
||
|
|
||
|
Length of returned vector is equal to the length of the index.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
level : int or str
|
||
|
``level`` is either the integer position of the level in the
|
||
|
MultiIndex, or the name of the level.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Index
|
||
|
Values is a level of this MultiIndex converted to
|
||
|
a single :class:`Index` (or subclass thereof).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If the level contains missing values, the result may be casted to
|
||
|
``float`` with missing values specified as ``NaN``. This is because
|
||
|
the level is converted to a regular ``Index``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Create a MultiIndex:
|
||
|
|
||
|
>>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def')))
|
||
|
>>> mi.names = ['level_1', 'level_2']
|
||
|
|
||
|
Get level values by supplying level as either integer or name:
|
||
|
|
||
|
>>> mi.get_level_values(0)
|
||
|
Index(['a', 'b', 'c'], dtype='object', name='level_1')
|
||
|
>>> mi.get_level_values('level_2')
|
||
|
Index(['d', 'e', 'f'], dtype='object', name='level_2')
|
||
|
|
||
|
If a level contains missing values, the return type of the level
|
||
|
may be cast to ``float``.
|
||
|
|
||
|
>>> pd.MultiIndex.from_arrays([[1, None, 2], [3, 4, 5]]).dtypes
|
||
|
level_0 int64
|
||
|
level_1 int64
|
||
|
dtype: object
|
||
|
>>> pd.MultiIndex.from_arrays([[1, None, 2], [3, 4, 5]]).get_level_values(0)
|
||
|
Index([1.0, nan, 2.0], dtype='float64')
|
||
|
"""
|
||
|
level = self._get_level_number(level)
|
||
|
values = self._get_level_values(level)
|
||
|
return values
|
||
|
|
||
|
@doc(Index.unique)
|
||
|
def unique(self, level=None):
|
||
|
if level is None:
|
||
|
return self.drop_duplicates()
|
||
|
else:
|
||
|
level = self._get_level_number(level)
|
||
|
return self._get_level_values(level=level, unique=True)
|
||
|
|
||
|
def to_frame(
|
||
|
self,
|
||
|
index: bool = True,
|
||
|
name=lib.no_default,
|
||
|
allow_duplicates: bool = False,
|
||
|
) -> DataFrame:
|
||
|
"""
|
||
|
Create a DataFrame with the levels of the MultiIndex as columns.
|
||
|
|
||
|
Column ordering is determined by the DataFrame constructor with data as
|
||
|
a dict.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index : bool, default True
|
||
|
Set the index of the returned DataFrame as the original MultiIndex.
|
||
|
|
||
|
name : list / sequence of str, optional
|
||
|
The passed names should substitute index level names.
|
||
|
|
||
|
allow_duplicates : bool, optional default False
|
||
|
Allow duplicate column labels to be created.
|
||
|
|
||
|
.. versionadded:: 1.5.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame : Two-dimensional, size-mutable, potentially heterogeneous
|
||
|
tabular data.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([['a', 'b'], ['c', 'd']])
|
||
|
>>> mi
|
||
|
MultiIndex([('a', 'c'),
|
||
|
('b', 'd')],
|
||
|
)
|
||
|
|
||
|
>>> df = mi.to_frame()
|
||
|
>>> df
|
||
|
0 1
|
||
|
a c a c
|
||
|
b d b d
|
||
|
|
||
|
>>> df = mi.to_frame(index=False)
|
||
|
>>> df
|
||
|
0 1
|
||
|
0 a c
|
||
|
1 b d
|
||
|
|
||
|
>>> df = mi.to_frame(name=['x', 'y'])
|
||
|
>>> df
|
||
|
x y
|
||
|
a c a c
|
||
|
b d b d
|
||
|
"""
|
||
|
from pandas import DataFrame
|
||
|
|
||
|
if name is not lib.no_default:
|
||
|
if not is_list_like(name):
|
||
|
raise TypeError("'name' must be a list / sequence of column names.")
|
||
|
|
||
|
if len(name) != len(self.levels):
|
||
|
raise ValueError(
|
||
|
"'name' should have same length as number of levels on index."
|
||
|
)
|
||
|
idx_names = name
|
||
|
else:
|
||
|
idx_names = self._get_level_names()
|
||
|
|
||
|
if not allow_duplicates and len(set(idx_names)) != len(idx_names):
|
||
|
raise ValueError(
|
||
|
"Cannot create duplicate column labels if allow_duplicates is False"
|
||
|
)
|
||
|
|
||
|
# Guarantee resulting column order - PY36+ dict maintains insertion order
|
||
|
result = DataFrame(
|
||
|
{level: self._get_level_values(level) for level in range(len(self.levels))},
|
||
|
copy=False,
|
||
|
)
|
||
|
result.columns = idx_names
|
||
|
|
||
|
if index:
|
||
|
result.index = self
|
||
|
return result
|
||
|
|
||
|
# error: Return type "Index" of "to_flat_index" incompatible with return type
|
||
|
# "MultiIndex" in supertype "Index"
|
||
|
def to_flat_index(self) -> Index: # type: ignore[override]
|
||
|
"""
|
||
|
Convert a MultiIndex to an Index of Tuples containing the level values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pd.Index
|
||
|
Index with the MultiIndex data represented in Tuples.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.from_tuples : Convert flat index back to MultiIndex.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method will simply return the caller if called by anything other
|
||
|
than a MultiIndex.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> index = pd.MultiIndex.from_product(
|
||
|
... [['foo', 'bar'], ['baz', 'qux']],
|
||
|
... names=['a', 'b'])
|
||
|
>>> index.to_flat_index()
|
||
|
Index([('foo', 'baz'), ('foo', 'qux'),
|
||
|
('bar', 'baz'), ('bar', 'qux')],
|
||
|
dtype='object')
|
||
|
"""
|
||
|
return Index(self._values, tupleize_cols=False)
|
||
|
|
||
|
def _is_lexsorted(self) -> bool:
|
||
|
"""
|
||
|
Return True if the codes are lexicographically sorted.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In the below examples, the first level of the MultiIndex is sorted because
|
||
|
a<b<c, so there is no need to look at the next level.
|
||
|
|
||
|
>>> pd.MultiIndex.from_arrays([['a', 'b', 'c'],
|
||
|
... ['d', 'e', 'f']])._is_lexsorted()
|
||
|
True
|
||
|
>>> pd.MultiIndex.from_arrays([['a', 'b', 'c'],
|
||
|
... ['d', 'f', 'e']])._is_lexsorted()
|
||
|
True
|
||
|
|
||
|
In case there is a tie, the lexicographical sorting looks
|
||
|
at the next level of the MultiIndex.
|
||
|
|
||
|
>>> pd.MultiIndex.from_arrays([[0, 1, 1], ['a', 'b', 'c']])._is_lexsorted()
|
||
|
True
|
||
|
>>> pd.MultiIndex.from_arrays([[0, 1, 1], ['a', 'c', 'b']])._is_lexsorted()
|
||
|
False
|
||
|
>>> pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'],
|
||
|
... ['aa', 'bb', 'aa', 'bb']])._is_lexsorted()
|
||
|
True
|
||
|
>>> pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'],
|
||
|
... ['bb', 'aa', 'aa', 'bb']])._is_lexsorted()
|
||
|
False
|
||
|
"""
|
||
|
return self._lexsort_depth == self.nlevels
|
||
|
|
||
|
@cache_readonly
|
||
|
def _lexsort_depth(self) -> int:
|
||
|
"""
|
||
|
Compute and return the lexsort_depth, the number of levels of the
|
||
|
MultiIndex that are sorted lexically
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int
|
||
|
"""
|
||
|
if self.sortorder is not None:
|
||
|
return self.sortorder
|
||
|
return _lexsort_depth(self.codes, self.nlevels)
|
||
|
|
||
|
def _sort_levels_monotonic(self, raise_if_incomparable: bool = False) -> MultiIndex:
|
||
|
"""
|
||
|
This is an *internal* function.
|
||
|
|
||
|
Create a new MultiIndex from the current to monotonically sorted
|
||
|
items IN the levels. This does not actually make the entire MultiIndex
|
||
|
monotonic, JUST the levels.
|
||
|
|
||
|
The resulting MultiIndex will have the same outward
|
||
|
appearance, meaning the same .values and ordering. It will also
|
||
|
be .equals() to the original.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
|
||
|
... codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
|
||
|
>>> mi
|
||
|
MultiIndex([('a', 'bb'),
|
||
|
('a', 'aa'),
|
||
|
('b', 'bb'),
|
||
|
('b', 'aa')],
|
||
|
)
|
||
|
|
||
|
>>> mi.sort_values()
|
||
|
MultiIndex([('a', 'aa'),
|
||
|
('a', 'bb'),
|
||
|
('b', 'aa'),
|
||
|
('b', 'bb')],
|
||
|
)
|
||
|
"""
|
||
|
if self._is_lexsorted() and self.is_monotonic_increasing:
|
||
|
return self
|
||
|
|
||
|
new_levels = []
|
||
|
new_codes = []
|
||
|
|
||
|
for lev, level_codes in zip(self.levels, self.codes):
|
||
|
if not lev.is_monotonic_increasing:
|
||
|
try:
|
||
|
# indexer to reorder the levels
|
||
|
indexer = lev.argsort()
|
||
|
except TypeError:
|
||
|
if raise_if_incomparable:
|
||
|
raise
|
||
|
else:
|
||
|
lev = lev.take(indexer)
|
||
|
|
||
|
# indexer to reorder the level codes
|
||
|
indexer = ensure_platform_int(indexer)
|
||
|
ri = lib.get_reverse_indexer(indexer, len(indexer))
|
||
|
level_codes = algos.take_nd(ri, level_codes)
|
||
|
|
||
|
new_levels.append(lev)
|
||
|
new_codes.append(level_codes)
|
||
|
|
||
|
return MultiIndex(
|
||
|
new_levels,
|
||
|
new_codes,
|
||
|
names=self.names,
|
||
|
sortorder=self.sortorder,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
def remove_unused_levels(self) -> MultiIndex:
|
||
|
"""
|
||
|
Create new MultiIndex from current that removes unused levels.
|
||
|
|
||
|
Unused level(s) means levels that are not expressed in the
|
||
|
labels. The resulting MultiIndex will have the same outward
|
||
|
appearance, meaning the same .values and ordering. It will
|
||
|
also be .equals() to the original.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_product([range(2), list('ab')])
|
||
|
>>> mi
|
||
|
MultiIndex([(0, 'a'),
|
||
|
(0, 'b'),
|
||
|
(1, 'a'),
|
||
|
(1, 'b')],
|
||
|
)
|
||
|
|
||
|
>>> mi[2:]
|
||
|
MultiIndex([(1, 'a'),
|
||
|
(1, 'b')],
|
||
|
)
|
||
|
|
||
|
The 0 from the first level is not represented
|
||
|
and can be removed
|
||
|
|
||
|
>>> mi2 = mi[2:].remove_unused_levels()
|
||
|
>>> mi2.levels
|
||
|
FrozenList([[1], ['a', 'b']])
|
||
|
"""
|
||
|
new_levels = []
|
||
|
new_codes = []
|
||
|
|
||
|
changed = False
|
||
|
for lev, level_codes in zip(self.levels, self.codes):
|
||
|
# Since few levels are typically unused, bincount() is more
|
||
|
# efficient than unique() - however it only accepts positive values
|
||
|
# (and drops order):
|
||
|
uniques = np.where(np.bincount(level_codes + 1) > 0)[0] - 1
|
||
|
has_na = int(len(uniques) and (uniques[0] == -1))
|
||
|
|
||
|
if len(uniques) != len(lev) + has_na:
|
||
|
if lev.isna().any() and len(uniques) == len(lev):
|
||
|
break
|
||
|
# We have unused levels
|
||
|
changed = True
|
||
|
|
||
|
# Recalculate uniques, now preserving order.
|
||
|
# Can easily be cythonized by exploiting the already existing
|
||
|
# "uniques" and stop parsing "level_codes" when all items
|
||
|
# are found:
|
||
|
uniques = algos.unique(level_codes)
|
||
|
if has_na:
|
||
|
na_idx = np.where(uniques == -1)[0]
|
||
|
# Just ensure that -1 is in first position:
|
||
|
uniques[[0, na_idx[0]]] = uniques[[na_idx[0], 0]]
|
||
|
|
||
|
# codes get mapped from uniques to 0:len(uniques)
|
||
|
# -1 (if present) is mapped to last position
|
||
|
code_mapping = np.zeros(len(lev) + has_na)
|
||
|
# ... and reassigned value -1:
|
||
|
code_mapping[uniques] = np.arange(len(uniques)) - has_na
|
||
|
|
||
|
level_codes = code_mapping[level_codes]
|
||
|
|
||
|
# new levels are simple
|
||
|
lev = lev.take(uniques[has_na:])
|
||
|
|
||
|
new_levels.append(lev)
|
||
|
new_codes.append(level_codes)
|
||
|
|
||
|
result = self.view()
|
||
|
|
||
|
if changed:
|
||
|
result._reset_identity()
|
||
|
result._set_levels(new_levels, validate=False)
|
||
|
result._set_codes(new_codes, validate=False)
|
||
|
|
||
|
return result
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# Pickling Methods
|
||
|
|
||
|
def __reduce__(self):
|
||
|
"""Necessary for making this object picklable"""
|
||
|
d = {
|
||
|
"levels": list(self.levels),
|
||
|
"codes": list(self.codes),
|
||
|
"sortorder": self.sortorder,
|
||
|
"names": list(self.names),
|
||
|
}
|
||
|
return ibase._new_Index, (type(self), d), None
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
if is_scalar(key):
|
||
|
key = com.cast_scalar_indexer(key)
|
||
|
|
||
|
retval = []
|
||
|
for lev, level_codes in zip(self.levels, self.codes):
|
||
|
if level_codes[key] == -1:
|
||
|
retval.append(np.nan)
|
||
|
else:
|
||
|
retval.append(lev[level_codes[key]])
|
||
|
|
||
|
return tuple(retval)
|
||
|
else:
|
||
|
# in general cannot be sure whether the result will be sorted
|
||
|
sortorder = None
|
||
|
if com.is_bool_indexer(key):
|
||
|
key = np.asarray(key, dtype=bool)
|
||
|
sortorder = self.sortorder
|
||
|
elif isinstance(key, slice):
|
||
|
if key.step is None or key.step > 0:
|
||
|
sortorder = self.sortorder
|
||
|
elif isinstance(key, Index):
|
||
|
key = np.asarray(key)
|
||
|
|
||
|
new_codes = [level_codes[key] for level_codes in self.codes]
|
||
|
|
||
|
return MultiIndex(
|
||
|
levels=self.levels,
|
||
|
codes=new_codes,
|
||
|
names=self.names,
|
||
|
sortorder=sortorder,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
def _getitem_slice(self: MultiIndex, slobj: slice) -> MultiIndex:
|
||
|
"""
|
||
|
Fastpath for __getitem__ when we know we have a slice.
|
||
|
"""
|
||
|
sortorder = None
|
||
|
if slobj.step is None or slobj.step > 0:
|
||
|
sortorder = self.sortorder
|
||
|
|
||
|
new_codes = [level_codes[slobj] for level_codes in self.codes]
|
||
|
|
||
|
return type(self)(
|
||
|
levels=self.levels,
|
||
|
codes=new_codes,
|
||
|
names=self._names,
|
||
|
sortorder=sortorder,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
@Appender(_index_shared_docs["take"] % _index_doc_kwargs)
|
||
|
def take(
|
||
|
self: MultiIndex,
|
||
|
indices,
|
||
|
axis: Axis = 0,
|
||
|
allow_fill: bool = True,
|
||
|
fill_value=None,
|
||
|
**kwargs,
|
||
|
) -> MultiIndex:
|
||
|
nv.validate_take((), kwargs)
|
||
|
indices = ensure_platform_int(indices)
|
||
|
|
||
|
# only fill if we are passing a non-None fill_value
|
||
|
allow_fill = self._maybe_disallow_fill(allow_fill, fill_value, indices)
|
||
|
|
||
|
na_value = -1
|
||
|
|
||
|
taken = [lab.take(indices) for lab in self.codes]
|
||
|
if allow_fill:
|
||
|
mask = indices == -1
|
||
|
if mask.any():
|
||
|
masked = []
|
||
|
for new_label in taken:
|
||
|
label_values = new_label
|
||
|
label_values[mask] = na_value
|
||
|
masked.append(np.asarray(label_values))
|
||
|
taken = masked
|
||
|
|
||
|
return MultiIndex(
|
||
|
levels=self.levels, codes=taken, names=self.names, verify_integrity=False
|
||
|
)
|
||
|
|
||
|
def append(self, other):
|
||
|
"""
|
||
|
Append a collection of Index options together.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : Index or list/tuple of indices
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Index
|
||
|
The combined index.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([['a'], ['b']])
|
||
|
>>> mi
|
||
|
MultiIndex([('a', 'b')],
|
||
|
)
|
||
|
>>> mi.append(mi)
|
||
|
MultiIndex([('a', 'b'), ('a', 'b')],
|
||
|
)
|
||
|
"""
|
||
|
if not isinstance(other, (list, tuple)):
|
||
|
other = [other]
|
||
|
|
||
|
if all(
|
||
|
(isinstance(o, MultiIndex) and o.nlevels >= self.nlevels) for o in other
|
||
|
):
|
||
|
arrays, names = [], []
|
||
|
for i in range(self.nlevels):
|
||
|
label = self._get_level_values(i)
|
||
|
appended = [o._get_level_values(i) for o in other]
|
||
|
arrays.append(label.append(appended))
|
||
|
single_label_name = all(label.name == x.name for x in appended)
|
||
|
names.append(label.name if single_label_name else None)
|
||
|
return MultiIndex.from_arrays(arrays, names=names)
|
||
|
|
||
|
to_concat = (self._values,) + tuple(k._values for k in other)
|
||
|
new_tuples = np.concatenate(to_concat)
|
||
|
|
||
|
# if all(isinstance(x, MultiIndex) for x in other):
|
||
|
try:
|
||
|
# We only get here if other contains at least one index with tuples,
|
||
|
# setting names to None automatically
|
||
|
return MultiIndex.from_tuples(new_tuples)
|
||
|
except (TypeError, IndexError):
|
||
|
return Index(new_tuples)
|
||
|
|
||
|
def argsort(self, *args, **kwargs) -> npt.NDArray[np.intp]:
|
||
|
if len(args) == 0 and len(kwargs) == 0:
|
||
|
# lexsort is significantly faster than self._values.argsort()
|
||
|
target = self._sort_levels_monotonic(raise_if_incomparable=True)
|
||
|
return lexsort_indexer(target._get_codes_for_sorting())
|
||
|
return self._values.argsort(*args, **kwargs)
|
||
|
|
||
|
@Appender(_index_shared_docs["repeat"] % _index_doc_kwargs)
|
||
|
def repeat(self, repeats: int, axis=None) -> MultiIndex:
|
||
|
nv.validate_repeat((), {"axis": axis})
|
||
|
# error: Incompatible types in assignment (expression has type "ndarray",
|
||
|
# variable has type "int")
|
||
|
repeats = ensure_platform_int(repeats) # type: ignore[assignment]
|
||
|
return MultiIndex(
|
||
|
levels=self.levels,
|
||
|
codes=[
|
||
|
level_codes.view(np.ndarray).astype(np.intp, copy=False).repeat(repeats)
|
||
|
for level_codes in self.codes
|
||
|
],
|
||
|
names=self.names,
|
||
|
sortorder=self.sortorder,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
# error: Signature of "drop" incompatible with supertype "Index"
|
||
|
def drop( # type: ignore[override]
|
||
|
self,
|
||
|
codes,
|
||
|
level: Index | np.ndarray | Iterable[Hashable] | None = None,
|
||
|
errors: IgnoreRaise = "raise",
|
||
|
) -> MultiIndex:
|
||
|
"""
|
||
|
Make new MultiIndex with passed list of codes deleted.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
codes : array-like
|
||
|
Must be a list of tuples when level is not specified.
|
||
|
level : int or level name, default None
|
||
|
errors : str, default 'raise'
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
"""
|
||
|
if level is not None:
|
||
|
return self._drop_from_level(codes, level, errors)
|
||
|
|
||
|
if not isinstance(codes, (np.ndarray, Index)):
|
||
|
try:
|
||
|
codes = com.index_labels_to_array(codes, dtype=np.dtype("object"))
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
inds = []
|
||
|
for level_codes in codes:
|
||
|
try:
|
||
|
loc = self.get_loc(level_codes)
|
||
|
# get_loc returns either an integer, a slice, or a boolean
|
||
|
# mask
|
||
|
if isinstance(loc, int):
|
||
|
inds.append(loc)
|
||
|
elif isinstance(loc, slice):
|
||
|
step = loc.step if loc.step is not None else 1
|
||
|
inds.extend(range(loc.start, loc.stop, step))
|
||
|
elif com.is_bool_indexer(loc):
|
||
|
if self._lexsort_depth == 0:
|
||
|
warnings.warn(
|
||
|
"dropping on a non-lexsorted multi-index "
|
||
|
"without a level parameter may impact performance.",
|
||
|
PerformanceWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
loc = loc.nonzero()[0]
|
||
|
inds.extend(loc)
|
||
|
else:
|
||
|
msg = f"unsupported indexer of type {type(loc)}"
|
||
|
raise AssertionError(msg)
|
||
|
except KeyError:
|
||
|
if errors != "ignore":
|
||
|
raise
|
||
|
|
||
|
return self.delete(inds)
|
||
|
|
||
|
def _drop_from_level(
|
||
|
self, codes, level, errors: IgnoreRaise = "raise"
|
||
|
) -> MultiIndex:
|
||
|
codes = com.index_labels_to_array(codes)
|
||
|
i = self._get_level_number(level)
|
||
|
index = self.levels[i]
|
||
|
values = index.get_indexer(codes)
|
||
|
# If nan should be dropped it will equal -1 here. We have to check which values
|
||
|
# are not nan and equal -1, this means they are missing in the index
|
||
|
nan_codes = isna(codes)
|
||
|
values[(np.equal(nan_codes, False)) & (values == -1)] = -2
|
||
|
if index.shape[0] == self.shape[0]:
|
||
|
values[np.equal(nan_codes, True)] = -2
|
||
|
|
||
|
not_found = codes[values == -2]
|
||
|
if len(not_found) != 0 and errors != "ignore":
|
||
|
raise KeyError(f"labels {not_found} not found in level")
|
||
|
mask = ~algos.isin(self.codes[i], values)
|
||
|
|
||
|
return self[mask]
|
||
|
|
||
|
def swaplevel(self, i=-2, j=-1) -> MultiIndex:
|
||
|
"""
|
||
|
Swap level i with level j.
|
||
|
|
||
|
Calling this method does not change the ordering of the values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
i : int, str, default -2
|
||
|
First level of index to be swapped. Can pass level name as string.
|
||
|
Type of parameters can be mixed.
|
||
|
j : int, str, default -1
|
||
|
Second level of index to be swapped. Can pass level name as string.
|
||
|
Type of parameters can be mixed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
A new MultiIndex.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.swaplevel : Swap levels i and j in a MultiIndex.
|
||
|
DataFrame.swaplevel : Swap levels i and j in a MultiIndex on a
|
||
|
particular axis.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
|
||
|
... codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
|
||
|
>>> mi
|
||
|
MultiIndex([('a', 'bb'),
|
||
|
('a', 'aa'),
|
||
|
('b', 'bb'),
|
||
|
('b', 'aa')],
|
||
|
)
|
||
|
>>> mi.swaplevel(0, 1)
|
||
|
MultiIndex([('bb', 'a'),
|
||
|
('aa', 'a'),
|
||
|
('bb', 'b'),
|
||
|
('aa', 'b')],
|
||
|
)
|
||
|
"""
|
||
|
new_levels = list(self.levels)
|
||
|
new_codes = list(self.codes)
|
||
|
new_names = list(self.names)
|
||
|
|
||
|
i = self._get_level_number(i)
|
||
|
j = self._get_level_number(j)
|
||
|
|
||
|
new_levels[i], new_levels[j] = new_levels[j], new_levels[i]
|
||
|
new_codes[i], new_codes[j] = new_codes[j], new_codes[i]
|
||
|
new_names[i], new_names[j] = new_names[j], new_names[i]
|
||
|
|
||
|
return MultiIndex(
|
||
|
levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False
|
||
|
)
|
||
|
|
||
|
def reorder_levels(self, order) -> MultiIndex:
|
||
|
"""
|
||
|
Rearrange levels using input order. May not drop or duplicate levels.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
order : list of int or list of str
|
||
|
List representing new level order. Reference level by number
|
||
|
(position) or by key (label).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([[1, 2], [3, 4]], names=['x', 'y'])
|
||
|
>>> mi
|
||
|
MultiIndex([(1, 3),
|
||
|
(2, 4)],
|
||
|
names=['x', 'y'])
|
||
|
|
||
|
>>> mi.reorder_levels(order=[1, 0])
|
||
|
MultiIndex([(3, 1),
|
||
|
(4, 2)],
|
||
|
names=['y', 'x'])
|
||
|
|
||
|
>>> mi.reorder_levels(order=['y', 'x'])
|
||
|
MultiIndex([(3, 1),
|
||
|
(4, 2)],
|
||
|
names=['y', 'x'])
|
||
|
"""
|
||
|
order = [self._get_level_number(i) for i in order]
|
||
|
if len(order) != self.nlevels:
|
||
|
raise AssertionError(
|
||
|
f"Length of order must be same as number of levels ({self.nlevels}), "
|
||
|
f"got {len(order)}"
|
||
|
)
|
||
|
new_levels = [self.levels[i] for i in order]
|
||
|
new_codes = [self.codes[i] for i in order]
|
||
|
new_names = [self.names[i] for i in order]
|
||
|
|
||
|
return MultiIndex(
|
||
|
levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False
|
||
|
)
|
||
|
|
||
|
def _get_codes_for_sorting(self) -> list[Categorical]:
|
||
|
"""
|
||
|
we are categorizing our codes by using the
|
||
|
available categories (all, not just observed)
|
||
|
excluding any missing ones (-1); this is in preparation
|
||
|
for sorting, where we need to disambiguate that -1 is not
|
||
|
a valid valid
|
||
|
"""
|
||
|
|
||
|
def cats(level_codes):
|
||
|
return np.arange(
|
||
|
np.array(level_codes).max() + 1 if len(level_codes) else 0,
|
||
|
dtype=level_codes.dtype,
|
||
|
)
|
||
|
|
||
|
return [
|
||
|
Categorical.from_codes(level_codes, cats(level_codes), ordered=True)
|
||
|
for level_codes in self.codes
|
||
|
]
|
||
|
|
||
|
def sortlevel(
|
||
|
self,
|
||
|
level: IndexLabel = 0,
|
||
|
ascending: bool | list[bool] = True,
|
||
|
sort_remaining: bool = True,
|
||
|
) -> tuple[MultiIndex, npt.NDArray[np.intp]]:
|
||
|
"""
|
||
|
Sort MultiIndex at the requested level.
|
||
|
|
||
|
The result will respect the original ordering of the associated
|
||
|
factor at that level.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
level : list-like, int or str, default 0
|
||
|
If a string is given, must be a name of the level.
|
||
|
If list-like must be names or ints of levels.
|
||
|
ascending : bool, default True
|
||
|
False to sort in descending order.
|
||
|
Can also be a list to specify a directed ordering.
|
||
|
sort_remaining : sort by the remaining levels after level
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sorted_index : pd.MultiIndex
|
||
|
Resulting index.
|
||
|
indexer : np.ndarray[np.intp]
|
||
|
Indices of output values in original index.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([[0, 0], [2, 1]])
|
||
|
>>> mi
|
||
|
MultiIndex([(0, 2),
|
||
|
(0, 1)],
|
||
|
)
|
||
|
|
||
|
>>> mi.sortlevel()
|
||
|
(MultiIndex([(0, 1),
|
||
|
(0, 2)],
|
||
|
), array([1, 0]))
|
||
|
|
||
|
>>> mi.sortlevel(sort_remaining=False)
|
||
|
(MultiIndex([(0, 2),
|
||
|
(0, 1)],
|
||
|
), array([0, 1]))
|
||
|
|
||
|
>>> mi.sortlevel(1)
|
||
|
(MultiIndex([(0, 1),
|
||
|
(0, 2)],
|
||
|
), array([1, 0]))
|
||
|
|
||
|
>>> mi.sortlevel(1, ascending=False)
|
||
|
(MultiIndex([(0, 2),
|
||
|
(0, 1)],
|
||
|
), array([0, 1]))
|
||
|
"""
|
||
|
if not is_list_like(level):
|
||
|
level = [level]
|
||
|
# error: Item "Hashable" of "Union[Hashable, Sequence[Hashable]]" has
|
||
|
# no attribute "__iter__" (not iterable)
|
||
|
level = [
|
||
|
self._get_level_number(lev) for lev in level # type: ignore[union-attr]
|
||
|
]
|
||
|
sortorder = None
|
||
|
|
||
|
# we have a directed ordering via ascending
|
||
|
if isinstance(ascending, list):
|
||
|
if not len(level) == len(ascending):
|
||
|
raise ValueError("level must have same length as ascending")
|
||
|
|
||
|
indexer = lexsort_indexer(
|
||
|
[self.codes[lev] for lev in level], orders=ascending
|
||
|
)
|
||
|
|
||
|
# level ordering
|
||
|
else:
|
||
|
codes = list(self.codes)
|
||
|
shape = list(self.levshape)
|
||
|
|
||
|
# partition codes and shape
|
||
|
primary = tuple(codes[lev] for lev in level)
|
||
|
primshp = tuple(shape[lev] for lev in level)
|
||
|
|
||
|
# Reverse sorted to retain the order of
|
||
|
# smaller indices that needs to be removed
|
||
|
for lev in sorted(level, reverse=True):
|
||
|
codes.pop(lev)
|
||
|
shape.pop(lev)
|
||
|
|
||
|
if sort_remaining:
|
||
|
primary += primary + tuple(codes)
|
||
|
primshp += primshp + tuple(shape)
|
||
|
else:
|
||
|
sortorder = level[0]
|
||
|
|
||
|
indexer = indexer_from_factorized(primary, primshp, compress=False)
|
||
|
|
||
|
if not ascending:
|
||
|
indexer = indexer[::-1]
|
||
|
|
||
|
indexer = ensure_platform_int(indexer)
|
||
|
new_codes = [level_codes.take(indexer) for level_codes in self.codes]
|
||
|
|
||
|
new_index = MultiIndex(
|
||
|
codes=new_codes,
|
||
|
levels=self.levels,
|
||
|
names=self.names,
|
||
|
sortorder=sortorder,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
return new_index, indexer
|
||
|
|
||
|
def _wrap_reindex_result(self, target, indexer, preserve_names: bool):
|
||
|
if not isinstance(target, MultiIndex):
|
||
|
if indexer is None:
|
||
|
target = self
|
||
|
elif (indexer >= 0).all():
|
||
|
target = self.take(indexer)
|
||
|
else:
|
||
|
try:
|
||
|
target = MultiIndex.from_tuples(target)
|
||
|
except TypeError:
|
||
|
# not all tuples, see test_constructor_dict_multiindex_reindex_flat
|
||
|
return target
|
||
|
|
||
|
target = self._maybe_preserve_names(target, preserve_names)
|
||
|
return target
|
||
|
|
||
|
def _maybe_preserve_names(self, target: Index, preserve_names: bool) -> Index:
|
||
|
if (
|
||
|
preserve_names
|
||
|
and target.nlevels == self.nlevels
|
||
|
and target.names != self.names
|
||
|
):
|
||
|
target = target.copy(deep=False)
|
||
|
target.names = self.names
|
||
|
return target
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# Indexing Methods
|
||
|
|
||
|
def _check_indexing_error(self, key) -> None:
|
||
|
if not is_hashable(key) or is_iterator(key):
|
||
|
# We allow tuples if they are hashable, whereas other Index
|
||
|
# subclasses require scalar.
|
||
|
# We have to explicitly exclude generators, as these are hashable.
|
||
|
raise InvalidIndexError(key)
|
||
|
|
||
|
@cache_readonly
|
||
|
def _should_fallback_to_positional(self) -> bool:
|
||
|
"""
|
||
|
Should integer key(s) be treated as positional?
|
||
|
"""
|
||
|
# GH#33355
|
||
|
return self.levels[0]._should_fallback_to_positional
|
||
|
|
||
|
def _get_indexer_strict(
|
||
|
self, key, axis_name: str
|
||
|
) -> tuple[Index, npt.NDArray[np.intp]]:
|
||
|
keyarr = key
|
||
|
if not isinstance(keyarr, Index):
|
||
|
keyarr = com.asarray_tuplesafe(keyarr)
|
||
|
|
||
|
if len(keyarr) and not isinstance(keyarr[0], tuple):
|
||
|
indexer = self._get_indexer_level_0(keyarr)
|
||
|
|
||
|
self._raise_if_missing(key, indexer, axis_name)
|
||
|
return self[indexer], indexer
|
||
|
|
||
|
return super()._get_indexer_strict(key, axis_name)
|
||
|
|
||
|
def _raise_if_missing(self, key, indexer, axis_name: str) -> None:
|
||
|
keyarr = key
|
||
|
if not isinstance(key, Index):
|
||
|
keyarr = com.asarray_tuplesafe(key)
|
||
|
|
||
|
if len(keyarr) and not isinstance(keyarr[0], tuple):
|
||
|
# i.e. same condition for special case in MultiIndex._get_indexer_strict
|
||
|
|
||
|
mask = indexer == -1
|
||
|
if mask.any():
|
||
|
check = self.levels[0].get_indexer(keyarr)
|
||
|
cmask = check == -1
|
||
|
if cmask.any():
|
||
|
raise KeyError(f"{keyarr[cmask]} not in index")
|
||
|
# We get here when levels still contain values which are not
|
||
|
# actually in Index anymore
|
||
|
raise KeyError(f"{keyarr} not in index")
|
||
|
else:
|
||
|
return super()._raise_if_missing(key, indexer, axis_name)
|
||
|
|
||
|
def _get_indexer_level_0(self, target) -> npt.NDArray[np.intp]:
|
||
|
"""
|
||
|
Optimized equivalent to `self.get_level_values(0).get_indexer_for(target)`.
|
||
|
"""
|
||
|
lev = self.levels[0]
|
||
|
codes = self._codes[0]
|
||
|
cat = Categorical.from_codes(codes=codes, categories=lev)
|
||
|
ci = Index(cat)
|
||
|
return ci.get_indexer_for(target)
|
||
|
|
||
|
def get_slice_bound(
|
||
|
self,
|
||
|
label: Hashable | Sequence[Hashable],
|
||
|
side: Literal["left", "right"],
|
||
|
) -> int:
|
||
|
"""
|
||
|
For an ordered MultiIndex, compute slice bound
|
||
|
that corresponds to given label.
|
||
|
|
||
|
Returns leftmost (one-past-the-rightmost if `side=='right') position
|
||
|
of given label.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
label : object or tuple of objects
|
||
|
side : {'left', 'right'}
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int
|
||
|
Index of label.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method only works if level 0 index of the MultiIndex is lexsorted.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([list('abbc'), list('gefd')])
|
||
|
|
||
|
Get the locations from the leftmost 'b' in the first level
|
||
|
until the end of the multiindex:
|
||
|
|
||
|
>>> mi.get_slice_bound('b', side="left")
|
||
|
1
|
||
|
|
||
|
Like above, but if you get the locations from the rightmost
|
||
|
'b' in the first level and 'f' in the second level:
|
||
|
|
||
|
>>> mi.get_slice_bound(('b','f'), side="right")
|
||
|
3
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.get_loc : Get location for a label or a tuple of labels.
|
||
|
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
|
||
|
sequence of such.
|
||
|
"""
|
||
|
if not isinstance(label, tuple):
|
||
|
label = (label,)
|
||
|
return self._partial_tup_index(label, side=side)
|
||
|
|
||
|
# pylint: disable-next=useless-parent-delegation
|
||
|
def slice_locs(self, start=None, end=None, step=None) -> tuple[int, int]:
|
||
|
"""
|
||
|
For an ordered MultiIndex, compute the slice locations for input
|
||
|
labels.
|
||
|
|
||
|
The input labels can be tuples representing partial levels, e.g. for a
|
||
|
MultiIndex with 3 levels, you can pass a single value (corresponding to
|
||
|
the first level), or a 1-, 2-, or 3-tuple.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : label or tuple, default None
|
||
|
If None, defaults to the beginning
|
||
|
end : label or tuple
|
||
|
If None, defaults to the end
|
||
|
step : int or None
|
||
|
Slice step
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
(start, end) : (int, int)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method only works if the MultiIndex is properly lexsorted. So,
|
||
|
if only the first 2 levels of a 3-level MultiIndex are lexsorted,
|
||
|
you can only pass two levels to ``.slice_locs``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([list('abbd'), list('deff')],
|
||
|
... names=['A', 'B'])
|
||
|
|
||
|
Get the slice locations from the beginning of 'b' in the first level
|
||
|
until the end of the multiindex:
|
||
|
|
||
|
>>> mi.slice_locs(start='b')
|
||
|
(1, 4)
|
||
|
|
||
|
Like above, but stop at the end of 'b' in the first level and 'f' in
|
||
|
the second level:
|
||
|
|
||
|
>>> mi.slice_locs(start='b', end=('b', 'f'))
|
||
|
(1, 3)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.get_loc : Get location for a label or a tuple of labels.
|
||
|
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
|
||
|
sequence of such.
|
||
|
"""
|
||
|
# This function adds nothing to its parent implementation (the magic
|
||
|
# happens in get_slice_bound method), but it adds meaningful doc.
|
||
|
return super().slice_locs(start, end, step)
|
||
|
|
||
|
def _partial_tup_index(self, tup: tuple, side: Literal["left", "right"] = "left"):
|
||
|
if len(tup) > self._lexsort_depth:
|
||
|
raise UnsortedIndexError(
|
||
|
f"Key length ({len(tup)}) was greater than MultiIndex lexsort depth "
|
||
|
f"({self._lexsort_depth})"
|
||
|
)
|
||
|
|
||
|
n = len(tup)
|
||
|
start, end = 0, len(self)
|
||
|
zipped = zip(tup, self.levels, self.codes)
|
||
|
for k, (lab, lev, level_codes) in enumerate(zipped):
|
||
|
section = level_codes[start:end]
|
||
|
|
||
|
if lab not in lev and not isna(lab):
|
||
|
# short circuit
|
||
|
try:
|
||
|
loc = algos.searchsorted(lev, lab, side=side)
|
||
|
except TypeError as err:
|
||
|
# non-comparable e.g. test_slice_locs_with_type_mismatch
|
||
|
raise TypeError(f"Level type mismatch: {lab}") from err
|
||
|
if not is_integer(loc):
|
||
|
# non-comparable level, e.g. test_groupby_example
|
||
|
raise TypeError(f"Level type mismatch: {lab}")
|
||
|
if side == "right" and loc >= 0:
|
||
|
loc -= 1
|
||
|
return start + algos.searchsorted(section, loc, side=side)
|
||
|
|
||
|
idx = self._get_loc_single_level_index(lev, lab)
|
||
|
if isinstance(idx, slice) and k < n - 1:
|
||
|
# Get start and end value from slice, necessary when a non-integer
|
||
|
# interval is given as input GH#37707
|
||
|
start = idx.start
|
||
|
end = idx.stop
|
||
|
elif k < n - 1:
|
||
|
# error: Incompatible types in assignment (expression has type
|
||
|
# "Union[ndarray[Any, dtype[signedinteger[Any]]]
|
||
|
end = start + algos.searchsorted( # type: ignore[assignment]
|
||
|
section, idx, side="right"
|
||
|
)
|
||
|
# error: Incompatible types in assignment (expression has type
|
||
|
# "Union[ndarray[Any, dtype[signedinteger[Any]]]
|
||
|
start = start + algos.searchsorted( # type: ignore[assignment]
|
||
|
section, idx, side="left"
|
||
|
)
|
||
|
elif isinstance(idx, slice):
|
||
|
idx = idx.start
|
||
|
return start + algos.searchsorted(section, idx, side=side)
|
||
|
else:
|
||
|
return start + algos.searchsorted(section, idx, side=side)
|
||
|
|
||
|
def _get_loc_single_level_index(self, level_index: Index, key: Hashable) -> int:
|
||
|
"""
|
||
|
If key is NA value, location of index unify as -1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
level_index: Index
|
||
|
key : label
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
loc : int
|
||
|
If key is NA value, loc is -1
|
||
|
Else, location of key in index.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Index.get_loc : The get_loc method for (single-level) index.
|
||
|
"""
|
||
|
if is_scalar(key) and isna(key):
|
||
|
# TODO: need is_valid_na_for_dtype(key, level_index.dtype)
|
||
|
return -1
|
||
|
else:
|
||
|
return level_index.get_loc(key)
|
||
|
|
||
|
def get_loc(self, key):
|
||
|
"""
|
||
|
Get location for a label or a tuple of labels.
|
||
|
|
||
|
The location is returned as an integer/slice or boolean
|
||
|
mask.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : label or tuple of labels (one for each level)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int, slice object or boolean mask
|
||
|
If the key is past the lexsort depth, the return may be a
|
||
|
boolean mask array, otherwise it is always a slice or int.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Index.get_loc : The get_loc method for (single-level) index.
|
||
|
MultiIndex.slice_locs : Get slice location given start label(s) and
|
||
|
end label(s).
|
||
|
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
|
||
|
sequence of such.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The key cannot be a slice, list of same-level labels, a boolean mask,
|
||
|
or a sequence of such. If you want to use those, use
|
||
|
:meth:`MultiIndex.get_locs` instead.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')])
|
||
|
|
||
|
>>> mi.get_loc('b')
|
||
|
slice(1, 3, None)
|
||
|
|
||
|
>>> mi.get_loc(('b', 'e'))
|
||
|
1
|
||
|
"""
|
||
|
self._check_indexing_error(key)
|
||
|
|
||
|
def _maybe_to_slice(loc):
|
||
|
"""convert integer indexer to boolean mask or slice if possible"""
|
||
|
if not isinstance(loc, np.ndarray) or loc.dtype != np.intp:
|
||
|
return loc
|
||
|
|
||
|
loc = lib.maybe_indices_to_slice(loc, len(self))
|
||
|
if isinstance(loc, slice):
|
||
|
return loc
|
||
|
|
||
|
mask = np.empty(len(self), dtype="bool")
|
||
|
mask.fill(False)
|
||
|
mask[loc] = True
|
||
|
return mask
|
||
|
|
||
|
if not isinstance(key, tuple):
|
||
|
loc = self._get_level_indexer(key, level=0)
|
||
|
return _maybe_to_slice(loc)
|
||
|
|
||
|
keylen = len(key)
|
||
|
if self.nlevels < keylen:
|
||
|
raise KeyError(
|
||
|
f"Key length ({keylen}) exceeds index depth ({self.nlevels})"
|
||
|
)
|
||
|
|
||
|
if keylen == self.nlevels and self.is_unique:
|
||
|
# TODO: what if we have an IntervalIndex level?
|
||
|
# i.e. do we need _index_as_unique on that level?
|
||
|
try:
|
||
|
return self._engine.get_loc(key)
|
||
|
except TypeError:
|
||
|
# e.g. test_partial_slicing_with_multiindex partial string slicing
|
||
|
loc, _ = self.get_loc_level(key, list(range(self.nlevels)))
|
||
|
return loc
|
||
|
|
||
|
# -- partial selection or non-unique index
|
||
|
# break the key into 2 parts based on the lexsort_depth of the index;
|
||
|
# the first part returns a continuous slice of the index; the 2nd part
|
||
|
# needs linear search within the slice
|
||
|
i = self._lexsort_depth
|
||
|
lead_key, follow_key = key[:i], key[i:]
|
||
|
|
||
|
if not lead_key:
|
||
|
start = 0
|
||
|
stop = len(self)
|
||
|
else:
|
||
|
try:
|
||
|
start, stop = self.slice_locs(lead_key, lead_key)
|
||
|
except TypeError as err:
|
||
|
# e.g. test_groupby_example key = ((0, 0, 1, 2), "new_col")
|
||
|
# when self has 5 integer levels
|
||
|
raise KeyError(key) from err
|
||
|
|
||
|
if start == stop:
|
||
|
raise KeyError(key)
|
||
|
|
||
|
if not follow_key:
|
||
|
return slice(start, stop)
|
||
|
|
||
|
warnings.warn(
|
||
|
"indexing past lexsort depth may impact performance.",
|
||
|
PerformanceWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
|
||
|
loc = np.arange(start, stop, dtype=np.intp)
|
||
|
|
||
|
for i, k in enumerate(follow_key, len(lead_key)):
|
||
|
mask = self.codes[i][loc] == self._get_loc_single_level_index(
|
||
|
self.levels[i], k
|
||
|
)
|
||
|
if not mask.all():
|
||
|
loc = loc[mask]
|
||
|
if not len(loc):
|
||
|
raise KeyError(key)
|
||
|
|
||
|
return _maybe_to_slice(loc) if len(loc) != stop - start else slice(start, stop)
|
||
|
|
||
|
def get_loc_level(self, key, level: IndexLabel = 0, drop_level: bool = True):
|
||
|
"""
|
||
|
Get location and sliced index for requested label(s)/level(s).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : label or sequence of labels
|
||
|
level : int/level name or list thereof, optional
|
||
|
drop_level : bool, default True
|
||
|
If ``False``, the resulting index will not drop any level.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
tuple
|
||
|
A 2-tuple where the elements :
|
||
|
|
||
|
Element 0: int, slice object or boolean array.
|
||
|
|
||
|
Element 1: The resulting sliced multiindex/index. If the key
|
||
|
contains all levels, this will be ``None``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.get_loc : Get location for a label or a tuple of labels.
|
||
|
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
|
||
|
sequence of such.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')],
|
||
|
... names=['A', 'B'])
|
||
|
|
||
|
>>> mi.get_loc_level('b')
|
||
|
(slice(1, 3, None), Index(['e', 'f'], dtype='object', name='B'))
|
||
|
|
||
|
>>> mi.get_loc_level('e', level='B')
|
||
|
(array([False, True, False]), Index(['b'], dtype='object', name='A'))
|
||
|
|
||
|
>>> mi.get_loc_level(['b', 'e'])
|
||
|
(1, None)
|
||
|
"""
|
||
|
if not isinstance(level, (list, tuple)):
|
||
|
level = self._get_level_number(level)
|
||
|
else:
|
||
|
level = [self._get_level_number(lev) for lev in level]
|
||
|
|
||
|
loc, mi = self._get_loc_level(key, level=level)
|
||
|
if not drop_level:
|
||
|
if lib.is_integer(loc):
|
||
|
mi = self[loc : loc + 1]
|
||
|
else:
|
||
|
mi = self[loc]
|
||
|
return loc, mi
|
||
|
|
||
|
def _get_loc_level(self, key, level: int | list[int] = 0):
|
||
|
"""
|
||
|
get_loc_level but with `level` known to be positional, not name-based.
|
||
|
"""
|
||
|
|
||
|
# different name to distinguish from maybe_droplevels
|
||
|
def maybe_mi_droplevels(indexer, levels):
|
||
|
"""
|
||
|
If level does not exist or all levels were dropped, the exception
|
||
|
has to be handled outside.
|
||
|
"""
|
||
|
new_index = self[indexer]
|
||
|
|
||
|
for i in sorted(levels, reverse=True):
|
||
|
new_index = new_index._drop_level_numbers([i])
|
||
|
|
||
|
return new_index
|
||
|
|
||
|
if isinstance(level, (tuple, list)):
|
||
|
if len(key) != len(level):
|
||
|
raise AssertionError(
|
||
|
"Key for location must have same length as number of levels"
|
||
|
)
|
||
|
result = None
|
||
|
for lev, k in zip(level, key):
|
||
|
loc, new_index = self._get_loc_level(k, level=lev)
|
||
|
if isinstance(loc, slice):
|
||
|
mask = np.zeros(len(self), dtype=bool)
|
||
|
mask[loc] = True
|
||
|
loc = mask
|
||
|
result = loc if result is None else result & loc
|
||
|
|
||
|
try:
|
||
|
# FIXME: we should be only dropping levels on which we are
|
||
|
# scalar-indexing
|
||
|
mi = maybe_mi_droplevels(result, level)
|
||
|
except ValueError:
|
||
|
# droplevel failed because we tried to drop all levels,
|
||
|
# i.e. len(level) == self.nlevels
|
||
|
mi = self[result]
|
||
|
|
||
|
return result, mi
|
||
|
|
||
|
# kludge for #1796
|
||
|
if isinstance(key, list):
|
||
|
key = tuple(key)
|
||
|
|
||
|
if isinstance(key, tuple) and level == 0:
|
||
|
try:
|
||
|
# Check if this tuple is a single key in our first level
|
||
|
if key in self.levels[0]:
|
||
|
indexer = self._get_level_indexer(key, level=level)
|
||
|
new_index = maybe_mi_droplevels(indexer, [0])
|
||
|
return indexer, new_index
|
||
|
except (TypeError, InvalidIndexError):
|
||
|
pass
|
||
|
|
||
|
if not any(isinstance(k, slice) for k in key):
|
||
|
if len(key) == self.nlevels and self.is_unique:
|
||
|
# Complete key in unique index -> standard get_loc
|
||
|
try:
|
||
|
return (self._engine.get_loc(key), None)
|
||
|
except KeyError as err:
|
||
|
raise KeyError(key) from err
|
||
|
except TypeError:
|
||
|
# e.g. partial string indexing
|
||
|
# test_partial_string_timestamp_multiindex
|
||
|
pass
|
||
|
|
||
|
# partial selection
|
||
|
indexer = self.get_loc(key)
|
||
|
ilevels = [i for i in range(len(key)) if key[i] != slice(None, None)]
|
||
|
if len(ilevels) == self.nlevels:
|
||
|
if is_integer(indexer):
|
||
|
# we are dropping all levels
|
||
|
return indexer, None
|
||
|
|
||
|
# TODO: in some cases we still need to drop some levels,
|
||
|
# e.g. test_multiindex_perf_warn
|
||
|
# test_partial_string_timestamp_multiindex
|
||
|
ilevels = [
|
||
|
i
|
||
|
for i in range(len(key))
|
||
|
if (
|
||
|
not isinstance(key[i], str)
|
||
|
or not self.levels[i]._supports_partial_string_indexing
|
||
|
)
|
||
|
and key[i] != slice(None, None)
|
||
|
]
|
||
|
if len(ilevels) == self.nlevels:
|
||
|
# TODO: why?
|
||
|
ilevels = []
|
||
|
return indexer, maybe_mi_droplevels(indexer, ilevels)
|
||
|
|
||
|
else:
|
||
|
indexer = None
|
||
|
for i, k in enumerate(key):
|
||
|
if not isinstance(k, slice):
|
||
|
loc_level = self._get_level_indexer(k, level=i)
|
||
|
if isinstance(loc_level, slice):
|
||
|
if com.is_null_slice(loc_level) or com.is_full_slice(
|
||
|
loc_level, len(self)
|
||
|
):
|
||
|
# everything
|
||
|
continue
|
||
|
|
||
|
# e.g. test_xs_IndexSlice_argument_not_implemented
|
||
|
k_index = np.zeros(len(self), dtype=bool)
|
||
|
k_index[loc_level] = True
|
||
|
|
||
|
else:
|
||
|
k_index = loc_level
|
||
|
|
||
|
elif com.is_null_slice(k):
|
||
|
# taking everything, does not affect `indexer` below
|
||
|
continue
|
||
|
|
||
|
else:
|
||
|
# FIXME: this message can be inaccurate, e.g.
|
||
|
# test_series_varied_multiindex_alignment
|
||
|
raise TypeError(f"Expected label or tuple of labels, got {key}")
|
||
|
|
||
|
if indexer is None:
|
||
|
indexer = k_index
|
||
|
else:
|
||
|
indexer &= k_index
|
||
|
if indexer is None:
|
||
|
indexer = slice(None, None)
|
||
|
ilevels = [i for i in range(len(key)) if key[i] != slice(None, None)]
|
||
|
return indexer, maybe_mi_droplevels(indexer, ilevels)
|
||
|
else:
|
||
|
indexer = self._get_level_indexer(key, level=level)
|
||
|
if (
|
||
|
isinstance(key, str)
|
||
|
and self.levels[level]._supports_partial_string_indexing
|
||
|
):
|
||
|
# check to see if we did an exact lookup vs sliced
|
||
|
check = self.levels[level].get_loc(key)
|
||
|
if not is_integer(check):
|
||
|
# e.g. test_partial_string_timestamp_multiindex
|
||
|
return indexer, self[indexer]
|
||
|
|
||
|
try:
|
||
|
result_index = maybe_mi_droplevels(indexer, [level])
|
||
|
except ValueError:
|
||
|
result_index = self[indexer]
|
||
|
|
||
|
return indexer, result_index
|
||
|
|
||
|
def _get_level_indexer(
|
||
|
self, key, level: int = 0, indexer: npt.NDArray[np.bool_] | None = None
|
||
|
):
|
||
|
# `level` kwarg is _always_ positional, never name
|
||
|
# return a boolean array or slice showing where the key is
|
||
|
# in the totality of values
|
||
|
# if the indexer is provided, then use this
|
||
|
|
||
|
level_index = self.levels[level]
|
||
|
level_codes = self.codes[level]
|
||
|
|
||
|
def convert_indexer(start, stop, step, indexer=indexer, codes=level_codes):
|
||
|
# Compute a bool indexer to identify the positions to take.
|
||
|
# If we have an existing indexer, we only need to examine the
|
||
|
# subset of positions where the existing indexer is True.
|
||
|
if indexer is not None:
|
||
|
# we only need to look at the subset of codes where the
|
||
|
# existing indexer equals True
|
||
|
codes = codes[indexer]
|
||
|
|
||
|
if step is None or step == 1:
|
||
|
new_indexer = (codes >= start) & (codes < stop)
|
||
|
else:
|
||
|
r = np.arange(start, stop, step, dtype=codes.dtype)
|
||
|
new_indexer = algos.isin(codes, r)
|
||
|
|
||
|
if indexer is None:
|
||
|
return new_indexer
|
||
|
|
||
|
indexer = indexer.copy()
|
||
|
indexer[indexer] = new_indexer
|
||
|
return indexer
|
||
|
|
||
|
if isinstance(key, slice):
|
||
|
# handle a slice, returning a slice if we can
|
||
|
# otherwise a boolean indexer
|
||
|
step = key.step
|
||
|
is_negative_step = step is not None and step < 0
|
||
|
|
||
|
try:
|
||
|
if key.start is not None:
|
||
|
start = level_index.get_loc(key.start)
|
||
|
elif is_negative_step:
|
||
|
start = len(level_index) - 1
|
||
|
else:
|
||
|
start = 0
|
||
|
|
||
|
if key.stop is not None:
|
||
|
stop = level_index.get_loc(key.stop)
|
||
|
elif is_negative_step:
|
||
|
stop = 0
|
||
|
elif isinstance(start, slice):
|
||
|
stop = len(level_index)
|
||
|
else:
|
||
|
stop = len(level_index) - 1
|
||
|
except KeyError:
|
||
|
# we have a partial slice (like looking up a partial date
|
||
|
# string)
|
||
|
start = stop = level_index.slice_indexer(key.start, key.stop, key.step)
|
||
|
step = start.step
|
||
|
|
||
|
if isinstance(start, slice) or isinstance(stop, slice):
|
||
|
# we have a slice for start and/or stop
|
||
|
# a partial date slicer on a DatetimeIndex generates a slice
|
||
|
# note that the stop ALREADY includes the stopped point (if
|
||
|
# it was a string sliced)
|
||
|
start = getattr(start, "start", start)
|
||
|
stop = getattr(stop, "stop", stop)
|
||
|
return convert_indexer(start, stop, step)
|
||
|
|
||
|
elif level > 0 or self._lexsort_depth == 0 or step is not None:
|
||
|
# need to have like semantics here to right
|
||
|
# searching as when we are using a slice
|
||
|
# so adjust the stop by 1 (so we include stop)
|
||
|
stop = (stop - 1) if is_negative_step else (stop + 1)
|
||
|
return convert_indexer(start, stop, step)
|
||
|
else:
|
||
|
# sorted, so can return slice object -> view
|
||
|
i = algos.searchsorted(level_codes, start, side="left")
|
||
|
j = algos.searchsorted(level_codes, stop, side="right")
|
||
|
return slice(i, j, step)
|
||
|
|
||
|
else:
|
||
|
idx = self._get_loc_single_level_index(level_index, key)
|
||
|
|
||
|
if level > 0 or self._lexsort_depth == 0:
|
||
|
# Desired level is not sorted
|
||
|
if isinstance(idx, slice):
|
||
|
# test_get_loc_partial_timestamp_multiindex
|
||
|
locs = (level_codes >= idx.start) & (level_codes < idx.stop)
|
||
|
return locs
|
||
|
|
||
|
locs = np.array(level_codes == idx, dtype=bool, copy=False)
|
||
|
|
||
|
if not locs.any():
|
||
|
# The label is present in self.levels[level] but unused:
|
||
|
raise KeyError(key)
|
||
|
return locs
|
||
|
|
||
|
if isinstance(idx, slice):
|
||
|
# e.g. test_partial_string_timestamp_multiindex
|
||
|
start = algos.searchsorted(level_codes, idx.start, side="left")
|
||
|
# NB: "left" here bc of slice semantics
|
||
|
end = algos.searchsorted(level_codes, idx.stop, side="left")
|
||
|
else:
|
||
|
start = algos.searchsorted(level_codes, idx, side="left")
|
||
|
end = algos.searchsorted(level_codes, idx, side="right")
|
||
|
|
||
|
if start == end:
|
||
|
# The label is present in self.levels[level] but unused:
|
||
|
raise KeyError(key)
|
||
|
return slice(start, end)
|
||
|
|
||
|
def get_locs(self, seq):
|
||
|
"""
|
||
|
Get location for a sequence of labels.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
seq : label, slice, list, mask or a sequence of such
|
||
|
You should use one of the above for each level.
|
||
|
If a level should not be used, set it to ``slice(None)``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
numpy.ndarray
|
||
|
NumPy array of integers suitable for passing to iloc.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MultiIndex.get_loc : Get location for a label or a tuple of labels.
|
||
|
MultiIndex.slice_locs : Get slice location given start label(s) and
|
||
|
end label(s).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')])
|
||
|
|
||
|
>>> mi.get_locs('b') # doctest: +SKIP
|
||
|
array([1, 2], dtype=int64)
|
||
|
|
||
|
>>> mi.get_locs([slice(None), ['e', 'f']]) # doctest: +SKIP
|
||
|
array([1, 2], dtype=int64)
|
||
|
|
||
|
>>> mi.get_locs([[True, False, True], slice('e', 'f')]) # doctest: +SKIP
|
||
|
array([2], dtype=int64)
|
||
|
"""
|
||
|
|
||
|
# must be lexsorted to at least as many levels
|
||
|
true_slices = [i for (i, s) in enumerate(com.is_true_slices(seq)) if s]
|
||
|
if true_slices and true_slices[-1] >= self._lexsort_depth:
|
||
|
raise UnsortedIndexError(
|
||
|
"MultiIndex slicing requires the index to be lexsorted: slicing "
|
||
|
f"on levels {true_slices}, lexsort depth {self._lexsort_depth}"
|
||
|
)
|
||
|
|
||
|
if any(x is Ellipsis for x in seq):
|
||
|
raise NotImplementedError(
|
||
|
"MultiIndex does not support indexing with Ellipsis"
|
||
|
)
|
||
|
|
||
|
n = len(self)
|
||
|
|
||
|
def _to_bool_indexer(indexer) -> npt.NDArray[np.bool_]:
|
||
|
if isinstance(indexer, slice):
|
||
|
new_indexer = np.zeros(n, dtype=np.bool_)
|
||
|
new_indexer[indexer] = True
|
||
|
return new_indexer
|
||
|
return indexer
|
||
|
|
||
|
# a bool indexer for the positions we want to take
|
||
|
indexer: npt.NDArray[np.bool_] | None = None
|
||
|
|
||
|
for i, k in enumerate(seq):
|
||
|
lvl_indexer: npt.NDArray[np.bool_] | slice | None = None
|
||
|
|
||
|
if com.is_bool_indexer(k):
|
||
|
if len(k) != n:
|
||
|
raise ValueError(
|
||
|
"cannot index with a boolean indexer that "
|
||
|
"is not the same length as the index"
|
||
|
)
|
||
|
lvl_indexer = np.asarray(k)
|
||
|
|
||
|
elif is_list_like(k):
|
||
|
# a collection of labels to include from this level (these are or'd)
|
||
|
|
||
|
# GH#27591 check if this is a single tuple key in the level
|
||
|
try:
|
||
|
lvl_indexer = self._get_level_indexer(k, level=i, indexer=indexer)
|
||
|
except (InvalidIndexError, TypeError, KeyError) as err:
|
||
|
# InvalidIndexError e.g. non-hashable, fall back to treating
|
||
|
# this as a sequence of labels
|
||
|
# KeyError it can be ambiguous if this is a label or sequence
|
||
|
# of labels
|
||
|
# github.com/pandas-dev/pandas/issues/39424#issuecomment-871626708
|
||
|
for x in k:
|
||
|
if not is_hashable(x):
|
||
|
# e.g. slice
|
||
|
raise err
|
||
|
# GH 39424: Ignore not founds
|
||
|
# GH 42351: No longer ignore not founds & enforced in 2.0
|
||
|
# TODO: how to handle IntervalIndex level? (no test cases)
|
||
|
item_indexer = self._get_level_indexer(
|
||
|
x, level=i, indexer=indexer
|
||
|
)
|
||
|
if lvl_indexer is None:
|
||
|
lvl_indexer = _to_bool_indexer(item_indexer)
|
||
|
elif isinstance(item_indexer, slice):
|
||
|
lvl_indexer[item_indexer] = True # type: ignore[index]
|
||
|
else:
|
||
|
lvl_indexer |= item_indexer
|
||
|
|
||
|
if lvl_indexer is None:
|
||
|
# no matches we are done
|
||
|
# test_loc_getitem_duplicates_multiindex_empty_indexer
|
||
|
return np.array([], dtype=np.intp)
|
||
|
|
||
|
elif com.is_null_slice(k):
|
||
|
# empty slice
|
||
|
if indexer is None and i == len(seq) - 1:
|
||
|
return np.arange(n, dtype=np.intp)
|
||
|
continue
|
||
|
|
||
|
else:
|
||
|
# a slice or a single label
|
||
|
lvl_indexer = self._get_level_indexer(k, level=i, indexer=indexer)
|
||
|
|
||
|
# update indexer
|
||
|
lvl_indexer = _to_bool_indexer(lvl_indexer)
|
||
|
if indexer is None:
|
||
|
indexer = lvl_indexer
|
||
|
else:
|
||
|
indexer &= lvl_indexer
|
||
|
if not np.any(indexer) and np.any(lvl_indexer):
|
||
|
raise KeyError(seq)
|
||
|
|
||
|
# empty indexer
|
||
|
if indexer is None:
|
||
|
return np.array([], dtype=np.intp)
|
||
|
|
||
|
pos_indexer = indexer.nonzero()[0]
|
||
|
return self._reorder_indexer(seq, pos_indexer)
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
def _reorder_indexer(
|
||
|
self,
|
||
|
seq: tuple[Scalar | Iterable | AnyArrayLike, ...],
|
||
|
indexer: npt.NDArray[np.intp],
|
||
|
) -> npt.NDArray[np.intp]:
|
||
|
"""
|
||
|
Reorder an indexer of a MultiIndex (self) so that the labels are in the
|
||
|
same order as given in seq
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
seq : label/slice/list/mask or a sequence of such
|
||
|
indexer: a position indexer of self
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
indexer : a sorted position indexer of self ordered as seq
|
||
|
"""
|
||
|
|
||
|
# check if sorting is necessary
|
||
|
need_sort = False
|
||
|
for i, k in enumerate(seq):
|
||
|
if com.is_null_slice(k) or com.is_bool_indexer(k) or is_scalar(k):
|
||
|
pass
|
||
|
elif is_list_like(k):
|
||
|
if len(k) <= 1: # type: ignore[arg-type]
|
||
|
pass
|
||
|
elif self._is_lexsorted():
|
||
|
# If the index is lexsorted and the list_like label
|
||
|
# in seq are sorted then we do not need to sort
|
||
|
k_codes = self.levels[i].get_indexer(k)
|
||
|
k_codes = k_codes[k_codes >= 0] # Filter absent keys
|
||
|
# True if the given codes are not ordered
|
||
|
need_sort = (k_codes[:-1] > k_codes[1:]).any()
|
||
|
else:
|
||
|
need_sort = True
|
||
|
elif isinstance(k, slice):
|
||
|
if self._is_lexsorted():
|
||
|
need_sort = k.step is not None and k.step < 0
|
||
|
else:
|
||
|
need_sort = True
|
||
|
else:
|
||
|
need_sort = True
|
||
|
if need_sort:
|
||
|
break
|
||
|
if not need_sort:
|
||
|
return indexer
|
||
|
|
||
|
n = len(self)
|
||
|
keys: tuple[np.ndarray, ...] = ()
|
||
|
# For each level of the sequence in seq, map the level codes with the
|
||
|
# order they appears in a list-like sequence
|
||
|
# This mapping is then use to reorder the indexer
|
||
|
for i, k in enumerate(seq):
|
||
|
if is_scalar(k):
|
||
|
# GH#34603 we want to treat a scalar the same as an all equal list
|
||
|
k = [k]
|
||
|
if com.is_bool_indexer(k):
|
||
|
new_order = np.arange(n)[indexer]
|
||
|
elif is_list_like(k):
|
||
|
# Generate a map with all level codes as sorted initially
|
||
|
k = algos.unique(k)
|
||
|
key_order_map = np.ones(len(self.levels[i]), dtype=np.uint64) * len(
|
||
|
self.levels[i]
|
||
|
)
|
||
|
# Set order as given in the indexer list
|
||
|
level_indexer = self.levels[i].get_indexer(k)
|
||
|
level_indexer = level_indexer[level_indexer >= 0] # Filter absent keys
|
||
|
key_order_map[level_indexer] = np.arange(len(level_indexer))
|
||
|
|
||
|
new_order = key_order_map[self.codes[i][indexer]]
|
||
|
elif isinstance(k, slice) and k.step is not None and k.step < 0:
|
||
|
# flip order for negative step
|
||
|
new_order = np.arange(n)[::-1][indexer]
|
||
|
elif isinstance(k, slice) and k.start is None and k.stop is None:
|
||
|
# slice(None) should not determine order GH#31330
|
||
|
new_order = np.ones((n,), dtype=np.intp)[indexer]
|
||
|
else:
|
||
|
# For all other case, use the same order as the level
|
||
|
new_order = np.arange(n)[indexer]
|
||
|
keys = (new_order,) + keys
|
||
|
|
||
|
# Find the reordering using lexsort on the keys mapping
|
||
|
ind = np.lexsort(keys)
|
||
|
return indexer[ind]
|
||
|
|
||
|
def truncate(self, before=None, after=None) -> MultiIndex:
|
||
|
"""
|
||
|
Slice index between two labels / tuples, return new MultiIndex.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
before : label or tuple, can be partial. Default None
|
||
|
None defaults to start.
|
||
|
after : label or tuple, can be partial. Default None
|
||
|
None defaults to end.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
The truncated MultiIndex.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mi = pd.MultiIndex.from_arrays([['a', 'b', 'c'], ['x', 'y', 'z']])
|
||
|
>>> mi
|
||
|
MultiIndex([('a', 'x'), ('b', 'y'), ('c', 'z')],
|
||
|
)
|
||
|
>>> mi.truncate(before='a', after='b')
|
||
|
MultiIndex([('a', 'x'), ('b', 'y')],
|
||
|
)
|
||
|
"""
|
||
|
if after and before and after < before:
|
||
|
raise ValueError("after < before")
|
||
|
|
||
|
i, j = self.levels[0].slice_locs(before, after)
|
||
|
left, right = self.slice_locs(before, after)
|
||
|
|
||
|
new_levels = list(self.levels)
|
||
|
new_levels[0] = new_levels[0][i:j]
|
||
|
|
||
|
new_codes = [level_codes[left:right] for level_codes in self.codes]
|
||
|
new_codes[0] = new_codes[0] - i
|
||
|
|
||
|
return MultiIndex(
|
||
|
levels=new_levels,
|
||
|
codes=new_codes,
|
||
|
names=self._names,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
def equals(self, other: object) -> bool:
|
||
|
"""
|
||
|
Determines if two MultiIndex objects have the same labeling information
|
||
|
(the levels themselves do not necessarily have to be the same)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
equal_levels
|
||
|
"""
|
||
|
if self.is_(other):
|
||
|
return True
|
||
|
|
||
|
if not isinstance(other, Index):
|
||
|
return False
|
||
|
|
||
|
if len(self) != len(other):
|
||
|
return False
|
||
|
|
||
|
if not isinstance(other, MultiIndex):
|
||
|
# d-level MultiIndex can equal d-tuple Index
|
||
|
if not self._should_compare(other):
|
||
|
# object Index or Categorical[object] may contain tuples
|
||
|
return False
|
||
|
return array_equivalent(self._values, other._values)
|
||
|
|
||
|
if self.nlevels != other.nlevels:
|
||
|
return False
|
||
|
|
||
|
for i in range(self.nlevels):
|
||
|
self_codes = self.codes[i]
|
||
|
other_codes = other.codes[i]
|
||
|
self_mask = self_codes == -1
|
||
|
other_mask = other_codes == -1
|
||
|
if not np.array_equal(self_mask, other_mask):
|
||
|
return False
|
||
|
self_codes = self_codes[~self_mask]
|
||
|
self_values = self.levels[i]._values.take(self_codes)
|
||
|
|
||
|
other_codes = other_codes[~other_mask]
|
||
|
other_values = other.levels[i]._values.take(other_codes)
|
||
|
|
||
|
# since we use NaT both datetime64 and timedelta64 we can have a
|
||
|
# situation where a level is typed say timedelta64 in self (IOW it
|
||
|
# has other values than NaT) but types datetime64 in other (where
|
||
|
# its all NaT) but these are equivalent
|
||
|
if len(self_values) == 0 and len(other_values) == 0:
|
||
|
continue
|
||
|
|
||
|
if not isinstance(self_values, np.ndarray):
|
||
|
# i.e. ExtensionArray
|
||
|
if not self_values.equals(other_values):
|
||
|
return False
|
||
|
elif not isinstance(other_values, np.ndarray):
|
||
|
# i.e. other is ExtensionArray
|
||
|
if not other_values.equals(self_values):
|
||
|
return False
|
||
|
else:
|
||
|
if not array_equivalent(self_values, other_values):
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
def equal_levels(self, other: MultiIndex) -> bool:
|
||
|
"""
|
||
|
Return True if the levels of both MultiIndex objects are the same
|
||
|
|
||
|
"""
|
||
|
if self.nlevels != other.nlevels:
|
||
|
return False
|
||
|
|
||
|
for i in range(self.nlevels):
|
||
|
if not self.levels[i].equals(other.levels[i]):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# Set Methods
|
||
|
|
||
|
def _union(self, other, sort) -> MultiIndex:
|
||
|
other, result_names = self._convert_can_do_setop(other)
|
||
|
if other.has_duplicates:
|
||
|
# This is only necessary if other has dupes,
|
||
|
# otherwise difference is faster
|
||
|
result = super()._union(other, sort)
|
||
|
|
||
|
if isinstance(result, MultiIndex):
|
||
|
return result
|
||
|
return MultiIndex.from_arrays(
|
||
|
zip(*result), sortorder=None, names=result_names
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
right_missing = other.difference(self, sort=False)
|
||
|
if len(right_missing):
|
||
|
result = self.append(right_missing)
|
||
|
else:
|
||
|
result = self._get_reconciled_name_object(other)
|
||
|
|
||
|
if sort is not False:
|
||
|
try:
|
||
|
result = result.sort_values()
|
||
|
except TypeError:
|
||
|
if sort is True:
|
||
|
raise
|
||
|
warnings.warn(
|
||
|
"The values in the array are unorderable. "
|
||
|
"Pass `sort=False` to suppress this warning.",
|
||
|
RuntimeWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
return result
|
||
|
|
||
|
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
|
||
|
return is_object_dtype(dtype)
|
||
|
|
||
|
def _get_reconciled_name_object(self, other) -> MultiIndex:
|
||
|
"""
|
||
|
If the result of a set operation will be self,
|
||
|
return self, unless the names change, in which
|
||
|
case make a shallow copy of self.
|
||
|
"""
|
||
|
names = self._maybe_match_names(other)
|
||
|
if self.names != names:
|
||
|
# error: Cannot determine type of "rename"
|
||
|
return self.rename(names) # type: ignore[has-type]
|
||
|
return self
|
||
|
|
||
|
def _maybe_match_names(self, other):
|
||
|
"""
|
||
|
Try to find common names to attach to the result of an operation between
|
||
|
a and b. Return a consensus list of names if they match at least partly
|
||
|
or list of None if they have completely different names.
|
||
|
"""
|
||
|
if len(self.names) != len(other.names):
|
||
|
return [None] * len(self.names)
|
||
|
names = []
|
||
|
for a_name, b_name in zip(self.names, other.names):
|
||
|
if a_name == b_name:
|
||
|
names.append(a_name)
|
||
|
else:
|
||
|
# TODO: what if they both have np.nan for their names?
|
||
|
names.append(None)
|
||
|
return names
|
||
|
|
||
|
def _wrap_intersection_result(self, other, result) -> MultiIndex:
|
||
|
_, result_names = self._convert_can_do_setop(other)
|
||
|
return result.set_names(result_names)
|
||
|
|
||
|
def _wrap_difference_result(self, other, result: MultiIndex) -> MultiIndex:
|
||
|
_, result_names = self._convert_can_do_setop(other)
|
||
|
|
||
|
if len(result) == 0:
|
||
|
return result.remove_unused_levels().set_names(result_names)
|
||
|
else:
|
||
|
return result.set_names(result_names)
|
||
|
|
||
|
def _convert_can_do_setop(self, other):
|
||
|
result_names = self.names
|
||
|
|
||
|
if not isinstance(other, Index):
|
||
|
if len(other) == 0:
|
||
|
return self[:0], self.names
|
||
|
else:
|
||
|
msg = "other must be a MultiIndex or a list of tuples"
|
||
|
try:
|
||
|
other = MultiIndex.from_tuples(other, names=self.names)
|
||
|
except (ValueError, TypeError) as err:
|
||
|
# ValueError raised by tuples_to_object_array if we
|
||
|
# have non-object dtype
|
||
|
raise TypeError(msg) from err
|
||
|
else:
|
||
|
result_names = get_unanimous_names(self, other)
|
||
|
|
||
|
return other, result_names
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
@doc(Index.astype)
|
||
|
def astype(self, dtype, copy: bool = True):
|
||
|
dtype = pandas_dtype(dtype)
|
||
|
if is_categorical_dtype(dtype):
|
||
|
msg = "> 1 ndim Categorical are not supported at this time"
|
||
|
raise NotImplementedError(msg)
|
||
|
if not is_object_dtype(dtype):
|
||
|
raise TypeError(
|
||
|
"Setting a MultiIndex dtype to anything other than object "
|
||
|
"is not supported"
|
||
|
)
|
||
|
if copy is True:
|
||
|
return self._view()
|
||
|
return self
|
||
|
|
||
|
def _validate_fill_value(self, item):
|
||
|
if isinstance(item, MultiIndex):
|
||
|
# GH#43212
|
||
|
if item.nlevels != self.nlevels:
|
||
|
raise ValueError("Item must have length equal to number of levels.")
|
||
|
return item._values
|
||
|
elif not isinstance(item, tuple):
|
||
|
# Pad the key with empty strings if lower levels of the key
|
||
|
# aren't specified:
|
||
|
item = (item,) + ("",) * (self.nlevels - 1)
|
||
|
elif len(item) != self.nlevels:
|
||
|
raise ValueError("Item must have length equal to number of levels.")
|
||
|
return item
|
||
|
|
||
|
def putmask(self, mask, value: MultiIndex) -> MultiIndex:
|
||
|
"""
|
||
|
Return a new MultiIndex of the values set with the mask.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mask : array like
|
||
|
value : MultiIndex
|
||
|
Must either be the same length as self or length one
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiIndex
|
||
|
"""
|
||
|
mask, noop = validate_putmask(self, mask)
|
||
|
if noop:
|
||
|
return self.copy()
|
||
|
|
||
|
if len(mask) == len(value):
|
||
|
subset = value[mask].remove_unused_levels()
|
||
|
else:
|
||
|
subset = value.remove_unused_levels()
|
||
|
|
||
|
new_levels = []
|
||
|
new_codes = []
|
||
|
|
||
|
for i, (value_level, level, level_codes) in enumerate(
|
||
|
zip(subset.levels, self.levels, self.codes)
|
||
|
):
|
||
|
new_level = level.union(value_level, sort=False)
|
||
|
value_codes = new_level.get_indexer_for(subset.get_level_values(i))
|
||
|
new_code = ensure_int64(level_codes)
|
||
|
new_code[mask] = value_codes
|
||
|
new_levels.append(new_level)
|
||
|
new_codes.append(new_code)
|
||
|
|
||
|
return MultiIndex(
|
||
|
levels=new_levels, codes=new_codes, names=self.names, verify_integrity=False
|
||
|
)
|
||
|
|
||
|
def insert(self, loc: int, item) -> MultiIndex:
|
||
|
"""
|
||
|
Make new MultiIndex inserting new item at location
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
loc : int
|
||
|
item : tuple
|
||
|
Must be same length as number of levels in the MultiIndex
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
new_index : Index
|
||
|
"""
|
||
|
item = self._validate_fill_value(item)
|
||
|
|
||
|
new_levels = []
|
||
|
new_codes = []
|
||
|
for k, level, level_codes in zip(item, self.levels, self.codes):
|
||
|
if k not in level:
|
||
|
# have to insert into level
|
||
|
# must insert at end otherwise you have to recompute all the
|
||
|
# other codes
|
||
|
lev_loc = len(level)
|
||
|
level = level.insert(lev_loc, k)
|
||
|
else:
|
||
|
lev_loc = level.get_loc(k)
|
||
|
|
||
|
new_levels.append(level)
|
||
|
new_codes.append(np.insert(ensure_int64(level_codes), loc, lev_loc))
|
||
|
|
||
|
return MultiIndex(
|
||
|
levels=new_levels, codes=new_codes, names=self.names, verify_integrity=False
|
||
|
)
|
||
|
|
||
|
def delete(self, loc) -> MultiIndex:
|
||
|
"""
|
||
|
Make new index with passed location deleted
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
new_index : MultiIndex
|
||
|
"""
|
||
|
new_codes = [np.delete(level_codes, loc) for level_codes in self.codes]
|
||
|
return MultiIndex(
|
||
|
levels=self.levels,
|
||
|
codes=new_codes,
|
||
|
names=self.names,
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
@doc(Index.isin)
|
||
|
def isin(self, values, level=None) -> npt.NDArray[np.bool_]:
|
||
|
if isinstance(values, Generator):
|
||
|
values = list(values)
|
||
|
|
||
|
if level is None:
|
||
|
if len(values) == 0:
|
||
|
return np.zeros((len(self),), dtype=np.bool_)
|
||
|
if not isinstance(values, MultiIndex):
|
||
|
values = MultiIndex.from_tuples(values)
|
||
|
return values.unique().get_indexer_for(self) != -1
|
||
|
else:
|
||
|
num = self._get_level_number(level)
|
||
|
levs = self.get_level_values(num)
|
||
|
|
||
|
if levs.size == 0:
|
||
|
return np.zeros(len(levs), dtype=np.bool_)
|
||
|
return levs.isin(values)
|
||
|
|
||
|
# error: Incompatible types in assignment (expression has type overloaded function,
|
||
|
# base class "Index" defined the type as "Callable[[Index, Any, bool], Any]")
|
||
|
rename = Index.set_names # type: ignore[assignment]
|
||
|
|
||
|
# ---------------------------------------------------------------
|
||
|
# Arithmetic/Numeric Methods - Disabled
|
||
|
|
||
|
__add__ = make_invalid_op("__add__")
|
||
|
__radd__ = make_invalid_op("__radd__")
|
||
|
__iadd__ = make_invalid_op("__iadd__")
|
||
|
__sub__ = make_invalid_op("__sub__")
|
||
|
__rsub__ = make_invalid_op("__rsub__")
|
||
|
__isub__ = make_invalid_op("__isub__")
|
||
|
__pow__ = make_invalid_op("__pow__")
|
||
|
__rpow__ = make_invalid_op("__rpow__")
|
||
|
__mul__ = make_invalid_op("__mul__")
|
||
|
__rmul__ = make_invalid_op("__rmul__")
|
||
|
__floordiv__ = make_invalid_op("__floordiv__")
|
||
|
__rfloordiv__ = make_invalid_op("__rfloordiv__")
|
||
|
__truediv__ = make_invalid_op("__truediv__")
|
||
|
__rtruediv__ = make_invalid_op("__rtruediv__")
|
||
|
__mod__ = make_invalid_op("__mod__")
|
||
|
__rmod__ = make_invalid_op("__rmod__")
|
||
|
__divmod__ = make_invalid_op("__divmod__")
|
||
|
__rdivmod__ = make_invalid_op("__rdivmod__")
|
||
|
# Unary methods disabled
|
||
|
__neg__ = make_invalid_op("__neg__")
|
||
|
__pos__ = make_invalid_op("__pos__")
|
||
|
__abs__ = make_invalid_op("__abs__")
|
||
|
__invert__ = make_invalid_op("__invert__")
|
||
|
|
||
|
|
||
|
def _lexsort_depth(codes: list[np.ndarray], nlevels: int) -> int:
|
||
|
"""Count depth (up to a maximum of `nlevels`) with which codes are lexsorted."""
|
||
|
int64_codes = [ensure_int64(level_codes) for level_codes in codes]
|
||
|
for k in range(nlevels, 0, -1):
|
||
|
if libalgos.is_lexsorted(int64_codes[:k]):
|
||
|
return k
|
||
|
return 0
|
||
|
|
||
|
|
||
|
def sparsify_labels(label_list, start: int = 0, sentinel: object = ""):
|
||
|
pivoted = list(zip(*label_list))
|
||
|
k = len(label_list)
|
||
|
|
||
|
result = pivoted[: start + 1]
|
||
|
prev = pivoted[start]
|
||
|
|
||
|
for cur in pivoted[start + 1 :]:
|
||
|
sparse_cur = []
|
||
|
|
||
|
for i, (p, t) in enumerate(zip(prev, cur)):
|
||
|
if i == k - 1:
|
||
|
sparse_cur.append(t)
|
||
|
result.append(sparse_cur)
|
||
|
break
|
||
|
|
||
|
if p == t:
|
||
|
sparse_cur.append(sentinel)
|
||
|
else:
|
||
|
sparse_cur.extend(cur[i:])
|
||
|
result.append(sparse_cur)
|
||
|
break
|
||
|
|
||
|
prev = cur
|
||
|
|
||
|
return list(zip(*result))
|
||
|
|
||
|
|
||
|
def _get_na_rep(dtype) -> str:
|
||
|
if is_extension_array_dtype(dtype):
|
||
|
return f"{dtype.na_value}"
|
||
|
else:
|
||
|
dtype = dtype.type
|
||
|
|
||
|
return {np.datetime64: "NaT", np.timedelta64: "NaT"}.get(dtype, "NaN")
|
||
|
|
||
|
|
||
|
def maybe_droplevels(index: Index, key) -> Index:
|
||
|
"""
|
||
|
Attempt to drop level or levels from the given index.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index: Index
|
||
|
key : scalar or tuple
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Index
|
||
|
"""
|
||
|
# drop levels
|
||
|
original_index = index
|
||
|
if isinstance(key, tuple):
|
||
|
# Caller is responsible for ensuring the key is not an entry in the first
|
||
|
# level of the MultiIndex.
|
||
|
for _ in key:
|
||
|
try:
|
||
|
index = index._drop_level_numbers([0])
|
||
|
except ValueError:
|
||
|
# we have dropped too much, so back out
|
||
|
return original_index
|
||
|
else:
|
||
|
try:
|
||
|
index = index._drop_level_numbers([0])
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
return index
|
||
|
|
||
|
|
||
|
def _coerce_indexer_frozen(array_like, categories, copy: bool = False) -> np.ndarray:
|
||
|
"""
|
||
|
Coerce the array-like indexer to the smallest integer dtype that can encode all
|
||
|
of the given categories.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
array_like : array-like
|
||
|
categories : array-like
|
||
|
copy : bool
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
np.ndarray
|
||
|
Non-writeable.
|
||
|
"""
|
||
|
array_like = coerce_indexer_dtype(array_like, categories)
|
||
|
if copy:
|
||
|
array_like = array_like.copy()
|
||
|
array_like.flags.writeable = False
|
||
|
return array_like
|
||
|
|
||
|
|
||
|
def _require_listlike(level, arr, arrname: str):
|
||
|
"""
|
||
|
Ensure that level is either None or listlike, and arr is list-of-listlike.
|
||
|
"""
|
||
|
if level is not None and not is_list_like(level):
|
||
|
if not is_list_like(arr):
|
||
|
raise TypeError(f"{arrname} must be list-like")
|
||
|
if len(arr) > 0 and is_list_like(arr[0]):
|
||
|
raise TypeError(f"{arrname} must be list-like")
|
||
|
level = [level]
|
||
|
arr = [arr]
|
||
|
elif level is None or is_list_like(level):
|
||
|
if not is_list_like(arr) or not is_list_like(arr[0]):
|
||
|
raise TypeError(f"{arrname} must be list of lists-like")
|
||
|
return level, arr
|