Inzynierka/Lib/site-packages/pandas/core/indexes/timedeltas.py

316 lines
9.4 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
""" implement the TimedeltaIndex """
from __future__ import annotations
from pandas._libs import (
index as libindex,
lib,
)
from pandas._libs.tslibs import (
Resolution,
Timedelta,
to_offset,
)
from pandas._typing import DtypeObj
from pandas.core.dtypes.common import (
is_dtype_equal,
is_scalar,
is_timedelta64_dtype,
)
from pandas.core.dtypes.generic import ABCSeries
from pandas.core.arrays import datetimelike as dtl
from pandas.core.arrays.timedeltas import TimedeltaArray
import pandas.core.common as com
from pandas.core.indexes.base import (
Index,
maybe_extract_name,
)
from pandas.core.indexes.datetimelike import DatetimeTimedeltaMixin
from pandas.core.indexes.extension import inherit_names
@inherit_names(
["__neg__", "__pos__", "__abs__", "total_seconds", "round", "floor", "ceil"]
+ TimedeltaArray._field_ops,
TimedeltaArray,
wrap=True,
)
@inherit_names(
[
"components",
"to_pytimedelta",
"sum",
"std",
"median",
"_format_native_types",
],
TimedeltaArray,
)
class TimedeltaIndex(DatetimeTimedeltaMixin):
"""
Immutable Index of timedelta64 data.
Represented internally as int64, and scalars returned Timedelta objects.
Parameters
----------
data : array-like (1-dimensional), optional
Optional timedelta-like data to construct index with.
unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional
Which is an integer/float number.
freq : str or pandas offset object, optional
One of pandas date offset strings or corresponding objects. The string
'infer' can be passed in order to set the frequency of the index as the
inferred frequency upon creation.
copy : bool
Make a copy of input ndarray.
name : object
Name to be stored in the index.
Attributes
----------
days
seconds
microseconds
nanoseconds
components
inferred_freq
Methods
-------
to_pytimedelta
to_series
round
floor
ceil
to_frame
mean
See Also
--------
Index : The base pandas Index type.
Timedelta : Represents a duration between two dates or times.
DatetimeIndex : Index of datetime64 data.
PeriodIndex : Index of Period data.
timedelta_range : Create a fixed-frequency TimedeltaIndex.
Notes
-----
To learn more about the frequency strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
"""
_typ = "timedeltaindex"
_data_cls = TimedeltaArray
@property
def _engine_type(self) -> type[libindex.TimedeltaEngine]:
return libindex.TimedeltaEngine
_data: TimedeltaArray
# Use base class method instead of DatetimeTimedeltaMixin._get_string_slice
_get_string_slice = Index._get_string_slice
# error: Signature of "_resolution_obj" incompatible with supertype
# "DatetimeIndexOpsMixin"
@property
def _resolution_obj(self) -> Resolution | None: # type: ignore[override]
return self._data._resolution_obj
# -------------------------------------------------------------------
# Constructors
def __new__(
cls,
data=None,
unit=None,
freq=lib.no_default,
closed=None,
dtype=None,
copy: bool = False,
name=None,
):
name = maybe_extract_name(name, data, cls)
if is_scalar(data):
cls._raise_scalar_data_error(data)
if unit in {"Y", "y", "M"}:
raise ValueError(
"Units 'M', 'Y', and 'y' are no longer supported, as they do not "
"represent unambiguous timedelta values durations."
)
if (
isinstance(data, TimedeltaArray)
and freq is lib.no_default
and (dtype is None or is_dtype_equal(dtype, data.dtype))
):
if copy:
data = data.copy()
return cls._simple_new(data, name=name)
if (
isinstance(data, TimedeltaIndex)
and freq is lib.no_default
and name is None
and (dtype is None or is_dtype_equal(dtype, data.dtype))
):
if copy:
return data.copy()
else:
return data._view()
# - Cases checked above all return/raise before reaching here - #
tdarr = TimedeltaArray._from_sequence_not_strict(
data, freq=freq, unit=unit, dtype=dtype, copy=copy
)
refs = None
if not copy and isinstance(data, (ABCSeries, Index)):
refs = data._references
return cls._simple_new(tdarr, name=name, refs=refs)
# -------------------------------------------------------------------
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
"""
Can we compare values of the given dtype to our own?
"""
return is_timedelta64_dtype(dtype) # aka self._data._is_recognized_dtype
# -------------------------------------------------------------------
# Indexing Methods
def get_loc(self, key):
"""
Get integer location for requested label
Returns
-------
loc : int, slice, or ndarray[int]
"""
self._check_indexing_error(key)
try:
key = self._data._validate_scalar(key, unbox=False)
except TypeError as err:
raise KeyError(key) from err
return Index.get_loc(self, key)
def _parse_with_reso(self, label: str):
# the "with_reso" is a no-op for TimedeltaIndex
parsed = Timedelta(label)
return parsed, None
def _parsed_string_to_bounds(self, reso, parsed: Timedelta):
# reso is unused, included to match signature of DTI/PI
lbound = parsed.round(parsed.resolution_string)
rbound = lbound + to_offset(parsed.resolution_string) - Timedelta(1, "ns")
return lbound, rbound
# -------------------------------------------------------------------
@property
def inferred_type(self) -> str:
return "timedelta64"
def timedelta_range(
start=None,
end=None,
periods: int | None = None,
freq=None,
name=None,
closed=None,
*,
unit: str | None = None,
) -> TimedeltaIndex:
"""
Return a fixed frequency TimedeltaIndex with day as the default.
Parameters
----------
start : str or timedelta-like, default None
Left bound for generating timedeltas.
end : str or timedelta-like, default None
Right bound for generating timedeltas.
periods : int, default None
Number of periods to generate.
freq : str or DateOffset, default 'D'
Frequency strings can have multiples, e.g. '5H'.
name : str, default None
Name of the resulting TimedeltaIndex.
closed : str, default None
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None).
unit : str, default None
Specify the desired resolution of the result.
.. versionadded:: 2.0.0
Returns
-------
TimedeltaIndex
Notes
-----
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
exactly three must be specified. If ``freq`` is omitted, the resulting
``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
``start`` and ``end`` (closed on both sides).
To learn more about the frequency strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
Examples
--------
>>> pd.timedelta_range(start='1 day', periods=4)
TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``closed`` parameter specifies which endpoint is included. The default
behavior is to include both endpoints.
>>> pd.timedelta_range(start='1 day', periods=4, closed='right')
TimedeltaIndex(['2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
Only fixed frequencies can be passed, non-fixed frequencies such as
'M' (month end) will raise.
>>> pd.timedelta_range(start='1 day', end='2 days', freq='6H')
TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
'1 days 18:00:00', '2 days 00:00:00'],
dtype='timedelta64[ns]', freq='6H')
Specify ``start``, ``end``, and ``periods``; the frequency is generated
automatically (linearly spaced).
>>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
'5 days 00:00:00'],
dtype='timedelta64[ns]', freq=None)
**Specify a unit**
>>> pd.timedelta_range("1 Day", periods=3, freq="100000D", unit="s")
TimedeltaIndex(['1 days 00:00:00', '100001 days 00:00:00',
'200001 days 00:00:00'],
dtype='timedelta64[s]', freq='100000D')
"""
if freq is None and com.any_none(periods, start, end):
freq = "D"
freq, _ = dtl.maybe_infer_freq(freq)
tdarr = TimedeltaArray._generate_range(
start, end, periods, freq, closed=closed, unit=unit
)
return TimedeltaIndex._simple_new(tdarr, name=name)