113 lines
3.8 KiB
Python
113 lines
3.8 KiB
Python
|
# pyright: reportMissingImports=false
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from pandas._typing import (
|
||
|
FilePath,
|
||
|
ReadBuffer,
|
||
|
Scalar,
|
||
|
StorageOptions,
|
||
|
)
|
||
|
from pandas.compat._optional import import_optional_dependency
|
||
|
from pandas.util._decorators import doc
|
||
|
|
||
|
from pandas.core.shared_docs import _shared_docs
|
||
|
|
||
|
from pandas.io.excel._base import BaseExcelReader
|
||
|
|
||
|
|
||
|
class PyxlsbReader(BaseExcelReader):
|
||
|
@doc(storage_options=_shared_docs["storage_options"])
|
||
|
def __init__(
|
||
|
self,
|
||
|
filepath_or_buffer: FilePath | ReadBuffer[bytes],
|
||
|
storage_options: StorageOptions = None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Reader using pyxlsb engine.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
filepath_or_buffer : str, path object, or Workbook
|
||
|
Object to be parsed.
|
||
|
{storage_options}
|
||
|
"""
|
||
|
import_optional_dependency("pyxlsb")
|
||
|
# This will call load_workbook on the filepath or buffer
|
||
|
# And set the result to the book-attribute
|
||
|
super().__init__(filepath_or_buffer, storage_options=storage_options)
|
||
|
|
||
|
@property
|
||
|
def _workbook_class(self):
|
||
|
from pyxlsb import Workbook
|
||
|
|
||
|
return Workbook
|
||
|
|
||
|
def load_workbook(self, filepath_or_buffer: FilePath | ReadBuffer[bytes]):
|
||
|
from pyxlsb import open_workbook
|
||
|
|
||
|
# TODO: hack in buffer capability
|
||
|
# This might need some modifications to the Pyxlsb library
|
||
|
# Actual work for opening it is in xlsbpackage.py, line 20-ish
|
||
|
|
||
|
return open_workbook(filepath_or_buffer)
|
||
|
|
||
|
@property
|
||
|
def sheet_names(self) -> list[str]:
|
||
|
return self.book.sheets
|
||
|
|
||
|
def get_sheet_by_name(self, name: str):
|
||
|
self.raise_if_bad_sheet_by_name(name)
|
||
|
return self.book.get_sheet(name)
|
||
|
|
||
|
def get_sheet_by_index(self, index: int):
|
||
|
self.raise_if_bad_sheet_by_index(index)
|
||
|
# pyxlsb sheets are indexed from 1 onwards
|
||
|
# There's a fix for this in the source, but the pypi package doesn't have it
|
||
|
return self.book.get_sheet(index + 1)
|
||
|
|
||
|
def _convert_cell(self, cell) -> Scalar:
|
||
|
# TODO: there is no way to distinguish between floats and datetimes in pyxlsb
|
||
|
# This means that there is no way to read datetime types from an xlsb file yet
|
||
|
if cell.v is None:
|
||
|
return "" # Prevents non-named columns from not showing up as Unnamed: i
|
||
|
if isinstance(cell.v, float):
|
||
|
val = int(cell.v)
|
||
|
if val == cell.v:
|
||
|
return val
|
||
|
else:
|
||
|
return float(cell.v)
|
||
|
|
||
|
return cell.v
|
||
|
|
||
|
def get_sheet_data(
|
||
|
self,
|
||
|
sheet,
|
||
|
file_rows_needed: int | None = None,
|
||
|
) -> list[list[Scalar]]:
|
||
|
data: list[list[Scalar]] = []
|
||
|
prevous_row_number = -1
|
||
|
# When sparse=True the rows can have different lengths and empty rows are
|
||
|
# not returned. The cells are namedtuples of row, col, value (r, c, v).
|
||
|
for row in sheet.rows(sparse=True):
|
||
|
row_number = row[0].r
|
||
|
converted_row = [self._convert_cell(cell) for cell in row]
|
||
|
while converted_row and converted_row[-1] == "":
|
||
|
# trim trailing empty elements
|
||
|
converted_row.pop()
|
||
|
if converted_row:
|
||
|
data.extend([[]] * (row_number - prevous_row_number - 1))
|
||
|
data.append(converted_row)
|
||
|
prevous_row_number = row_number
|
||
|
if file_rows_needed is not None and len(data) >= file_rows_needed:
|
||
|
break
|
||
|
if data:
|
||
|
# extend rows to max_width
|
||
|
max_width = max(len(data_row) for data_row in data)
|
||
|
if min(len(data_row) for data_row in data) < max_width:
|
||
|
empty_cell: list[Scalar] = [""]
|
||
|
data = [
|
||
|
data_row + (max_width - len(data_row)) * empty_cell
|
||
|
for data_row in data
|
||
|
]
|
||
|
return data
|