112 lines
4.0 KiB
Python
112 lines
4.0 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Index,
|
||
|
MultiIndex,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestDataFrameRenameAxis:
|
||
|
def test_rename_axis_inplace(self, float_frame):
|
||
|
# GH#15704
|
||
|
expected = float_frame.rename_axis("foo")
|
||
|
result = float_frame.copy()
|
||
|
return_value = no_return = result.rename_axis("foo", inplace=True)
|
||
|
assert return_value is None
|
||
|
|
||
|
assert no_return is None
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
expected = float_frame.rename_axis("bar", axis=1)
|
||
|
result = float_frame.copy()
|
||
|
return_value = no_return = result.rename_axis("bar", axis=1, inplace=True)
|
||
|
assert return_value is None
|
||
|
|
||
|
assert no_return is None
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_rename_axis_raises(self):
|
||
|
# GH#17833
|
||
|
df = DataFrame({"A": [1, 2], "B": [1, 2]})
|
||
|
with pytest.raises(ValueError, match="Use `.rename`"):
|
||
|
df.rename_axis(id, axis=0)
|
||
|
|
||
|
with pytest.raises(ValueError, match="Use `.rename`"):
|
||
|
df.rename_axis({0: 10, 1: 20}, axis=0)
|
||
|
|
||
|
with pytest.raises(ValueError, match="Use `.rename`"):
|
||
|
df.rename_axis(id, axis=1)
|
||
|
|
||
|
with pytest.raises(ValueError, match="Use `.rename`"):
|
||
|
df["A"].rename_axis(id)
|
||
|
|
||
|
def test_rename_axis_mapper(self):
|
||
|
# GH#19978
|
||
|
mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"])
|
||
|
df = DataFrame(
|
||
|
{"x": list(range(len(mi))), "y": [i * 10 for i in range(len(mi))]}, index=mi
|
||
|
)
|
||
|
|
||
|
# Test for rename of the Index object of columns
|
||
|
result = df.rename_axis("cols", axis=1)
|
||
|
tm.assert_index_equal(result.columns, Index(["x", "y"], name="cols"))
|
||
|
|
||
|
# Test for rename of the Index object of columns using dict
|
||
|
result = result.rename_axis(columns={"cols": "new"}, axis=1)
|
||
|
tm.assert_index_equal(result.columns, Index(["x", "y"], name="new"))
|
||
|
|
||
|
# Test for renaming index using dict
|
||
|
result = df.rename_axis(index={"ll": "foo"})
|
||
|
assert result.index.names == ["foo", "nn"]
|
||
|
|
||
|
# Test for renaming index using a function
|
||
|
result = df.rename_axis(index=str.upper, axis=0)
|
||
|
assert result.index.names == ["LL", "NN"]
|
||
|
|
||
|
# Test for renaming index providing complete list
|
||
|
result = df.rename_axis(index=["foo", "goo"])
|
||
|
assert result.index.names == ["foo", "goo"]
|
||
|
|
||
|
# Test for changing index and columns at same time
|
||
|
sdf = df.reset_index().set_index("nn").drop(columns=["ll", "y"])
|
||
|
result = sdf.rename_axis(index="foo", columns="meh")
|
||
|
assert result.index.name == "foo"
|
||
|
assert result.columns.name == "meh"
|
||
|
|
||
|
# Test different error cases
|
||
|
with pytest.raises(TypeError, match="Must pass"):
|
||
|
df.rename_axis(index="wrong")
|
||
|
|
||
|
with pytest.raises(ValueError, match="Length of names"):
|
||
|
df.rename_axis(index=["wrong"])
|
||
|
|
||
|
with pytest.raises(TypeError, match="bogus"):
|
||
|
df.rename_axis(bogus=None)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"kwargs, rename_index, rename_columns",
|
||
|
[
|
||
|
({"mapper": None, "axis": 0}, True, False),
|
||
|
({"mapper": None, "axis": 1}, False, True),
|
||
|
({"index": None}, True, False),
|
||
|
({"columns": None}, False, True),
|
||
|
({"index": None, "columns": None}, True, True),
|
||
|
({}, False, False),
|
||
|
],
|
||
|
)
|
||
|
def test_rename_axis_none(self, kwargs, rename_index, rename_columns):
|
||
|
# GH 25034
|
||
|
index = Index(list("abc"), name="foo")
|
||
|
columns = Index(["col1", "col2"], name="bar")
|
||
|
data = np.arange(6).reshape(3, 2)
|
||
|
df = DataFrame(data, index, columns)
|
||
|
|
||
|
result = df.rename_axis(**kwargs)
|
||
|
expected_index = index.rename(None) if rename_index else index
|
||
|
expected_columns = columns.rename(None) if rename_columns else columns
|
||
|
expected = DataFrame(data, expected_index, expected_columns)
|
||
|
tm.assert_frame_equal(result, expected)
|