2745 lines
87 KiB
Python
2745 lines
87 KiB
Python
|
"""
|
||
|
Provide a generic structure to support window functions,
|
||
|
similar to how we have a Groupby object.
|
||
|
"""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import copy
|
||
|
from datetime import timedelta
|
||
|
from functools import partial
|
||
|
import inspect
|
||
|
from textwrap import dedent
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Any,
|
||
|
Callable,
|
||
|
Hashable,
|
||
|
Iterator,
|
||
|
Sized,
|
||
|
cast,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._libs.tslibs import (
|
||
|
BaseOffset,
|
||
|
to_offset,
|
||
|
)
|
||
|
import pandas._libs.window.aggregations as window_aggregations
|
||
|
from pandas._typing import (
|
||
|
ArrayLike,
|
||
|
Axis,
|
||
|
NDFrameT,
|
||
|
QuantileInterpolation,
|
||
|
WindowingRankType,
|
||
|
)
|
||
|
from pandas.compat._optional import import_optional_dependency
|
||
|
from pandas.errors import DataError
|
||
|
from pandas.util._decorators import doc
|
||
|
|
||
|
from pandas.core.dtypes.common import (
|
||
|
ensure_float64,
|
||
|
is_bool,
|
||
|
is_integer,
|
||
|
is_list_like,
|
||
|
is_numeric_dtype,
|
||
|
is_scalar,
|
||
|
needs_i8_conversion,
|
||
|
)
|
||
|
from pandas.core.dtypes.generic import (
|
||
|
ABCDataFrame,
|
||
|
ABCSeries,
|
||
|
)
|
||
|
from pandas.core.dtypes.missing import notna
|
||
|
|
||
|
from pandas.core._numba import executor
|
||
|
from pandas.core.algorithms import factorize
|
||
|
from pandas.core.apply import ResamplerWindowApply
|
||
|
from pandas.core.arrays import ExtensionArray
|
||
|
from pandas.core.base import SelectionMixin
|
||
|
import pandas.core.common as com
|
||
|
from pandas.core.indexers.objects import (
|
||
|
BaseIndexer,
|
||
|
FixedWindowIndexer,
|
||
|
GroupbyIndexer,
|
||
|
VariableWindowIndexer,
|
||
|
)
|
||
|
from pandas.core.indexes.api import (
|
||
|
DatetimeIndex,
|
||
|
Index,
|
||
|
MultiIndex,
|
||
|
PeriodIndex,
|
||
|
TimedeltaIndex,
|
||
|
)
|
||
|
from pandas.core.reshape.concat import concat
|
||
|
from pandas.core.util.numba_ import (
|
||
|
get_jit_arguments,
|
||
|
maybe_use_numba,
|
||
|
)
|
||
|
from pandas.core.window.common import (
|
||
|
flex_binary_moment,
|
||
|
zsqrt,
|
||
|
)
|
||
|
from pandas.core.window.doc import (
|
||
|
_shared_docs,
|
||
|
create_section_header,
|
||
|
kwargs_numeric_only,
|
||
|
kwargs_scipy,
|
||
|
numba_notes,
|
||
|
template_header,
|
||
|
template_returns,
|
||
|
template_see_also,
|
||
|
window_agg_numba_parameters,
|
||
|
window_apply_parameters,
|
||
|
)
|
||
|
from pandas.core.window.numba_ import (
|
||
|
generate_manual_numpy_nan_agg_with_axis,
|
||
|
generate_numba_apply_func,
|
||
|
generate_numba_table_func,
|
||
|
)
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
)
|
||
|
from pandas.core.generic import NDFrame
|
||
|
from pandas.core.groupby.ops import BaseGrouper
|
||
|
|
||
|
|
||
|
class BaseWindow(SelectionMixin):
|
||
|
"""Provides utilities for performing windowing operations."""
|
||
|
|
||
|
_attributes: list[str] = []
|
||
|
exclusions: frozenset[Hashable] = frozenset()
|
||
|
_on: Index
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
obj: NDFrame,
|
||
|
window=None,
|
||
|
min_periods: int | None = None,
|
||
|
center: bool | None = False,
|
||
|
win_type: str | None = None,
|
||
|
axis: Axis = 0,
|
||
|
on: str | Index | None = None,
|
||
|
closed: str | None = None,
|
||
|
step: int | None = None,
|
||
|
method: str = "single",
|
||
|
*,
|
||
|
selection=None,
|
||
|
) -> None:
|
||
|
self.obj = obj
|
||
|
self.on = on
|
||
|
self.closed = closed
|
||
|
self.step = step
|
||
|
self.window = window
|
||
|
self.min_periods = min_periods
|
||
|
self.center = center
|
||
|
self.win_type = win_type
|
||
|
self.axis = obj._get_axis_number(axis) if axis is not None else None
|
||
|
self.method = method
|
||
|
self._win_freq_i8: int | None = None
|
||
|
if self.on is None:
|
||
|
if self.axis == 0:
|
||
|
self._on = self.obj.index
|
||
|
else:
|
||
|
# i.e. self.axis == 1
|
||
|
self._on = self.obj.columns
|
||
|
elif isinstance(self.on, Index):
|
||
|
self._on = self.on
|
||
|
elif isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns:
|
||
|
self._on = Index(self.obj[self.on])
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"invalid on specified as {self.on}, "
|
||
|
"must be a column (of DataFrame), an Index or None"
|
||
|
)
|
||
|
|
||
|
self._selection = selection
|
||
|
self._validate()
|
||
|
|
||
|
def _validate(self) -> None:
|
||
|
if self.center is not None and not is_bool(self.center):
|
||
|
raise ValueError("center must be a boolean")
|
||
|
if self.min_periods is not None:
|
||
|
if not is_integer(self.min_periods):
|
||
|
raise ValueError("min_periods must be an integer")
|
||
|
if self.min_periods < 0:
|
||
|
raise ValueError("min_periods must be >= 0")
|
||
|
if is_integer(self.window) and self.min_periods > self.window:
|
||
|
raise ValueError(
|
||
|
f"min_periods {self.min_periods} must be <= window {self.window}"
|
||
|
)
|
||
|
if self.closed is not None and self.closed not in [
|
||
|
"right",
|
||
|
"both",
|
||
|
"left",
|
||
|
"neither",
|
||
|
]:
|
||
|
raise ValueError("closed must be 'right', 'left', 'both' or 'neither'")
|
||
|
if not isinstance(self.obj, (ABCSeries, ABCDataFrame)):
|
||
|
raise TypeError(f"invalid type: {type(self)}")
|
||
|
if isinstance(self.window, BaseIndexer):
|
||
|
# Validate that the passed BaseIndexer subclass has
|
||
|
# a get_window_bounds with the correct signature.
|
||
|
get_window_bounds_signature = inspect.signature(
|
||
|
self.window.get_window_bounds
|
||
|
).parameters.keys()
|
||
|
expected_signature = inspect.signature(
|
||
|
BaseIndexer().get_window_bounds
|
||
|
).parameters.keys()
|
||
|
if get_window_bounds_signature != expected_signature:
|
||
|
raise ValueError(
|
||
|
f"{type(self.window).__name__} does not implement "
|
||
|
f"the correct signature for get_window_bounds"
|
||
|
)
|
||
|
if self.method not in ["table", "single"]:
|
||
|
raise ValueError("method must be 'table' or 'single")
|
||
|
if self.step is not None:
|
||
|
if not is_integer(self.step):
|
||
|
raise ValueError("step must be an integer")
|
||
|
if self.step < 0:
|
||
|
raise ValueError("step must be >= 0")
|
||
|
|
||
|
def _check_window_bounds(
|
||
|
self, start: np.ndarray, end: np.ndarray, num_vals: int
|
||
|
) -> None:
|
||
|
if len(start) != len(end):
|
||
|
raise ValueError(
|
||
|
f"start ({len(start)}) and end ({len(end)}) bounds must be the "
|
||
|
f"same length"
|
||
|
)
|
||
|
if len(start) != (num_vals + (self.step or 1) - 1) // (self.step or 1):
|
||
|
raise ValueError(
|
||
|
f"start and end bounds ({len(start)}) must be the same length "
|
||
|
f"as the object ({num_vals}) divided by the step ({self.step}) "
|
||
|
f"if given and rounded up"
|
||
|
)
|
||
|
|
||
|
def _slice_axis_for_step(self, index: Index, result: Sized | None = None) -> Index:
|
||
|
"""
|
||
|
Slices the index for a given result and the preset step.
|
||
|
"""
|
||
|
return (
|
||
|
index
|
||
|
if result is None or len(result) == len(index)
|
||
|
else index[:: self.step]
|
||
|
)
|
||
|
|
||
|
def _validate_numeric_only(self, name: str, numeric_only: bool) -> None:
|
||
|
"""
|
||
|
Validate numeric_only argument, raising if invalid for the input.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str
|
||
|
Name of the operator (kernel).
|
||
|
numeric_only : bool
|
||
|
Value passed by user.
|
||
|
"""
|
||
|
if (
|
||
|
self._selected_obj.ndim == 1
|
||
|
and numeric_only
|
||
|
and not is_numeric_dtype(self._selected_obj.dtype)
|
||
|
):
|
||
|
raise NotImplementedError(
|
||
|
f"{type(self).__name__}.{name} does not implement numeric_only"
|
||
|
)
|
||
|
|
||
|
def _make_numeric_only(self, obj: NDFrameT) -> NDFrameT:
|
||
|
"""Subset DataFrame to numeric columns.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
obj : DataFrame
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
obj subset to numeric-only columns.
|
||
|
"""
|
||
|
result = obj.select_dtypes(include=["number"], exclude=["timedelta"])
|
||
|
return result
|
||
|
|
||
|
def _create_data(self, obj: NDFrameT, numeric_only: bool = False) -> NDFrameT:
|
||
|
"""
|
||
|
Split data into blocks & return conformed data.
|
||
|
"""
|
||
|
# filter out the on from the object
|
||
|
if self.on is not None and not isinstance(self.on, Index) and obj.ndim == 2:
|
||
|
obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False)
|
||
|
if obj.ndim > 1 and (numeric_only or self.axis == 1):
|
||
|
# GH: 20649 in case of mixed dtype and axis=1 we have to convert everything
|
||
|
# to float to calculate the complete row at once. We exclude all non-numeric
|
||
|
# dtypes.
|
||
|
obj = self._make_numeric_only(obj)
|
||
|
if self.axis == 1:
|
||
|
obj = obj.astype("float64", copy=False)
|
||
|
obj._mgr = obj._mgr.consolidate()
|
||
|
return obj
|
||
|
|
||
|
def _gotitem(self, key, ndim, subset=None):
|
||
|
"""
|
||
|
Sub-classes to define. Return a sliced object.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : str / list of selections
|
||
|
ndim : {1, 2}
|
||
|
requested ndim of result
|
||
|
subset : object, default None
|
||
|
subset to act on
|
||
|
"""
|
||
|
# create a new object to prevent aliasing
|
||
|
if subset is None:
|
||
|
subset = self.obj
|
||
|
|
||
|
# we need to make a shallow copy of ourselves
|
||
|
# with the same groupby
|
||
|
kwargs = {attr: getattr(self, attr) for attr in self._attributes}
|
||
|
|
||
|
selection = None
|
||
|
if subset.ndim == 2 and (
|
||
|
(is_scalar(key) and key in subset) or is_list_like(key)
|
||
|
):
|
||
|
selection = key
|
||
|
elif subset.ndim == 1 and is_scalar(key) and key == subset.name:
|
||
|
selection = key
|
||
|
|
||
|
new_win = type(self)(subset, selection=selection, **kwargs)
|
||
|
return new_win
|
||
|
|
||
|
def __getattr__(self, attr: str):
|
||
|
if attr in self._internal_names_set:
|
||
|
return object.__getattribute__(self, attr)
|
||
|
if attr in self.obj:
|
||
|
return self[attr]
|
||
|
|
||
|
raise AttributeError(
|
||
|
f"'{type(self).__name__}' object has no attribute '{attr}'"
|
||
|
)
|
||
|
|
||
|
def _dir_additions(self):
|
||
|
return self.obj._dir_additions()
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
"""
|
||
|
Provide a nice str repr of our rolling object.
|
||
|
"""
|
||
|
attrs_list = (
|
||
|
f"{attr_name}={getattr(self, attr_name)}"
|
||
|
for attr_name in self._attributes
|
||
|
if getattr(self, attr_name, None) is not None and attr_name[0] != "_"
|
||
|
)
|
||
|
attrs = ",".join(attrs_list)
|
||
|
return f"{type(self).__name__} [{attrs}]"
|
||
|
|
||
|
def __iter__(self) -> Iterator:
|
||
|
obj = self._selected_obj.set_axis(self._on)
|
||
|
obj = self._create_data(obj)
|
||
|
indexer = self._get_window_indexer()
|
||
|
|
||
|
start, end = indexer.get_window_bounds(
|
||
|
num_values=len(obj),
|
||
|
min_periods=self.min_periods,
|
||
|
center=self.center,
|
||
|
closed=self.closed,
|
||
|
step=self.step,
|
||
|
)
|
||
|
self._check_window_bounds(start, end, len(obj))
|
||
|
|
||
|
for s, e in zip(start, end):
|
||
|
result = obj.iloc[slice(s, e)]
|
||
|
yield result
|
||
|
|
||
|
def _prep_values(self, values: ArrayLike) -> np.ndarray:
|
||
|
"""Convert input to numpy arrays for Cython routines"""
|
||
|
if needs_i8_conversion(values.dtype):
|
||
|
raise NotImplementedError(
|
||
|
f"ops for {type(self).__name__} for this "
|
||
|
f"dtype {values.dtype} are not implemented"
|
||
|
)
|
||
|
# GH #12373 : rolling functions error on float32 data
|
||
|
# make sure the data is coerced to float64
|
||
|
try:
|
||
|
if isinstance(values, ExtensionArray):
|
||
|
values = values.to_numpy(np.float64, na_value=np.nan)
|
||
|
else:
|
||
|
values = ensure_float64(values)
|
||
|
except (ValueError, TypeError) as err:
|
||
|
raise TypeError(f"cannot handle this type -> {values.dtype}") from err
|
||
|
|
||
|
# Convert inf to nan for C funcs
|
||
|
inf = np.isinf(values)
|
||
|
if inf.any():
|
||
|
values = np.where(inf, np.nan, values)
|
||
|
|
||
|
return values
|
||
|
|
||
|
def _insert_on_column(self, result: DataFrame, obj: DataFrame) -> None:
|
||
|
# if we have an 'on' column we want to put it back into
|
||
|
# the results in the same location
|
||
|
from pandas import Series
|
||
|
|
||
|
if self.on is not None and not self._on.equals(obj.index):
|
||
|
name = self._on.name
|
||
|
extra_col = Series(self._on, index=self.obj.index, name=name, copy=False)
|
||
|
if name in result.columns:
|
||
|
# TODO: sure we want to overwrite results?
|
||
|
result[name] = extra_col
|
||
|
elif name in result.index.names:
|
||
|
pass
|
||
|
elif name in self._selected_obj.columns:
|
||
|
# insert in the same location as we had in _selected_obj
|
||
|
old_cols = self._selected_obj.columns
|
||
|
new_cols = result.columns
|
||
|
old_loc = old_cols.get_loc(name)
|
||
|
overlap = new_cols.intersection(old_cols[:old_loc])
|
||
|
new_loc = len(overlap)
|
||
|
result.insert(new_loc, name, extra_col)
|
||
|
else:
|
||
|
# insert at the end
|
||
|
result[name] = extra_col
|
||
|
|
||
|
@property
|
||
|
def _index_array(self):
|
||
|
# TODO: why do we get here with e.g. MultiIndex?
|
||
|
if needs_i8_conversion(self._on.dtype):
|
||
|
idx = cast("PeriodIndex | DatetimeIndex | TimedeltaIndex", self._on)
|
||
|
return idx.asi8
|
||
|
return None
|
||
|
|
||
|
def _resolve_output(self, out: DataFrame, obj: DataFrame) -> DataFrame:
|
||
|
"""Validate and finalize result."""
|
||
|
if out.shape[1] == 0 and obj.shape[1] > 0:
|
||
|
raise DataError("No numeric types to aggregate")
|
||
|
if out.shape[1] == 0:
|
||
|
return obj.astype("float64")
|
||
|
|
||
|
self._insert_on_column(out, obj)
|
||
|
return out
|
||
|
|
||
|
def _get_window_indexer(self) -> BaseIndexer:
|
||
|
"""
|
||
|
Return an indexer class that will compute the window start and end bounds
|
||
|
"""
|
||
|
if isinstance(self.window, BaseIndexer):
|
||
|
return self.window
|
||
|
if self._win_freq_i8 is not None:
|
||
|
return VariableWindowIndexer(
|
||
|
index_array=self._index_array,
|
||
|
window_size=self._win_freq_i8,
|
||
|
center=self.center,
|
||
|
)
|
||
|
return FixedWindowIndexer(window_size=self.window)
|
||
|
|
||
|
def _apply_series(
|
||
|
self, homogeneous_func: Callable[..., ArrayLike], name: str | None = None
|
||
|
) -> Series:
|
||
|
"""
|
||
|
Series version of _apply_blockwise
|
||
|
"""
|
||
|
obj = self._create_data(self._selected_obj)
|
||
|
|
||
|
if name == "count":
|
||
|
# GH 12541: Special case for count where we support date-like types
|
||
|
obj = notna(obj).astype(int)
|
||
|
try:
|
||
|
values = self._prep_values(obj._values)
|
||
|
except (TypeError, NotImplementedError) as err:
|
||
|
raise DataError("No numeric types to aggregate") from err
|
||
|
|
||
|
result = homogeneous_func(values)
|
||
|
index = self._slice_axis_for_step(obj.index, result)
|
||
|
return obj._constructor(result, index=index, name=obj.name)
|
||
|
|
||
|
def _apply_blockwise(
|
||
|
self,
|
||
|
homogeneous_func: Callable[..., ArrayLike],
|
||
|
name: str,
|
||
|
numeric_only: bool = False,
|
||
|
) -> DataFrame | Series:
|
||
|
"""
|
||
|
Apply the given function to the DataFrame broken down into homogeneous
|
||
|
sub-frames.
|
||
|
"""
|
||
|
self._validate_numeric_only(name, numeric_only)
|
||
|
if self._selected_obj.ndim == 1:
|
||
|
return self._apply_series(homogeneous_func, name)
|
||
|
|
||
|
obj = self._create_data(self._selected_obj, numeric_only)
|
||
|
if name == "count":
|
||
|
# GH 12541: Special case for count where we support date-like types
|
||
|
obj = notna(obj).astype(int)
|
||
|
obj._mgr = obj._mgr.consolidate()
|
||
|
|
||
|
if self.axis == 1:
|
||
|
obj = obj.T
|
||
|
|
||
|
taker = []
|
||
|
res_values = []
|
||
|
for i, arr in enumerate(obj._iter_column_arrays()):
|
||
|
# GH#42736 operate column-wise instead of block-wise
|
||
|
# As of 2.0, hfunc will raise for nuisance columns
|
||
|
try:
|
||
|
arr = self._prep_values(arr)
|
||
|
except (TypeError, NotImplementedError) as err:
|
||
|
raise DataError(
|
||
|
f"Cannot aggregate non-numeric type: {arr.dtype}"
|
||
|
) from err
|
||
|
res = homogeneous_func(arr)
|
||
|
res_values.append(res)
|
||
|
taker.append(i)
|
||
|
|
||
|
index = self._slice_axis_for_step(
|
||
|
obj.index, res_values[0] if len(res_values) > 0 else None
|
||
|
)
|
||
|
df = type(obj)._from_arrays(
|
||
|
res_values,
|
||
|
index=index,
|
||
|
columns=obj.columns.take(taker),
|
||
|
verify_integrity=False,
|
||
|
)
|
||
|
|
||
|
if self.axis == 1:
|
||
|
df = df.T
|
||
|
|
||
|
return self._resolve_output(df, obj)
|
||
|
|
||
|
def _apply_tablewise(
|
||
|
self,
|
||
|
homogeneous_func: Callable[..., ArrayLike],
|
||
|
name: str | None = None,
|
||
|
numeric_only: bool = False,
|
||
|
) -> DataFrame | Series:
|
||
|
"""
|
||
|
Apply the given function to the DataFrame across the entire object
|
||
|
"""
|
||
|
if self._selected_obj.ndim == 1:
|
||
|
raise ValueError("method='table' not applicable for Series objects.")
|
||
|
obj = self._create_data(self._selected_obj, numeric_only)
|
||
|
values = self._prep_values(obj.to_numpy())
|
||
|
values = values.T if self.axis == 1 else values
|
||
|
result = homogeneous_func(values)
|
||
|
result = result.T if self.axis == 1 else result
|
||
|
index = self._slice_axis_for_step(obj.index, result)
|
||
|
columns = (
|
||
|
obj.columns
|
||
|
if result.shape[1] == len(obj.columns)
|
||
|
else obj.columns[:: self.step]
|
||
|
)
|
||
|
out = obj._constructor(result, index=index, columns=columns)
|
||
|
|
||
|
return self._resolve_output(out, obj)
|
||
|
|
||
|
def _apply_pairwise(
|
||
|
self,
|
||
|
target: DataFrame | Series,
|
||
|
other: DataFrame | Series | None,
|
||
|
pairwise: bool | None,
|
||
|
func: Callable[[DataFrame | Series, DataFrame | Series], DataFrame | Series],
|
||
|
numeric_only: bool,
|
||
|
) -> DataFrame | Series:
|
||
|
"""
|
||
|
Apply the given pairwise function given 2 pandas objects (DataFrame/Series)
|
||
|
"""
|
||
|
target = self._create_data(target, numeric_only)
|
||
|
if other is None:
|
||
|
other = target
|
||
|
# only default unset
|
||
|
pairwise = True if pairwise is None else pairwise
|
||
|
elif not isinstance(other, (ABCDataFrame, ABCSeries)):
|
||
|
raise ValueError("other must be a DataFrame or Series")
|
||
|
elif other.ndim == 2 and numeric_only:
|
||
|
other = self._make_numeric_only(other)
|
||
|
|
||
|
return flex_binary_moment(target, other, func, pairwise=bool(pairwise))
|
||
|
|
||
|
def _apply(
|
||
|
self,
|
||
|
func: Callable[..., Any],
|
||
|
name: str,
|
||
|
numeric_only: bool = False,
|
||
|
numba_args: tuple[Any, ...] = (),
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
Rolling statistical measure using supplied function.
|
||
|
|
||
|
Designed to be used with passed-in Cython array-based functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable function to apply
|
||
|
name : str,
|
||
|
numba_args : tuple
|
||
|
args to be passed when func is a numba func
|
||
|
**kwargs
|
||
|
additional arguments for rolling function and window function
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : type of input
|
||
|
"""
|
||
|
window_indexer = self._get_window_indexer()
|
||
|
min_periods = (
|
||
|
self.min_periods
|
||
|
if self.min_periods is not None
|
||
|
else window_indexer.window_size
|
||
|
)
|
||
|
|
||
|
def homogeneous_func(values: np.ndarray):
|
||
|
# calculation function
|
||
|
|
||
|
if values.size == 0:
|
||
|
return values.copy()
|
||
|
|
||
|
def calc(x):
|
||
|
start, end = window_indexer.get_window_bounds(
|
||
|
num_values=len(x),
|
||
|
min_periods=min_periods,
|
||
|
center=self.center,
|
||
|
closed=self.closed,
|
||
|
step=self.step,
|
||
|
)
|
||
|
self._check_window_bounds(start, end, len(x))
|
||
|
|
||
|
return func(x, start, end, min_periods, *numba_args)
|
||
|
|
||
|
with np.errstate(all="ignore"):
|
||
|
result = calc(values)
|
||
|
|
||
|
return result
|
||
|
|
||
|
if self.method == "single":
|
||
|
return self._apply_blockwise(homogeneous_func, name, numeric_only)
|
||
|
else:
|
||
|
return self._apply_tablewise(homogeneous_func, name, numeric_only)
|
||
|
|
||
|
def _numba_apply(
|
||
|
self,
|
||
|
func: Callable[..., Any],
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
*func_args,
|
||
|
):
|
||
|
window_indexer = self._get_window_indexer()
|
||
|
min_periods = (
|
||
|
self.min_periods
|
||
|
if self.min_periods is not None
|
||
|
else window_indexer.window_size
|
||
|
)
|
||
|
obj = self._create_data(self._selected_obj)
|
||
|
if self.axis == 1:
|
||
|
obj = obj.T
|
||
|
values = self._prep_values(obj.to_numpy())
|
||
|
if values.ndim == 1:
|
||
|
values = values.reshape(-1, 1)
|
||
|
start, end = window_indexer.get_window_bounds(
|
||
|
num_values=len(values),
|
||
|
min_periods=min_periods,
|
||
|
center=self.center,
|
||
|
closed=self.closed,
|
||
|
step=self.step,
|
||
|
)
|
||
|
self._check_window_bounds(start, end, len(values))
|
||
|
aggregator = executor.generate_shared_aggregator(
|
||
|
func, **get_jit_arguments(engine_kwargs)
|
||
|
)
|
||
|
result = aggregator(values, start, end, min_periods, *func_args)
|
||
|
result = result.T if self.axis == 1 else result
|
||
|
index = self._slice_axis_for_step(obj.index, result)
|
||
|
if obj.ndim == 1:
|
||
|
result = result.squeeze()
|
||
|
out = obj._constructor(result, index=index, name=obj.name)
|
||
|
return out
|
||
|
else:
|
||
|
columns = self._slice_axis_for_step(obj.columns, result.T)
|
||
|
out = obj._constructor(result, index=index, columns=columns)
|
||
|
return self._resolve_output(out, obj)
|
||
|
|
||
|
def aggregate(self, func, *args, **kwargs):
|
||
|
result = ResamplerWindowApply(self, func, args=args, kwargs=kwargs).agg()
|
||
|
if result is None:
|
||
|
return self.apply(func, raw=False, args=args, kwargs=kwargs)
|
||
|
return result
|
||
|
|
||
|
agg = aggregate
|
||
|
|
||
|
|
||
|
class BaseWindowGroupby(BaseWindow):
|
||
|
"""
|
||
|
Provide the groupby windowing facilities.
|
||
|
"""
|
||
|
|
||
|
_grouper: BaseGrouper
|
||
|
_as_index: bool
|
||
|
_attributes: list[str] = ["_grouper"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
obj: DataFrame | Series,
|
||
|
*args,
|
||
|
_grouper: BaseGrouper,
|
||
|
_as_index: bool = True,
|
||
|
**kwargs,
|
||
|
) -> None:
|
||
|
from pandas.core.groupby.ops import BaseGrouper
|
||
|
|
||
|
if not isinstance(_grouper, BaseGrouper):
|
||
|
raise ValueError("Must pass a BaseGrouper object.")
|
||
|
self._grouper = _grouper
|
||
|
self._as_index = _as_index
|
||
|
# GH 32262: It's convention to keep the grouping column in
|
||
|
# groupby.<agg_func>, but unexpected to users in
|
||
|
# groupby.rolling.<agg_func>
|
||
|
obj = obj.drop(columns=self._grouper.names, errors="ignore")
|
||
|
# GH 15354
|
||
|
if kwargs.get("step") is not None:
|
||
|
raise NotImplementedError("step not implemented for groupby")
|
||
|
super().__init__(obj, *args, **kwargs)
|
||
|
|
||
|
def _apply(
|
||
|
self,
|
||
|
func: Callable[..., Any],
|
||
|
name: str,
|
||
|
numeric_only: bool = False,
|
||
|
numba_args: tuple[Any, ...] = (),
|
||
|
**kwargs,
|
||
|
) -> DataFrame | Series:
|
||
|
result = super()._apply(
|
||
|
func,
|
||
|
name,
|
||
|
numeric_only,
|
||
|
numba_args,
|
||
|
**kwargs,
|
||
|
)
|
||
|
# Reconstruct the resulting MultiIndex
|
||
|
# 1st set of levels = group by labels
|
||
|
# 2nd set of levels = original DataFrame/Series index
|
||
|
grouped_object_index = self.obj.index
|
||
|
grouped_index_name = [*grouped_object_index.names]
|
||
|
groupby_keys = copy.copy(self._grouper.names)
|
||
|
result_index_names = groupby_keys + grouped_index_name
|
||
|
|
||
|
drop_columns = [
|
||
|
key
|
||
|
for key in self._grouper.names
|
||
|
if key not in self.obj.index.names or key is None
|
||
|
]
|
||
|
|
||
|
if len(drop_columns) != len(groupby_keys):
|
||
|
# Our result will have still kept the column in the result
|
||
|
result = result.drop(columns=drop_columns, errors="ignore")
|
||
|
|
||
|
codes = self._grouper.codes
|
||
|
levels = copy.copy(self._grouper.levels)
|
||
|
|
||
|
group_indices = self._grouper.indices.values()
|
||
|
if group_indices:
|
||
|
indexer = np.concatenate(list(group_indices))
|
||
|
else:
|
||
|
indexer = np.array([], dtype=np.intp)
|
||
|
codes = [c.take(indexer) for c in codes]
|
||
|
|
||
|
# if the index of the original dataframe needs to be preserved, append
|
||
|
# this index (but reordered) to the codes/levels from the groupby
|
||
|
if grouped_object_index is not None:
|
||
|
idx = grouped_object_index.take(indexer)
|
||
|
if not isinstance(idx, MultiIndex):
|
||
|
idx = MultiIndex.from_arrays([idx])
|
||
|
codes.extend(list(idx.codes))
|
||
|
levels.extend(list(idx.levels))
|
||
|
|
||
|
result_index = MultiIndex(
|
||
|
levels, codes, names=result_index_names, verify_integrity=False
|
||
|
)
|
||
|
|
||
|
result.index = result_index
|
||
|
if not self._as_index:
|
||
|
result = result.reset_index(level=list(range(len(groupby_keys))))
|
||
|
return result
|
||
|
|
||
|
def _apply_pairwise(
|
||
|
self,
|
||
|
target: DataFrame | Series,
|
||
|
other: DataFrame | Series | None,
|
||
|
pairwise: bool | None,
|
||
|
func: Callable[[DataFrame | Series, DataFrame | Series], DataFrame | Series],
|
||
|
numeric_only: bool,
|
||
|
) -> DataFrame | Series:
|
||
|
"""
|
||
|
Apply the given pairwise function given 2 pandas objects (DataFrame/Series)
|
||
|
"""
|
||
|
# Manually drop the grouping column first
|
||
|
target = target.drop(columns=self._grouper.names, errors="ignore")
|
||
|
result = super()._apply_pairwise(target, other, pairwise, func, numeric_only)
|
||
|
# 1) Determine the levels + codes of the groupby levels
|
||
|
if other is not None and not all(
|
||
|
len(group) == len(other) for group in self._grouper.indices.values()
|
||
|
):
|
||
|
# GH 42915
|
||
|
# len(other) != len(any group), so must reindex (expand) the result
|
||
|
# from flex_binary_moment to a "transform"-like result
|
||
|
# per groupby combination
|
||
|
old_result_len = len(result)
|
||
|
result = concat(
|
||
|
[
|
||
|
result.take(gb_indices).reindex(result.index)
|
||
|
for gb_indices in self._grouper.indices.values()
|
||
|
]
|
||
|
)
|
||
|
|
||
|
gb_pairs = (
|
||
|
com.maybe_make_list(pair) for pair in self._grouper.indices.keys()
|
||
|
)
|
||
|
groupby_codes = []
|
||
|
groupby_levels = []
|
||
|
# e.g. [[1, 2], [4, 5]] as [[1, 4], [2, 5]]
|
||
|
for gb_level_pair in map(list, zip(*gb_pairs)):
|
||
|
labels = np.repeat(np.array(gb_level_pair), old_result_len)
|
||
|
codes, levels = factorize(labels)
|
||
|
groupby_codes.append(codes)
|
||
|
groupby_levels.append(levels)
|
||
|
else:
|
||
|
# pairwise=True or len(other) == len(each group), so repeat
|
||
|
# the groupby labels by the number of columns in the original object
|
||
|
groupby_codes = self._grouper.codes
|
||
|
# error: Incompatible types in assignment (expression has type
|
||
|
# "List[Index]", variable has type "List[Union[ndarray, Index]]")
|
||
|
groupby_levels = self._grouper.levels # type: ignore[assignment]
|
||
|
|
||
|
group_indices = self._grouper.indices.values()
|
||
|
if group_indices:
|
||
|
indexer = np.concatenate(list(group_indices))
|
||
|
else:
|
||
|
indexer = np.array([], dtype=np.intp)
|
||
|
|
||
|
if target.ndim == 1:
|
||
|
repeat_by = 1
|
||
|
else:
|
||
|
repeat_by = len(target.columns)
|
||
|
groupby_codes = [
|
||
|
np.repeat(c.take(indexer), repeat_by) for c in groupby_codes
|
||
|
]
|
||
|
# 2) Determine the levels + codes of the result from super()._apply_pairwise
|
||
|
if isinstance(result.index, MultiIndex):
|
||
|
result_codes = list(result.index.codes)
|
||
|
result_levels = list(result.index.levels)
|
||
|
result_names = list(result.index.names)
|
||
|
else:
|
||
|
idx_codes, idx_levels = factorize(result.index)
|
||
|
result_codes = [idx_codes]
|
||
|
result_levels = [idx_levels]
|
||
|
result_names = [result.index.name]
|
||
|
|
||
|
# 3) Create the resulting index by combining 1) + 2)
|
||
|
result_codes = groupby_codes + result_codes
|
||
|
result_levels = groupby_levels + result_levels
|
||
|
result_names = self._grouper.names + result_names
|
||
|
|
||
|
result_index = MultiIndex(
|
||
|
result_levels, result_codes, names=result_names, verify_integrity=False
|
||
|
)
|
||
|
result.index = result_index
|
||
|
return result
|
||
|
|
||
|
def _create_data(self, obj: NDFrameT, numeric_only: bool = False) -> NDFrameT:
|
||
|
"""
|
||
|
Split data into blocks & return conformed data.
|
||
|
"""
|
||
|
# Ensure the object we're rolling over is monotonically sorted relative
|
||
|
# to the groups
|
||
|
# GH 36197
|
||
|
if not obj.empty:
|
||
|
groupby_order = np.concatenate(list(self._grouper.indices.values())).astype(
|
||
|
np.int64
|
||
|
)
|
||
|
obj = obj.take(groupby_order)
|
||
|
return super()._create_data(obj, numeric_only)
|
||
|
|
||
|
def _gotitem(self, key, ndim, subset=None):
|
||
|
# we are setting the index on the actual object
|
||
|
# here so our index is carried through to the selected obj
|
||
|
# when we do the splitting for the groupby
|
||
|
if self.on is not None:
|
||
|
# GH 43355
|
||
|
subset = self.obj.set_index(self._on)
|
||
|
return super()._gotitem(key, ndim, subset=subset)
|
||
|
|
||
|
|
||
|
class Window(BaseWindow):
|
||
|
"""
|
||
|
Provide rolling window calculations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
window : int, timedelta, str, offset, or BaseIndexer subclass
|
||
|
Size of the moving window.
|
||
|
|
||
|
If an integer, the fixed number of observations used for
|
||
|
each window.
|
||
|
|
||
|
If a timedelta, str, or offset, the time period of each window. Each
|
||
|
window will be a variable sized based on the observations included in
|
||
|
the time-period. This is only valid for datetimelike indexes.
|
||
|
To learn more about the offsets & frequency strings, please see `this link
|
||
|
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
|
||
|
|
||
|
If a BaseIndexer subclass, the window boundaries
|
||
|
based on the defined ``get_window_bounds`` method. Additional rolling
|
||
|
keyword arguments, namely ``min_periods``, ``center``, ``closed`` and
|
||
|
``step`` will be passed to ``get_window_bounds``.
|
||
|
|
||
|
min_periods : int, default None
|
||
|
Minimum number of observations in window required to have a value;
|
||
|
otherwise, result is ``np.nan``.
|
||
|
|
||
|
For a window that is specified by an offset, ``min_periods`` will default to 1.
|
||
|
|
||
|
For a window that is specified by an integer, ``min_periods`` will default
|
||
|
to the size of the window.
|
||
|
|
||
|
center : bool, default False
|
||
|
If False, set the window labels as the right edge of the window index.
|
||
|
|
||
|
If True, set the window labels as the center of the window index.
|
||
|
|
||
|
win_type : str, default None
|
||
|
If ``None``, all points are evenly weighted.
|
||
|
|
||
|
If a string, it must be a valid `scipy.signal window function
|
||
|
<https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows>`__.
|
||
|
|
||
|
Certain Scipy window types require additional parameters to be passed
|
||
|
in the aggregation function. The additional parameters must match
|
||
|
the keywords specified in the Scipy window type method signature.
|
||
|
|
||
|
on : str, optional
|
||
|
For a DataFrame, a column label or Index level on which
|
||
|
to calculate the rolling window, rather than the DataFrame's index.
|
||
|
|
||
|
Provided integer column is ignored and excluded from result since
|
||
|
an integer index is not used to calculate the rolling window.
|
||
|
|
||
|
axis : int or str, default 0
|
||
|
If ``0`` or ``'index'``, roll across the rows.
|
||
|
|
||
|
If ``1`` or ``'columns'``, roll across the columns.
|
||
|
|
||
|
For `Series` this parameter is unused and defaults to 0.
|
||
|
|
||
|
closed : str, default None
|
||
|
If ``'right'``, the first point in the window is excluded from calculations.
|
||
|
|
||
|
If ``'left'``, the last point in the window is excluded from calculations.
|
||
|
|
||
|
If ``'both'``, the no points in the window are excluded from calculations.
|
||
|
|
||
|
If ``'neither'``, the first and last points in the window are excluded
|
||
|
from calculations.
|
||
|
|
||
|
Default ``None`` (``'right'``).
|
||
|
|
||
|
.. versionchanged:: 1.2.0
|
||
|
|
||
|
The closed parameter with fixed windows is now supported.
|
||
|
|
||
|
step : int, default None
|
||
|
|
||
|
.. versionadded:: 1.5.0
|
||
|
|
||
|
Evaluate the window at every ``step`` result, equivalent to slicing as
|
||
|
``[::step]``. ``window`` must be an integer. Using a step argument other
|
||
|
than None or 1 will produce a result with a different shape than the input.
|
||
|
|
||
|
method : str {'single', 'table'}, default 'single'
|
||
|
|
||
|
.. versionadded:: 1.3.0
|
||
|
|
||
|
Execute the rolling operation per single column or row (``'single'``)
|
||
|
or over the entire object (``'table'``).
|
||
|
|
||
|
This argument is only implemented when specifying ``engine='numba'``
|
||
|
in the method call.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
``Window`` subclass if a ``win_type`` is passed
|
||
|
|
||
|
``Rolling`` subclass if ``win_type`` is not passed
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
expanding : Provides expanding transformations.
|
||
|
ewm : Provides exponential weighted functions.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
See :ref:`Windowing Operations <window.generic>` for further usage details
|
||
|
and examples.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
|
||
|
>>> df
|
||
|
B
|
||
|
0 0.0
|
||
|
1 1.0
|
||
|
2 2.0
|
||
|
3 NaN
|
||
|
4 4.0
|
||
|
|
||
|
**window**
|
||
|
|
||
|
Rolling sum with a window length of 2 observations.
|
||
|
|
||
|
>>> df.rolling(2).sum()
|
||
|
B
|
||
|
0 NaN
|
||
|
1 1.0
|
||
|
2 3.0
|
||
|
3 NaN
|
||
|
4 NaN
|
||
|
|
||
|
Rolling sum with a window span of 2 seconds.
|
||
|
|
||
|
>>> df_time = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
|
||
|
... index = [pd.Timestamp('20130101 09:00:00'),
|
||
|
... pd.Timestamp('20130101 09:00:02'),
|
||
|
... pd.Timestamp('20130101 09:00:03'),
|
||
|
... pd.Timestamp('20130101 09:00:05'),
|
||
|
... pd.Timestamp('20130101 09:00:06')])
|
||
|
|
||
|
>>> df_time
|
||
|
B
|
||
|
2013-01-01 09:00:00 0.0
|
||
|
2013-01-01 09:00:02 1.0
|
||
|
2013-01-01 09:00:03 2.0
|
||
|
2013-01-01 09:00:05 NaN
|
||
|
2013-01-01 09:00:06 4.0
|
||
|
|
||
|
>>> df_time.rolling('2s').sum()
|
||
|
B
|
||
|
2013-01-01 09:00:00 0.0
|
||
|
2013-01-01 09:00:02 1.0
|
||
|
2013-01-01 09:00:03 3.0
|
||
|
2013-01-01 09:00:05 NaN
|
||
|
2013-01-01 09:00:06 4.0
|
||
|
|
||
|
Rolling sum with forward looking windows with 2 observations.
|
||
|
|
||
|
>>> indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=2)
|
||
|
>>> df.rolling(window=indexer, min_periods=1).sum()
|
||
|
B
|
||
|
0 1.0
|
||
|
1 3.0
|
||
|
2 2.0
|
||
|
3 4.0
|
||
|
4 4.0
|
||
|
|
||
|
**min_periods**
|
||
|
|
||
|
Rolling sum with a window length of 2 observations, but only needs a minimum of 1
|
||
|
observation to calculate a value.
|
||
|
|
||
|
>>> df.rolling(2, min_periods=1).sum()
|
||
|
B
|
||
|
0 0.0
|
||
|
1 1.0
|
||
|
2 3.0
|
||
|
3 2.0
|
||
|
4 4.0
|
||
|
|
||
|
**center**
|
||
|
|
||
|
Rolling sum with the result assigned to the center of the window index.
|
||
|
|
||
|
>>> df.rolling(3, min_periods=1, center=True).sum()
|
||
|
B
|
||
|
0 1.0
|
||
|
1 3.0
|
||
|
2 3.0
|
||
|
3 6.0
|
||
|
4 4.0
|
||
|
|
||
|
>>> df.rolling(3, min_periods=1, center=False).sum()
|
||
|
B
|
||
|
0 0.0
|
||
|
1 1.0
|
||
|
2 3.0
|
||
|
3 3.0
|
||
|
4 6.0
|
||
|
|
||
|
**step**
|
||
|
|
||
|
Rolling sum with a window length of 2 observations, minimum of 1 observation to
|
||
|
calculate a value, and a step of 2.
|
||
|
|
||
|
>>> df.rolling(2, min_periods=1, step=2).sum()
|
||
|
B
|
||
|
0 0.0
|
||
|
2 3.0
|
||
|
4 4.0
|
||
|
|
||
|
**win_type**
|
||
|
|
||
|
Rolling sum with a window length of 2, using the Scipy ``'gaussian'``
|
||
|
window type. ``std`` is required in the aggregation function.
|
||
|
|
||
|
>>> df.rolling(2, win_type='gaussian').sum(std=3)
|
||
|
B
|
||
|
0 NaN
|
||
|
1 0.986207
|
||
|
2 2.958621
|
||
|
3 NaN
|
||
|
4 NaN
|
||
|
|
||
|
**on**
|
||
|
|
||
|
Rolling sum with a window length of 2 days.
|
||
|
|
||
|
>>> df = pd.DataFrame({
|
||
|
... 'A': [pd.to_datetime('2020-01-01'),
|
||
|
... pd.to_datetime('2020-01-01'),
|
||
|
... pd.to_datetime('2020-01-02'),],
|
||
|
... 'B': [1, 2, 3], },
|
||
|
... index=pd.date_range('2020', periods=3))
|
||
|
|
||
|
>>> df
|
||
|
A B
|
||
|
2020-01-01 2020-01-01 1
|
||
|
2020-01-02 2020-01-01 2
|
||
|
2020-01-03 2020-01-02 3
|
||
|
|
||
|
>>> df.rolling('2D', on='A').sum()
|
||
|
A B
|
||
|
2020-01-01 2020-01-01 1.0
|
||
|
2020-01-02 2020-01-01 3.0
|
||
|
2020-01-03 2020-01-02 6.0
|
||
|
"""
|
||
|
|
||
|
_attributes = [
|
||
|
"window",
|
||
|
"min_periods",
|
||
|
"center",
|
||
|
"win_type",
|
||
|
"axis",
|
||
|
"on",
|
||
|
"closed",
|
||
|
"step",
|
||
|
"method",
|
||
|
]
|
||
|
|
||
|
def _validate(self):
|
||
|
super()._validate()
|
||
|
|
||
|
if not isinstance(self.win_type, str):
|
||
|
raise ValueError(f"Invalid win_type {self.win_type}")
|
||
|
signal = import_optional_dependency(
|
||
|
"scipy.signal", extra="Scipy is required to generate window weight."
|
||
|
)
|
||
|
self._scipy_weight_generator = getattr(signal, self.win_type, None)
|
||
|
if self._scipy_weight_generator is None:
|
||
|
raise ValueError(f"Invalid win_type {self.win_type}")
|
||
|
|
||
|
if isinstance(self.window, BaseIndexer):
|
||
|
raise NotImplementedError(
|
||
|
"BaseIndexer subclasses not implemented with win_types."
|
||
|
)
|
||
|
if not is_integer(self.window) or self.window < 0:
|
||
|
raise ValueError("window must be an integer 0 or greater")
|
||
|
|
||
|
if self.method != "single":
|
||
|
raise NotImplementedError("'single' is the only supported method type.")
|
||
|
|
||
|
def _center_window(self, result: np.ndarray, offset: int) -> np.ndarray:
|
||
|
"""
|
||
|
Center the result in the window for weighted rolling aggregations.
|
||
|
"""
|
||
|
if offset > 0:
|
||
|
lead_indexer = [slice(offset, None)]
|
||
|
result = np.copy(result[tuple(lead_indexer)])
|
||
|
return result
|
||
|
|
||
|
def _apply(
|
||
|
self,
|
||
|
func: Callable[[np.ndarray, int, int], np.ndarray],
|
||
|
name: str,
|
||
|
numeric_only: bool = False,
|
||
|
numba_args: tuple[Any, ...] = (),
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
Rolling with weights statistical measure using supplied function.
|
||
|
|
||
|
Designed to be used with passed-in Cython array-based functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable function to apply
|
||
|
name : str,
|
||
|
numeric_only : bool, default False
|
||
|
Whether to only operate on bool, int, and float columns
|
||
|
numba_args : tuple
|
||
|
unused
|
||
|
**kwargs
|
||
|
additional arguments for scipy windows if necessary
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : type of input
|
||
|
"""
|
||
|
# "None" not callable [misc]
|
||
|
window = self._scipy_weight_generator( # type: ignore[misc]
|
||
|
self.window, **kwargs
|
||
|
)
|
||
|
offset = (len(window) - 1) // 2 if self.center else 0
|
||
|
|
||
|
def homogeneous_func(values: np.ndarray):
|
||
|
# calculation function
|
||
|
|
||
|
if values.size == 0:
|
||
|
return values.copy()
|
||
|
|
||
|
def calc(x):
|
||
|
additional_nans = np.array([np.nan] * offset)
|
||
|
x = np.concatenate((x, additional_nans))
|
||
|
return func(x, window, self.min_periods or len(window))
|
||
|
|
||
|
with np.errstate(all="ignore"):
|
||
|
# Our weighted aggregations return memoryviews
|
||
|
result = np.asarray(calc(values))
|
||
|
|
||
|
if self.center:
|
||
|
result = self._center_window(result, offset)
|
||
|
|
||
|
return result
|
||
|
|
||
|
return self._apply_blockwise(homogeneous_func, name, numeric_only)[:: self.step]
|
||
|
|
||
|
@doc(
|
||
|
_shared_docs["aggregate"],
|
||
|
see_also=dedent(
|
||
|
"""
|
||
|
See Also
|
||
|
--------
|
||
|
pandas.DataFrame.aggregate : Similar DataFrame method.
|
||
|
pandas.Series.aggregate : Similar Series method.
|
||
|
"""
|
||
|
),
|
||
|
examples=dedent(
|
||
|
"""
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
|
||
|
>>> df
|
||
|
A B C
|
||
|
0 1 4 7
|
||
|
1 2 5 8
|
||
|
2 3 6 9
|
||
|
|
||
|
>>> df.rolling(2, win_type="boxcar").agg("mean")
|
||
|
A B C
|
||
|
0 NaN NaN NaN
|
||
|
1 1.5 4.5 7.5
|
||
|
2 2.5 5.5 8.5
|
||
|
"""
|
||
|
),
|
||
|
klass="Series/DataFrame",
|
||
|
axis="",
|
||
|
)
|
||
|
def aggregate(self, func, *args, **kwargs):
|
||
|
result = ResamplerWindowApply(self, func, args=args, kwargs=kwargs).agg()
|
||
|
if result is None:
|
||
|
# these must apply directly
|
||
|
result = func(self)
|
||
|
|
||
|
return result
|
||
|
|
||
|
agg = aggregate
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
kwargs_scipy,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also[:-1],
|
||
|
window_method="rolling",
|
||
|
aggregation_description="weighted window sum",
|
||
|
agg_method="sum",
|
||
|
)
|
||
|
def sum(self, numeric_only: bool = False, **kwargs):
|
||
|
window_func = window_aggregations.roll_weighted_sum
|
||
|
# error: Argument 1 to "_apply" of "Window" has incompatible type
|
||
|
# "Callable[[ndarray, ndarray, int], ndarray]"; expected
|
||
|
# "Callable[[ndarray, int, int], ndarray]"
|
||
|
return self._apply(
|
||
|
window_func, # type: ignore[arg-type]
|
||
|
name="sum",
|
||
|
numeric_only=numeric_only,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
kwargs_scipy,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also[:-1],
|
||
|
window_method="rolling",
|
||
|
aggregation_description="weighted window mean",
|
||
|
agg_method="mean",
|
||
|
)
|
||
|
def mean(self, numeric_only: bool = False, **kwargs):
|
||
|
window_func = window_aggregations.roll_weighted_mean
|
||
|
# error: Argument 1 to "_apply" of "Window" has incompatible type
|
||
|
# "Callable[[ndarray, ndarray, int], ndarray]"; expected
|
||
|
# "Callable[[ndarray, int, int], ndarray]"
|
||
|
return self._apply(
|
||
|
window_func, # type: ignore[arg-type]
|
||
|
name="mean",
|
||
|
numeric_only=numeric_only,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
kwargs_scipy,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also[:-1],
|
||
|
window_method="rolling",
|
||
|
aggregation_description="weighted window variance",
|
||
|
agg_method="var",
|
||
|
)
|
||
|
def var(self, ddof: int = 1, numeric_only: bool = False, **kwargs):
|
||
|
window_func = partial(window_aggregations.roll_weighted_var, ddof=ddof)
|
||
|
kwargs.pop("name", None)
|
||
|
return self._apply(window_func, name="var", numeric_only=numeric_only, **kwargs)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
kwargs_scipy,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also[:-1],
|
||
|
window_method="rolling",
|
||
|
aggregation_description="weighted window standard deviation",
|
||
|
agg_method="std",
|
||
|
)
|
||
|
def std(self, ddof: int = 1, numeric_only: bool = False, **kwargs):
|
||
|
return zsqrt(
|
||
|
self.var(ddof=ddof, name="std", numeric_only=numeric_only, **kwargs)
|
||
|
)
|
||
|
|
||
|
|
||
|
class RollingAndExpandingMixin(BaseWindow):
|
||
|
def count(self, numeric_only: bool = False):
|
||
|
window_func = window_aggregations.roll_sum
|
||
|
return self._apply(window_func, name="count", numeric_only=numeric_only)
|
||
|
|
||
|
def apply(
|
||
|
self,
|
||
|
func: Callable[..., Any],
|
||
|
raw: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
args: tuple[Any, ...] | None = None,
|
||
|
kwargs: dict[str, Any] | None = None,
|
||
|
):
|
||
|
if args is None:
|
||
|
args = ()
|
||
|
if kwargs is None:
|
||
|
kwargs = {}
|
||
|
|
||
|
if not is_bool(raw):
|
||
|
raise ValueError("raw parameter must be `True` or `False`")
|
||
|
|
||
|
numba_args: tuple[Any, ...] = ()
|
||
|
if maybe_use_numba(engine):
|
||
|
if raw is False:
|
||
|
raise ValueError("raw must be `True` when using the numba engine")
|
||
|
numba_args = args
|
||
|
if self.method == "single":
|
||
|
apply_func = generate_numba_apply_func(
|
||
|
func, **get_jit_arguments(engine_kwargs, kwargs)
|
||
|
)
|
||
|
else:
|
||
|
apply_func = generate_numba_table_func(
|
||
|
func, **get_jit_arguments(engine_kwargs, kwargs)
|
||
|
)
|
||
|
elif engine in ("cython", None):
|
||
|
if engine_kwargs is not None:
|
||
|
raise ValueError("cython engine does not accept engine_kwargs")
|
||
|
apply_func = self._generate_cython_apply_func(args, kwargs, raw, func)
|
||
|
else:
|
||
|
raise ValueError("engine must be either 'numba' or 'cython'")
|
||
|
|
||
|
return self._apply(
|
||
|
apply_func,
|
||
|
name="apply",
|
||
|
numba_args=numba_args,
|
||
|
)
|
||
|
|
||
|
def _generate_cython_apply_func(
|
||
|
self,
|
||
|
args: tuple[Any, ...],
|
||
|
kwargs: dict[str, Any],
|
||
|
raw: bool,
|
||
|
function: Callable[..., Any],
|
||
|
) -> Callable[[np.ndarray, np.ndarray, np.ndarray, int], np.ndarray]:
|
||
|
from pandas import Series
|
||
|
|
||
|
window_func = partial(
|
||
|
window_aggregations.roll_apply,
|
||
|
args=args,
|
||
|
kwargs=kwargs,
|
||
|
raw=raw,
|
||
|
function=function,
|
||
|
)
|
||
|
|
||
|
def apply_func(values, begin, end, min_periods, raw=raw):
|
||
|
if not raw:
|
||
|
# GH 45912
|
||
|
values = Series(values, index=self._on, copy=False)
|
||
|
return window_func(values, begin, end, min_periods)
|
||
|
|
||
|
return apply_func
|
||
|
|
||
|
def sum(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
if maybe_use_numba(engine):
|
||
|
if self.method == "table":
|
||
|
func = generate_manual_numpy_nan_agg_with_axis(np.nansum)
|
||
|
return self.apply(
|
||
|
func,
|
||
|
raw=True,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
else:
|
||
|
from pandas.core._numba.kernels import sliding_sum
|
||
|
|
||
|
return self._numba_apply(sliding_sum, engine_kwargs)
|
||
|
window_func = window_aggregations.roll_sum
|
||
|
return self._apply(window_func, name="sum", numeric_only=numeric_only)
|
||
|
|
||
|
def max(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
if maybe_use_numba(engine):
|
||
|
if self.method == "table":
|
||
|
func = generate_manual_numpy_nan_agg_with_axis(np.nanmax)
|
||
|
return self.apply(
|
||
|
func,
|
||
|
raw=True,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
else:
|
||
|
from pandas.core._numba.kernels import sliding_min_max
|
||
|
|
||
|
return self._numba_apply(sliding_min_max, engine_kwargs, True)
|
||
|
window_func = window_aggregations.roll_max
|
||
|
return self._apply(window_func, name="max", numeric_only=numeric_only)
|
||
|
|
||
|
def min(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
if maybe_use_numba(engine):
|
||
|
if self.method == "table":
|
||
|
func = generate_manual_numpy_nan_agg_with_axis(np.nanmin)
|
||
|
return self.apply(
|
||
|
func,
|
||
|
raw=True,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
else:
|
||
|
from pandas.core._numba.kernels import sliding_min_max
|
||
|
|
||
|
return self._numba_apply(sliding_min_max, engine_kwargs, False)
|
||
|
window_func = window_aggregations.roll_min
|
||
|
return self._apply(window_func, name="min", numeric_only=numeric_only)
|
||
|
|
||
|
def mean(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
if maybe_use_numba(engine):
|
||
|
if self.method == "table":
|
||
|
func = generate_manual_numpy_nan_agg_with_axis(np.nanmean)
|
||
|
return self.apply(
|
||
|
func,
|
||
|
raw=True,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
else:
|
||
|
from pandas.core._numba.kernels import sliding_mean
|
||
|
|
||
|
return self._numba_apply(sliding_mean, engine_kwargs)
|
||
|
window_func = window_aggregations.roll_mean
|
||
|
return self._apply(window_func, name="mean", numeric_only=numeric_only)
|
||
|
|
||
|
def median(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
if maybe_use_numba(engine):
|
||
|
if self.method == "table":
|
||
|
func = generate_manual_numpy_nan_agg_with_axis(np.nanmedian)
|
||
|
else:
|
||
|
func = np.nanmedian
|
||
|
|
||
|
return self.apply(
|
||
|
func,
|
||
|
raw=True,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
window_func = window_aggregations.roll_median_c
|
||
|
return self._apply(window_func, name="median", numeric_only=numeric_only)
|
||
|
|
||
|
def std(
|
||
|
self,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
if maybe_use_numba(engine):
|
||
|
if self.method == "table":
|
||
|
raise NotImplementedError("std not supported with method='table'")
|
||
|
from pandas.core._numba.kernels import sliding_var
|
||
|
|
||
|
return zsqrt(self._numba_apply(sliding_var, engine_kwargs, ddof))
|
||
|
window_func = window_aggregations.roll_var
|
||
|
|
||
|
def zsqrt_func(values, begin, end, min_periods):
|
||
|
return zsqrt(window_func(values, begin, end, min_periods, ddof=ddof))
|
||
|
|
||
|
return self._apply(
|
||
|
zsqrt_func,
|
||
|
name="std",
|
||
|
numeric_only=numeric_only,
|
||
|
)
|
||
|
|
||
|
def var(
|
||
|
self,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
if maybe_use_numba(engine):
|
||
|
if self.method == "table":
|
||
|
raise NotImplementedError("var not supported with method='table'")
|
||
|
from pandas.core._numba.kernels import sliding_var
|
||
|
|
||
|
return self._numba_apply(sliding_var, engine_kwargs, ddof)
|
||
|
window_func = partial(window_aggregations.roll_var, ddof=ddof)
|
||
|
return self._apply(
|
||
|
window_func,
|
||
|
name="var",
|
||
|
numeric_only=numeric_only,
|
||
|
)
|
||
|
|
||
|
def skew(self, numeric_only: bool = False):
|
||
|
window_func = window_aggregations.roll_skew
|
||
|
return self._apply(
|
||
|
window_func,
|
||
|
name="skew",
|
||
|
numeric_only=numeric_only,
|
||
|
)
|
||
|
|
||
|
def sem(self, ddof: int = 1, numeric_only: bool = False):
|
||
|
# Raise here so error message says sem instead of std
|
||
|
self._validate_numeric_only("sem", numeric_only)
|
||
|
return self.std(numeric_only=numeric_only) / (
|
||
|
self.count(numeric_only=numeric_only) - ddof
|
||
|
).pow(0.5)
|
||
|
|
||
|
def kurt(self, numeric_only: bool = False):
|
||
|
window_func = window_aggregations.roll_kurt
|
||
|
return self._apply(
|
||
|
window_func,
|
||
|
name="kurt",
|
||
|
numeric_only=numeric_only,
|
||
|
)
|
||
|
|
||
|
def quantile(
|
||
|
self,
|
||
|
quantile: float,
|
||
|
interpolation: QuantileInterpolation = "linear",
|
||
|
numeric_only: bool = False,
|
||
|
):
|
||
|
if quantile == 1.0:
|
||
|
window_func = window_aggregations.roll_max
|
||
|
elif quantile == 0.0:
|
||
|
window_func = window_aggregations.roll_min
|
||
|
else:
|
||
|
window_func = partial(
|
||
|
window_aggregations.roll_quantile,
|
||
|
quantile=quantile,
|
||
|
interpolation=interpolation,
|
||
|
)
|
||
|
|
||
|
return self._apply(window_func, name="quantile", numeric_only=numeric_only)
|
||
|
|
||
|
def rank(
|
||
|
self,
|
||
|
method: WindowingRankType = "average",
|
||
|
ascending: bool = True,
|
||
|
pct: bool = False,
|
||
|
numeric_only: bool = False,
|
||
|
):
|
||
|
window_func = partial(
|
||
|
window_aggregations.roll_rank,
|
||
|
method=method,
|
||
|
ascending=ascending,
|
||
|
percentile=pct,
|
||
|
)
|
||
|
|
||
|
return self._apply(window_func, name="rank", numeric_only=numeric_only)
|
||
|
|
||
|
def cov(
|
||
|
self,
|
||
|
other: DataFrame | Series | None = None,
|
||
|
pairwise: bool | None = None,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: bool = False,
|
||
|
):
|
||
|
if self.step is not None:
|
||
|
raise NotImplementedError("step not implemented for cov")
|
||
|
self._validate_numeric_only("cov", numeric_only)
|
||
|
|
||
|
from pandas import Series
|
||
|
|
||
|
def cov_func(x, y):
|
||
|
x_array = self._prep_values(x)
|
||
|
y_array = self._prep_values(y)
|
||
|
window_indexer = self._get_window_indexer()
|
||
|
min_periods = (
|
||
|
self.min_periods
|
||
|
if self.min_periods is not None
|
||
|
else window_indexer.window_size
|
||
|
)
|
||
|
start, end = window_indexer.get_window_bounds(
|
||
|
num_values=len(x_array),
|
||
|
min_periods=min_periods,
|
||
|
center=self.center,
|
||
|
closed=self.closed,
|
||
|
step=self.step,
|
||
|
)
|
||
|
self._check_window_bounds(start, end, len(x_array))
|
||
|
|
||
|
with np.errstate(all="ignore"):
|
||
|
mean_x_y = window_aggregations.roll_mean(
|
||
|
x_array * y_array, start, end, min_periods
|
||
|
)
|
||
|
mean_x = window_aggregations.roll_mean(x_array, start, end, min_periods)
|
||
|
mean_y = window_aggregations.roll_mean(y_array, start, end, min_periods)
|
||
|
count_x_y = window_aggregations.roll_sum(
|
||
|
notna(x_array + y_array).astype(np.float64), start, end, 0
|
||
|
)
|
||
|
result = (mean_x_y - mean_x * mean_y) * (count_x_y / (count_x_y - ddof))
|
||
|
return Series(result, index=x.index, name=x.name, copy=False)
|
||
|
|
||
|
return self._apply_pairwise(
|
||
|
self._selected_obj, other, pairwise, cov_func, numeric_only
|
||
|
)
|
||
|
|
||
|
def corr(
|
||
|
self,
|
||
|
other: DataFrame | Series | None = None,
|
||
|
pairwise: bool | None = None,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: bool = False,
|
||
|
):
|
||
|
if self.step is not None:
|
||
|
raise NotImplementedError("step not implemented for corr")
|
||
|
self._validate_numeric_only("corr", numeric_only)
|
||
|
|
||
|
from pandas import Series
|
||
|
|
||
|
def corr_func(x, y):
|
||
|
x_array = self._prep_values(x)
|
||
|
y_array = self._prep_values(y)
|
||
|
window_indexer = self._get_window_indexer()
|
||
|
min_periods = (
|
||
|
self.min_periods
|
||
|
if self.min_periods is not None
|
||
|
else window_indexer.window_size
|
||
|
)
|
||
|
start, end = window_indexer.get_window_bounds(
|
||
|
num_values=len(x_array),
|
||
|
min_periods=min_periods,
|
||
|
center=self.center,
|
||
|
closed=self.closed,
|
||
|
step=self.step,
|
||
|
)
|
||
|
self._check_window_bounds(start, end, len(x_array))
|
||
|
|
||
|
with np.errstate(all="ignore"):
|
||
|
mean_x_y = window_aggregations.roll_mean(
|
||
|
x_array * y_array, start, end, min_periods
|
||
|
)
|
||
|
mean_x = window_aggregations.roll_mean(x_array, start, end, min_periods)
|
||
|
mean_y = window_aggregations.roll_mean(y_array, start, end, min_periods)
|
||
|
count_x_y = window_aggregations.roll_sum(
|
||
|
notna(x_array + y_array).astype(np.float64), start, end, 0
|
||
|
)
|
||
|
x_var = window_aggregations.roll_var(
|
||
|
x_array, start, end, min_periods, ddof
|
||
|
)
|
||
|
y_var = window_aggregations.roll_var(
|
||
|
y_array, start, end, min_periods, ddof
|
||
|
)
|
||
|
numerator = (mean_x_y - mean_x * mean_y) * (
|
||
|
count_x_y / (count_x_y - ddof)
|
||
|
)
|
||
|
denominator = (x_var * y_var) ** 0.5
|
||
|
result = numerator / denominator
|
||
|
return Series(result, index=x.index, name=x.name, copy=False)
|
||
|
|
||
|
return self._apply_pairwise(
|
||
|
self._selected_obj, other, pairwise, corr_func, numeric_only
|
||
|
)
|
||
|
|
||
|
|
||
|
class Rolling(RollingAndExpandingMixin):
|
||
|
_attributes: list[str] = [
|
||
|
"window",
|
||
|
"min_periods",
|
||
|
"center",
|
||
|
"win_type",
|
||
|
"axis",
|
||
|
"on",
|
||
|
"closed",
|
||
|
"step",
|
||
|
"method",
|
||
|
]
|
||
|
|
||
|
def _validate(self):
|
||
|
super()._validate()
|
||
|
|
||
|
# we allow rolling on a datetimelike index
|
||
|
if (
|
||
|
self.obj.empty
|
||
|
or isinstance(self._on, (DatetimeIndex, TimedeltaIndex, PeriodIndex))
|
||
|
) and isinstance(self.window, (str, BaseOffset, timedelta)):
|
||
|
self._validate_datetimelike_monotonic()
|
||
|
|
||
|
# this will raise ValueError on non-fixed freqs
|
||
|
try:
|
||
|
freq = to_offset(self.window)
|
||
|
except (TypeError, ValueError) as err:
|
||
|
raise ValueError(
|
||
|
f"passed window {self.window} is not "
|
||
|
"compatible with a datetimelike index"
|
||
|
) from err
|
||
|
if isinstance(self._on, PeriodIndex):
|
||
|
# error: Incompatible types in assignment (expression has type
|
||
|
# "float", variable has type "Optional[int]")
|
||
|
self._win_freq_i8 = freq.nanos / ( # type: ignore[assignment]
|
||
|
self._on.freq.nanos / self._on.freq.n
|
||
|
)
|
||
|
else:
|
||
|
self._win_freq_i8 = freq.nanos
|
||
|
|
||
|
# min_periods must be an integer
|
||
|
if self.min_periods is None:
|
||
|
self.min_periods = 1
|
||
|
|
||
|
if self.step is not None:
|
||
|
raise NotImplementedError(
|
||
|
"step is not supported with frequency windows"
|
||
|
)
|
||
|
|
||
|
elif isinstance(self.window, BaseIndexer):
|
||
|
# Passed BaseIndexer subclass should handle all other rolling kwargs
|
||
|
pass
|
||
|
elif not is_integer(self.window) or self.window < 0:
|
||
|
raise ValueError("window must be an integer 0 or greater")
|
||
|
|
||
|
def _validate_datetimelike_monotonic(self) -> None:
|
||
|
"""
|
||
|
Validate self._on is monotonic (increasing or decreasing) and has
|
||
|
no NaT values for frequency windows.
|
||
|
"""
|
||
|
if self._on.hasnans:
|
||
|
self._raise_monotonic_error("values must not have NaT")
|
||
|
if not (self._on.is_monotonic_increasing or self._on.is_monotonic_decreasing):
|
||
|
self._raise_monotonic_error("values must be monotonic")
|
||
|
|
||
|
def _raise_monotonic_error(self, msg: str):
|
||
|
on = self.on
|
||
|
if on is None:
|
||
|
if self.axis == 0:
|
||
|
on = "index"
|
||
|
else:
|
||
|
on = "column"
|
||
|
raise ValueError(f"{on} {msg}")
|
||
|
|
||
|
@doc(
|
||
|
_shared_docs["aggregate"],
|
||
|
see_also=dedent(
|
||
|
"""
|
||
|
See Also
|
||
|
--------
|
||
|
pandas.Series.rolling : Calling object with Series data.
|
||
|
pandas.DataFrame.rolling : Calling object with DataFrame data.
|
||
|
"""
|
||
|
),
|
||
|
examples=dedent(
|
||
|
"""
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
|
||
|
>>> df
|
||
|
A B C
|
||
|
0 1 4 7
|
||
|
1 2 5 8
|
||
|
2 3 6 9
|
||
|
|
||
|
>>> df.rolling(2).sum()
|
||
|
A B C
|
||
|
0 NaN NaN NaN
|
||
|
1 3.0 9.0 15.0
|
||
|
2 5.0 11.0 17.0
|
||
|
|
||
|
>>> df.rolling(2).agg({"A": "sum", "B": "min"})
|
||
|
A B
|
||
|
0 NaN NaN
|
||
|
1 3.0 4.0
|
||
|
2 5.0 5.0
|
||
|
"""
|
||
|
),
|
||
|
klass="Series/Dataframe",
|
||
|
axis="",
|
||
|
)
|
||
|
def aggregate(self, func, *args, **kwargs):
|
||
|
return super().aggregate(func, *args, **kwargs)
|
||
|
|
||
|
agg = aggregate
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also,
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
>>> s = pd.Series([2, 3, np.nan, 10])
|
||
|
>>> s.rolling(2).count()
|
||
|
0 NaN
|
||
|
1 2.0
|
||
|
2 1.0
|
||
|
3 1.0
|
||
|
dtype: float64
|
||
|
>>> s.rolling(3).count()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 2.0
|
||
|
3 2.0
|
||
|
dtype: float64
|
||
|
>>> s.rolling(4).count()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 NaN
|
||
|
3 3.0
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="count of non NaN observations",
|
||
|
agg_method="count",
|
||
|
)
|
||
|
def count(self, numeric_only: bool = False):
|
||
|
return super().count(numeric_only)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
window_apply_parameters,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also[:-1],
|
||
|
window_method="rolling",
|
||
|
aggregation_description="custom aggregation function",
|
||
|
agg_method="apply",
|
||
|
)
|
||
|
def apply(
|
||
|
self,
|
||
|
func: Callable[..., Any],
|
||
|
raw: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
args: tuple[Any, ...] | None = None,
|
||
|
kwargs: dict[str, Any] | None = None,
|
||
|
):
|
||
|
return super().apply(
|
||
|
func,
|
||
|
raw=raw,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
args=args,
|
||
|
kwargs=kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
window_agg_numba_parameters(),
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
numba_notes,
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
>>> s = pd.Series([1, 2, 3, 4, 5])
|
||
|
>>> s
|
||
|
0 1
|
||
|
1 2
|
||
|
2 3
|
||
|
3 4
|
||
|
4 5
|
||
|
dtype: int64
|
||
|
|
||
|
>>> s.rolling(3).sum()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 6.0
|
||
|
3 9.0
|
||
|
4 12.0
|
||
|
dtype: float64
|
||
|
|
||
|
>>> s.rolling(3, center=True).sum()
|
||
|
0 NaN
|
||
|
1 6.0
|
||
|
2 9.0
|
||
|
3 12.0
|
||
|
4 NaN
|
||
|
dtype: float64
|
||
|
|
||
|
For DataFrame, each sum is computed column-wise.
|
||
|
|
||
|
>>> df = pd.DataFrame({{"A": s, "B": s ** 2}})
|
||
|
>>> df
|
||
|
A B
|
||
|
0 1 1
|
||
|
1 2 4
|
||
|
2 3 9
|
||
|
3 4 16
|
||
|
4 5 25
|
||
|
|
||
|
>>> df.rolling(3).sum()
|
||
|
A B
|
||
|
0 NaN NaN
|
||
|
1 NaN NaN
|
||
|
2 6.0 14.0
|
||
|
3 9.0 29.0
|
||
|
4 12.0 50.0
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="sum",
|
||
|
agg_method="sum",
|
||
|
)
|
||
|
def sum(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
return super().sum(
|
||
|
numeric_only=numeric_only,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
window_agg_numba_parameters(),
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
numba_notes[:-1],
|
||
|
window_method="rolling",
|
||
|
aggregation_description="maximum",
|
||
|
agg_method="max",
|
||
|
)
|
||
|
def max(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
*args,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
return super().max(
|
||
|
numeric_only=numeric_only,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
window_agg_numba_parameters(),
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
numba_notes,
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
Performing a rolling minimum with a window size of 3.
|
||
|
|
||
|
>>> s = pd.Series([4, 3, 5, 2, 6])
|
||
|
>>> s.rolling(3).min()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 3.0
|
||
|
3 2.0
|
||
|
4 2.0
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="minimum",
|
||
|
agg_method="min",
|
||
|
)
|
||
|
def min(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
return super().min(
|
||
|
numeric_only=numeric_only,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
window_agg_numba_parameters(),
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
numba_notes,
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
The below examples will show rolling mean calculations with window sizes of
|
||
|
two and three, respectively.
|
||
|
|
||
|
>>> s = pd.Series([1, 2, 3, 4])
|
||
|
>>> s.rolling(2).mean()
|
||
|
0 NaN
|
||
|
1 1.5
|
||
|
2 2.5
|
||
|
3 3.5
|
||
|
dtype: float64
|
||
|
|
||
|
>>> s.rolling(3).mean()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 2.0
|
||
|
3 3.0
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="mean",
|
||
|
agg_method="mean",
|
||
|
)
|
||
|
def mean(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
return super().mean(
|
||
|
numeric_only=numeric_only,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
window_agg_numba_parameters(),
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
numba_notes,
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
Compute the rolling median of a series with a window size of 3.
|
||
|
|
||
|
>>> s = pd.Series([0, 1, 2, 3, 4])
|
||
|
>>> s.rolling(3).median()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 1.0
|
||
|
3 2.0
|
||
|
4 3.0
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="median",
|
||
|
agg_method="median",
|
||
|
)
|
||
|
def median(
|
||
|
self,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
return super().median(
|
||
|
numeric_only=numeric_only,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
dedent(
|
||
|
"""
|
||
|
ddof : int, default 1
|
||
|
Delta Degrees of Freedom. The divisor used in calculations
|
||
|
is ``N - ddof``, where ``N`` represents the number of elements.
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
kwargs_numeric_only,
|
||
|
window_agg_numba_parameters("1.4"),
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
"numpy.std : Equivalent method for NumPy array.\n",
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
dedent(
|
||
|
"""
|
||
|
The default ``ddof`` of 1 used in :meth:`Series.std` is different
|
||
|
than the default ``ddof`` of 0 in :func:`numpy.std`.
|
||
|
|
||
|
A minimum of one period is required for the rolling calculation.\n
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
>>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])
|
||
|
>>> s.rolling(3).std()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 0.577350
|
||
|
3 1.000000
|
||
|
4 1.000000
|
||
|
5 1.154701
|
||
|
6 0.000000
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="standard deviation",
|
||
|
agg_method="std",
|
||
|
)
|
||
|
def std(
|
||
|
self,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
return super().std(
|
||
|
ddof=ddof,
|
||
|
numeric_only=numeric_only,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
dedent(
|
||
|
"""
|
||
|
ddof : int, default 1
|
||
|
Delta Degrees of Freedom. The divisor used in calculations
|
||
|
is ``N - ddof``, where ``N`` represents the number of elements.
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
kwargs_numeric_only,
|
||
|
window_agg_numba_parameters("1.4"),
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
"numpy.var : Equivalent method for NumPy array.\n",
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
dedent(
|
||
|
"""
|
||
|
The default ``ddof`` of 1 used in :meth:`Series.var` is different
|
||
|
than the default ``ddof`` of 0 in :func:`numpy.var`.
|
||
|
|
||
|
A minimum of one period is required for the rolling calculation.\n
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
>>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])
|
||
|
>>> s.rolling(3).var()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 0.333333
|
||
|
3 1.000000
|
||
|
4 1.000000
|
||
|
5 1.333333
|
||
|
6 0.000000
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="variance",
|
||
|
agg_method="var",
|
||
|
)
|
||
|
def var(
|
||
|
self,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: bool = False,
|
||
|
engine: str | None = None,
|
||
|
engine_kwargs: dict[str, bool] | None = None,
|
||
|
):
|
||
|
return super().var(
|
||
|
ddof=ddof,
|
||
|
numeric_only=numeric_only,
|
||
|
engine=engine,
|
||
|
engine_kwargs=engine_kwargs,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
"scipy.stats.skew : Third moment of a probability density.\n",
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
"A minimum of three periods is required for the rolling calculation.\n",
|
||
|
window_method="rolling",
|
||
|
aggregation_description="unbiased skewness",
|
||
|
agg_method="skew",
|
||
|
)
|
||
|
def skew(self, numeric_only: bool = False):
|
||
|
return super().skew(numeric_only=numeric_only)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
dedent(
|
||
|
"""
|
||
|
ddof : int, default 1
|
||
|
Delta Degrees of Freedom. The divisor used in calculations
|
||
|
is ``N - ddof``, where ``N`` represents the number of elements.
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
kwargs_numeric_only,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
"A minimum of one period is required for the calculation.\n\n",
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
>>> s = pd.Series([0, 1, 2, 3])
|
||
|
>>> s.rolling(2, min_periods=1).sem()
|
||
|
0 NaN
|
||
|
1 0.707107
|
||
|
2 0.707107
|
||
|
3 0.707107
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="standard error of mean",
|
||
|
agg_method="sem",
|
||
|
)
|
||
|
def sem(self, ddof: int = 1, numeric_only: bool = False):
|
||
|
# Raise here so error message says sem instead of std
|
||
|
self._validate_numeric_only("sem", numeric_only)
|
||
|
return self.std(numeric_only=numeric_only) / (
|
||
|
self.count(numeric_only) - ddof
|
||
|
).pow(0.5)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
kwargs_numeric_only,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
"scipy.stats.kurtosis : Reference SciPy method.\n",
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
"A minimum of four periods is required for the calculation.\n\n",
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
The example below will show a rolling calculation with a window size of
|
||
|
four matching the equivalent function call using `scipy.stats`.
|
||
|
|
||
|
>>> arr = [1, 2, 3, 4, 999]
|
||
|
>>> import scipy.stats
|
||
|
>>> print(f"{{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}}")
|
||
|
-1.200000
|
||
|
>>> print(f"{{scipy.stats.kurtosis(arr[1:], bias=False):.6f}}")
|
||
|
3.999946
|
||
|
>>> s = pd.Series(arr)
|
||
|
>>> s.rolling(4).kurt()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 NaN
|
||
|
3 -1.200000
|
||
|
4 3.999946
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="Fisher's definition of kurtosis without bias",
|
||
|
agg_method="kurt",
|
||
|
)
|
||
|
def kurt(self, numeric_only: bool = False):
|
||
|
return super().kurt(numeric_only=numeric_only)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
dedent(
|
||
|
"""
|
||
|
quantile : float
|
||
|
Quantile to compute. 0 <= quantile <= 1.
|
||
|
interpolation : {{'linear', 'lower', 'higher', 'midpoint', 'nearest'}}
|
||
|
This optional parameter specifies the interpolation method to use,
|
||
|
when the desired quantile lies between two data points `i` and `j`:
|
||
|
|
||
|
* linear: `i + (j - i) * fraction`, where `fraction` is the
|
||
|
fractional part of the index surrounded by `i` and `j`.
|
||
|
* lower: `i`.
|
||
|
* higher: `j`.
|
||
|
* nearest: `i` or `j` whichever is nearest.
|
||
|
* midpoint: (`i` + `j`) / 2.
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
kwargs_numeric_only,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also,
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
>>> s = pd.Series([1, 2, 3, 4])
|
||
|
>>> s.rolling(2).quantile(.4, interpolation='lower')
|
||
|
0 NaN
|
||
|
1 1.0
|
||
|
2 2.0
|
||
|
3 3.0
|
||
|
dtype: float64
|
||
|
|
||
|
>>> s.rolling(2).quantile(.4, interpolation='midpoint')
|
||
|
0 NaN
|
||
|
1 1.5
|
||
|
2 2.5
|
||
|
3 3.5
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="quantile",
|
||
|
agg_method="quantile",
|
||
|
)
|
||
|
def quantile(
|
||
|
self,
|
||
|
quantile: float,
|
||
|
interpolation: QuantileInterpolation = "linear",
|
||
|
numeric_only: bool = False,
|
||
|
):
|
||
|
return super().quantile(
|
||
|
quantile=quantile,
|
||
|
interpolation=interpolation,
|
||
|
numeric_only=numeric_only,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
".. versionadded:: 1.4.0 \n\n",
|
||
|
create_section_header("Parameters"),
|
||
|
dedent(
|
||
|
"""
|
||
|
method : {{'average', 'min', 'max'}}, default 'average'
|
||
|
How to rank the group of records that have the same value (i.e. ties):
|
||
|
|
||
|
* average: average rank of the group
|
||
|
* min: lowest rank in the group
|
||
|
* max: highest rank in the group
|
||
|
|
||
|
ascending : bool, default True
|
||
|
Whether or not the elements should be ranked in ascending order.
|
||
|
pct : bool, default False
|
||
|
Whether or not to display the returned rankings in percentile
|
||
|
form.
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
kwargs_numeric_only,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also,
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
>>> s = pd.Series([1, 4, 2, 3, 5, 3])
|
||
|
>>> s.rolling(3).rank()
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 2.0
|
||
|
3 2.0
|
||
|
4 3.0
|
||
|
5 1.5
|
||
|
dtype: float64
|
||
|
|
||
|
>>> s.rolling(3).rank(method="max")
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 2.0
|
||
|
3 2.0
|
||
|
4 3.0
|
||
|
5 2.0
|
||
|
dtype: float64
|
||
|
|
||
|
>>> s.rolling(3).rank(method="min")
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 2.0
|
||
|
3 2.0
|
||
|
4 3.0
|
||
|
5 1.0
|
||
|
dtype: float64
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="rank",
|
||
|
agg_method="rank",
|
||
|
)
|
||
|
def rank(
|
||
|
self,
|
||
|
method: WindowingRankType = "average",
|
||
|
ascending: bool = True,
|
||
|
pct: bool = False,
|
||
|
numeric_only: bool = False,
|
||
|
):
|
||
|
return super().rank(
|
||
|
method=method,
|
||
|
ascending=ascending,
|
||
|
pct=pct,
|
||
|
numeric_only=numeric_only,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
dedent(
|
||
|
"""
|
||
|
other : Series or DataFrame, optional
|
||
|
If not supplied then will default to self and produce pairwise
|
||
|
output.
|
||
|
pairwise : bool, default None
|
||
|
If False then only matching columns between self and other will be
|
||
|
used and the output will be a DataFrame.
|
||
|
If True then all pairwise combinations will be calculated and the
|
||
|
output will be a MultiIndexed DataFrame in the case of DataFrame
|
||
|
inputs. In the case of missing elements, only complete pairwise
|
||
|
observations will be used.
|
||
|
ddof : int, default 1
|
||
|
Delta Degrees of Freedom. The divisor used in calculations
|
||
|
is ``N - ddof``, where ``N`` represents the number of elements.
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
kwargs_numeric_only,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
template_see_also[:-1],
|
||
|
window_method="rolling",
|
||
|
aggregation_description="sample covariance",
|
||
|
agg_method="cov",
|
||
|
)
|
||
|
def cov(
|
||
|
self,
|
||
|
other: DataFrame | Series | None = None,
|
||
|
pairwise: bool | None = None,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: bool = False,
|
||
|
):
|
||
|
return super().cov(
|
||
|
other=other,
|
||
|
pairwise=pairwise,
|
||
|
ddof=ddof,
|
||
|
numeric_only=numeric_only,
|
||
|
)
|
||
|
|
||
|
@doc(
|
||
|
template_header,
|
||
|
create_section_header("Parameters"),
|
||
|
dedent(
|
||
|
"""
|
||
|
other : Series or DataFrame, optional
|
||
|
If not supplied then will default to self and produce pairwise
|
||
|
output.
|
||
|
pairwise : bool, default None
|
||
|
If False then only matching columns between self and other will be
|
||
|
used and the output will be a DataFrame.
|
||
|
If True then all pairwise combinations will be calculated and the
|
||
|
output will be a MultiIndexed DataFrame in the case of DataFrame
|
||
|
inputs. In the case of missing elements, only complete pairwise
|
||
|
observations will be used.
|
||
|
ddof : int, default 1
|
||
|
Delta Degrees of Freedom. The divisor used in calculations
|
||
|
is ``N - ddof``, where ``N`` represents the number of elements.
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
kwargs_numeric_only,
|
||
|
create_section_header("Returns"),
|
||
|
template_returns,
|
||
|
create_section_header("See Also"),
|
||
|
dedent(
|
||
|
"""
|
||
|
cov : Similar method to calculate covariance.
|
||
|
numpy.corrcoef : NumPy Pearson's correlation calculation.
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
template_see_also,
|
||
|
create_section_header("Notes"),
|
||
|
dedent(
|
||
|
"""
|
||
|
This function uses Pearson's definition of correlation
|
||
|
(https://en.wikipedia.org/wiki/Pearson_correlation_coefficient).
|
||
|
|
||
|
When `other` is not specified, the output will be self correlation (e.g.
|
||
|
all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise`
|
||
|
set to `True`.
|
||
|
|
||
|
Function will return ``NaN`` for correlations of equal valued sequences;
|
||
|
this is the result of a 0/0 division error.
|
||
|
|
||
|
When `pairwise` is set to `False`, only matching columns between `self` and
|
||
|
`other` will be used.
|
||
|
|
||
|
When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame
|
||
|
with the original index on the first level, and the `other` DataFrame
|
||
|
columns on the second level.
|
||
|
|
||
|
In the case of missing elements, only complete pairwise observations
|
||
|
will be used.\n
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
create_section_header("Examples"),
|
||
|
dedent(
|
||
|
"""
|
||
|
The below example shows a rolling calculation with a window size of
|
||
|
four matching the equivalent function call using :meth:`numpy.corrcoef`.
|
||
|
|
||
|
>>> v1 = [3, 3, 3, 5, 8]
|
||
|
>>> v2 = [3, 4, 4, 4, 8]
|
||
|
>>> # numpy returns a 2X2 array, the correlation coefficient
|
||
|
>>> # is the number at entry [0][1]
|
||
|
>>> print(f"{{np.corrcoef(v1[:-1], v2[:-1])[0][1]:.6f}}")
|
||
|
0.333333
|
||
|
>>> print(f"{{np.corrcoef(v1[1:], v2[1:])[0][1]:.6f}}")
|
||
|
0.916949
|
||
|
>>> s1 = pd.Series(v1)
|
||
|
>>> s2 = pd.Series(v2)
|
||
|
>>> s1.rolling(4).corr(s2)
|
||
|
0 NaN
|
||
|
1 NaN
|
||
|
2 NaN
|
||
|
3 0.333333
|
||
|
4 0.916949
|
||
|
dtype: float64
|
||
|
|
||
|
The below example shows a similar rolling calculation on a
|
||
|
DataFrame using the pairwise option.
|
||
|
|
||
|
>>> matrix = np.array([[51., 35.], [49., 30.], [47., 32.],\
|
||
|
[46., 31.], [50., 36.]])
|
||
|
>>> print(np.corrcoef(matrix[:-1,0], matrix[:-1,1]).round(7))
|
||
|
[[1. 0.6263001]
|
||
|
[0.6263001 1. ]]
|
||
|
>>> print(np.corrcoef(matrix[1:,0], matrix[1:,1]).round(7))
|
||
|
[[1. 0.5553681]
|
||
|
[0.5553681 1. ]]
|
||
|
>>> df = pd.DataFrame(matrix, columns=['X','Y'])
|
||
|
>>> df
|
||
|
X Y
|
||
|
0 51.0 35.0
|
||
|
1 49.0 30.0
|
||
|
2 47.0 32.0
|
||
|
3 46.0 31.0
|
||
|
4 50.0 36.0
|
||
|
>>> df.rolling(4).corr(pairwise=True)
|
||
|
X Y
|
||
|
0 X NaN NaN
|
||
|
Y NaN NaN
|
||
|
1 X NaN NaN
|
||
|
Y NaN NaN
|
||
|
2 X NaN NaN
|
||
|
Y NaN NaN
|
||
|
3 X 1.000000 0.626300
|
||
|
Y 0.626300 1.000000
|
||
|
4 X 1.000000 0.555368
|
||
|
Y 0.555368 1.000000
|
||
|
"""
|
||
|
).replace("\n", "", 1),
|
||
|
window_method="rolling",
|
||
|
aggregation_description="correlation",
|
||
|
agg_method="corr",
|
||
|
)
|
||
|
def corr(
|
||
|
self,
|
||
|
other: DataFrame | Series | None = None,
|
||
|
pairwise: bool | None = None,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: bool = False,
|
||
|
):
|
||
|
return super().corr(
|
||
|
other=other,
|
||
|
pairwise=pairwise,
|
||
|
ddof=ddof,
|
||
|
numeric_only=numeric_only,
|
||
|
)
|
||
|
|
||
|
|
||
|
Rolling.__doc__ = Window.__doc__
|
||
|
|
||
|
|
||
|
class RollingGroupby(BaseWindowGroupby, Rolling):
|
||
|
"""
|
||
|
Provide a rolling groupby implementation.
|
||
|
"""
|
||
|
|
||
|
_attributes = Rolling._attributes + BaseWindowGroupby._attributes
|
||
|
|
||
|
def _get_window_indexer(self) -> GroupbyIndexer:
|
||
|
"""
|
||
|
Return an indexer class that will compute the window start and end bounds
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
GroupbyIndexer
|
||
|
"""
|
||
|
rolling_indexer: type[BaseIndexer]
|
||
|
indexer_kwargs: dict[str, Any] | None = None
|
||
|
index_array = self._index_array
|
||
|
if isinstance(self.window, BaseIndexer):
|
||
|
rolling_indexer = type(self.window)
|
||
|
indexer_kwargs = self.window.__dict__.copy()
|
||
|
assert isinstance(indexer_kwargs, dict) # for mypy
|
||
|
# We'll be using the index of each group later
|
||
|
indexer_kwargs.pop("index_array", None)
|
||
|
window = self.window
|
||
|
elif self._win_freq_i8 is not None:
|
||
|
rolling_indexer = VariableWindowIndexer
|
||
|
# error: Incompatible types in assignment (expression has type
|
||
|
# "int", variable has type "BaseIndexer")
|
||
|
window = self._win_freq_i8 # type: ignore[assignment]
|
||
|
else:
|
||
|
rolling_indexer = FixedWindowIndexer
|
||
|
window = self.window
|
||
|
window_indexer = GroupbyIndexer(
|
||
|
index_array=index_array,
|
||
|
window_size=window,
|
||
|
groupby_indices=self._grouper.indices,
|
||
|
window_indexer=rolling_indexer,
|
||
|
indexer_kwargs=indexer_kwargs,
|
||
|
)
|
||
|
return window_indexer
|
||
|
|
||
|
def _validate_datetimelike_monotonic(self):
|
||
|
"""
|
||
|
Validate that each group in self._on is monotonic
|
||
|
"""
|
||
|
# GH 46061
|
||
|
if self._on.hasnans:
|
||
|
self._raise_monotonic_error("values must not have NaT")
|
||
|
for group_indices in self._grouper.indices.values():
|
||
|
group_on = self._on.take(group_indices)
|
||
|
if not (
|
||
|
group_on.is_monotonic_increasing or group_on.is_monotonic_decreasing
|
||
|
):
|
||
|
on = "index" if self.on is None else self.on
|
||
|
raise ValueError(
|
||
|
f"Each group within {on} must be monotonic. "
|
||
|
f"Sort the values in {on} first."
|
||
|
)
|