Inzynierka/Lib/site-packages/pandas/tests/frame/methods/test_reset_index.py

776 lines
27 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from datetime import datetime
from itertools import product
import numpy as np
import pytest
from pandas.core.dtypes.common import (
is_float_dtype,
is_integer_dtype,
)
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
DataFrame,
Index,
Interval,
IntervalIndex,
MultiIndex,
RangeIndex,
Series,
Timestamp,
cut,
date_range,
)
import pandas._testing as tm
@pytest.fixture()
def multiindex_df():
levels = [["A", ""], ["B", "b"]]
return DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
class TestResetIndex:
def test_reset_index_empty_rangeindex(self):
# GH#45230
df = DataFrame(
columns=["brand"], dtype=np.int64, index=RangeIndex(0, 0, 1, name="foo")
)
df2 = df.set_index([df.index, "brand"])
result = df2.reset_index([1], drop=True)
tm.assert_frame_equal(result, df[[]], check_index_type=True)
def test_set_reset(self):
idx = Index([2**63, 2**63 + 5, 2**63 + 10], name="foo")
# set/reset
df = DataFrame({"A": [0, 1, 2]}, index=idx)
result = df.reset_index()
assert result["foo"].dtype == np.dtype("uint64")
df = result.set_index("foo")
tm.assert_index_equal(df.index, idx)
def test_set_index_reset_index_dt64tz(self):
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
# set/reset
df = DataFrame({"A": [0, 1, 2]}, index=idx)
result = df.reset_index()
assert result["foo"].dtype == "datetime64[ns, US/Eastern]"
df = result.set_index("foo")
tm.assert_index_equal(df.index, idx)
def test_reset_index_tz(self, tz_aware_fixture):
# GH 3950
# reset_index with single level
tz = tz_aware_fixture
idx = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx")
df = DataFrame({"a": range(5), "b": ["A", "B", "C", "D", "E"]}, index=idx)
expected = DataFrame(
{
"idx": [
datetime(2011, 1, 1),
datetime(2011, 1, 2),
datetime(2011, 1, 3),
datetime(2011, 1, 4),
datetime(2011, 1, 5),
],
"a": range(5),
"b": ["A", "B", "C", "D", "E"],
},
columns=["idx", "a", "b"],
)
expected["idx"] = expected["idx"].apply(lambda d: Timestamp(d, tz=tz))
tm.assert_frame_equal(df.reset_index(), expected)
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_frame_reset_index_tzaware_index(self, tz):
dr = date_range("2012-06-02", periods=10, tz=tz)
df = DataFrame(np.random.randn(len(dr)), dr)
roundtripped = df.reset_index().set_index("index")
xp = df.index.tz
rs = roundtripped.index.tz
assert xp == rs
def test_reset_index_with_intervals(self):
idx = IntervalIndex.from_breaks(np.arange(11), name="x")
original = DataFrame({"x": idx, "y": np.arange(10)})[["x", "y"]]
result = original.set_index("x")
expected = DataFrame({"y": np.arange(10)}, index=idx)
tm.assert_frame_equal(result, expected)
result2 = result.reset_index()
tm.assert_frame_equal(result2, original)
def test_reset_index(self, float_frame):
stacked = float_frame.stack()[::2]
stacked = DataFrame({"foo": stacked, "bar": stacked})
names = ["first", "second"]
stacked.index.names = names
deleveled = stacked.reset_index()
for i, (lev, level_codes) in enumerate(
zip(stacked.index.levels, stacked.index.codes)
):
values = lev.take(level_codes)
name = names[i]
tm.assert_index_equal(values, Index(deleveled[name]))
stacked.index.names = [None, None]
deleveled2 = stacked.reset_index()
tm.assert_series_equal(
deleveled["first"], deleveled2["level_0"], check_names=False
)
tm.assert_series_equal(
deleveled["second"], deleveled2["level_1"], check_names=False
)
# default name assigned
rdf = float_frame.reset_index()
exp = Series(float_frame.index.values, name="index")
tm.assert_series_equal(rdf["index"], exp)
# default name assigned, corner case
df = float_frame.copy()
df["index"] = "foo"
rdf = df.reset_index()
exp = Series(float_frame.index.values, name="level_0")
tm.assert_series_equal(rdf["level_0"], exp)
# but this is ok
float_frame.index.name = "index"
deleveled = float_frame.reset_index()
tm.assert_series_equal(deleveled["index"], Series(float_frame.index))
tm.assert_index_equal(deleveled.index, Index(range(len(deleveled))), exact=True)
# preserve column names
float_frame.columns.name = "columns"
reset = float_frame.reset_index()
assert reset.columns.name == "columns"
# only remove certain columns
df = float_frame.reset_index().set_index(["index", "A", "B"])
rs = df.reset_index(["A", "B"])
tm.assert_frame_equal(rs, float_frame)
rs = df.reset_index(["index", "A", "B"])
tm.assert_frame_equal(rs, float_frame.reset_index())
rs = df.reset_index(["index", "A", "B"])
tm.assert_frame_equal(rs, float_frame.reset_index())
rs = df.reset_index("A")
xp = float_frame.reset_index().set_index(["index", "B"])
tm.assert_frame_equal(rs, xp)
# test resetting in place
df = float_frame.copy()
reset = float_frame.reset_index()
return_value = df.reset_index(inplace=True)
assert return_value is None
tm.assert_frame_equal(df, reset)
df = float_frame.reset_index().set_index(["index", "A", "B"])
rs = df.reset_index("A", drop=True)
xp = float_frame.copy()
del xp["A"]
xp = xp.set_index(["B"], append=True)
tm.assert_frame_equal(rs, xp)
def test_reset_index_name(self):
df = DataFrame(
[[1, 2, 3, 4], [5, 6, 7, 8]],
columns=["A", "B", "C", "D"],
index=Index(range(2), name="x"),
)
assert df.reset_index().index.name is None
assert df.reset_index(drop=True).index.name is None
return_value = df.reset_index(inplace=True)
assert return_value is None
assert df.index.name is None
@pytest.mark.parametrize("levels", [["A", "B"], [0, 1]])
def test_reset_index_level(self, levels):
df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"])
# With MultiIndex
result = df.set_index(["A", "B"]).reset_index(level=levels[0])
tm.assert_frame_equal(result, df.set_index("B"))
result = df.set_index(["A", "B"]).reset_index(level=levels[:1])
tm.assert_frame_equal(result, df.set_index("B"))
result = df.set_index(["A", "B"]).reset_index(level=levels)
tm.assert_frame_equal(result, df)
result = df.set_index(["A", "B"]).reset_index(level=levels, drop=True)
tm.assert_frame_equal(result, df[["C", "D"]])
# With single-level Index (GH 16263)
result = df.set_index("A").reset_index(level=levels[0])
tm.assert_frame_equal(result, df)
result = df.set_index("A").reset_index(level=levels[:1])
tm.assert_frame_equal(result, df)
result = df.set_index(["A"]).reset_index(level=levels[0], drop=True)
tm.assert_frame_equal(result, df[["B", "C", "D"]])
@pytest.mark.parametrize("idx_lev", [["A", "B"], ["A"]])
def test_reset_index_level_missing(self, idx_lev):
# Missing levels - for both MultiIndex and single-level Index:
df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"])
with pytest.raises(KeyError, match=r"(L|l)evel \(?E\)?"):
df.set_index(idx_lev).reset_index(level=["A", "E"])
with pytest.raises(IndexError, match="Too many levels"):
df.set_index(idx_lev).reset_index(level=[0, 1, 2])
def test_reset_index_right_dtype(self):
time = np.arange(0.0, 10, np.sqrt(2) / 2)
s1 = Series(
(9.81 * time**2) / 2, index=Index(time, name="time"), name="speed"
)
df = DataFrame(s1)
reset = s1.reset_index()
assert reset["time"].dtype == np.float64
reset = df.reset_index()
assert reset["time"].dtype == np.float64
def test_reset_index_multiindex_col(self):
vals = np.random.randn(3, 3).astype(object)
idx = ["x", "y", "z"]
full = np.hstack(([[x] for x in idx], vals))
df = DataFrame(
vals,
Index(idx, name="a"),
columns=[["b", "b", "c"], ["mean", "median", "mean"]],
)
rs = df.reset_index()
xp = DataFrame(
full, columns=[["a", "b", "b", "c"], ["", "mean", "median", "mean"]]
)
tm.assert_frame_equal(rs, xp)
rs = df.reset_index(col_fill=None)
xp = DataFrame(
full, columns=[["a", "b", "b", "c"], ["a", "mean", "median", "mean"]]
)
tm.assert_frame_equal(rs, xp)
rs = df.reset_index(col_level=1, col_fill="blah")
xp = DataFrame(
full, columns=[["blah", "b", "b", "c"], ["a", "mean", "median", "mean"]]
)
tm.assert_frame_equal(rs, xp)
df = DataFrame(
vals,
MultiIndex.from_arrays([[0, 1, 2], ["x", "y", "z"]], names=["d", "a"]),
columns=[["b", "b", "c"], ["mean", "median", "mean"]],
)
rs = df.reset_index("a")
xp = DataFrame(
full,
Index([0, 1, 2], name="d"),
columns=[["a", "b", "b", "c"], ["", "mean", "median", "mean"]],
)
tm.assert_frame_equal(rs, xp)
rs = df.reset_index("a", col_fill=None)
xp = DataFrame(
full,
Index(range(3), name="d"),
columns=[["a", "b", "b", "c"], ["a", "mean", "median", "mean"]],
)
tm.assert_frame_equal(rs, xp)
rs = df.reset_index("a", col_fill="blah", col_level=1)
xp = DataFrame(
full,
Index(range(3), name="d"),
columns=[["blah", "b", "b", "c"], ["a", "mean", "median", "mean"]],
)
tm.assert_frame_equal(rs, xp)
def test_reset_index_multiindex_nan(self):
# GH#6322, testing reset_index on MultiIndexes
# when we have a nan or all nan
df = DataFrame(
{"A": ["a", "b", "c"], "B": [0, 1, np.nan], "C": np.random.rand(3)}
)
rs = df.set_index(["A", "B"]).reset_index()
tm.assert_frame_equal(rs, df)
df = DataFrame(
{"A": [np.nan, "b", "c"], "B": [0, 1, 2], "C": np.random.rand(3)}
)
rs = df.set_index(["A", "B"]).reset_index()
tm.assert_frame_equal(rs, df)
df = DataFrame({"A": ["a", "b", "c"], "B": [0, 1, 2], "C": [np.nan, 1.1, 2.2]})
rs = df.set_index(["A", "B"]).reset_index()
tm.assert_frame_equal(rs, df)
df = DataFrame(
{
"A": ["a", "b", "c"],
"B": [np.nan, np.nan, np.nan],
"C": np.random.rand(3),
}
)
rs = df.set_index(["A", "B"]).reset_index()
tm.assert_frame_equal(rs, df)
@pytest.mark.parametrize(
"name",
[
None,
"foo",
2,
3.0,
pd.Timedelta(6),
Timestamp("2012-12-30", tz="UTC"),
"2012-12-31",
],
)
def test_reset_index_with_datetimeindex_cols(self, name):
# GH#5818
df = DataFrame(
[[1, 2], [3, 4]],
columns=date_range("1/1/2013", "1/2/2013"),
index=["A", "B"],
)
df.index.name = name
result = df.reset_index()
item = name if name is not None else "index"
columns = Index([item, datetime(2013, 1, 1), datetime(2013, 1, 2)])
if isinstance(item, str) and item == "2012-12-31":
columns = columns.astype("datetime64[ns]")
else:
assert columns.dtype == object
expected = DataFrame(
[["A", 1, 2], ["B", 3, 4]],
columns=columns,
)
tm.assert_frame_equal(result, expected)
def test_reset_index_range(self):
# GH#12071
df = DataFrame([[0, 0], [1, 1]], columns=["A", "B"], index=RangeIndex(stop=2))
result = df.reset_index()
assert isinstance(result.index, RangeIndex)
expected = DataFrame(
[[0, 0, 0], [1, 1, 1]],
columns=["index", "A", "B"],
index=RangeIndex(stop=2),
)
tm.assert_frame_equal(result, expected)
def test_reset_index_multiindex_columns(self, multiindex_df):
result = multiindex_df[["B"]].rename_axis("A").reset_index()
tm.assert_frame_equal(result, multiindex_df)
# GH#16120: already existing column
msg = r"cannot insert \('A', ''\), already exists"
with pytest.raises(ValueError, match=msg):
multiindex_df.rename_axis("A").reset_index()
# GH#16164: multiindex (tuple) full key
result = multiindex_df.set_index([("A", "")]).reset_index()
tm.assert_frame_equal(result, multiindex_df)
# with additional (unnamed) index level
idx_col = DataFrame(
[[0], [1]], columns=MultiIndex.from_tuples([("level_0", "")])
)
expected = pd.concat([idx_col, multiindex_df[[("B", "b"), ("A", "")]]], axis=1)
result = multiindex_df.set_index([("B", "b")], append=True).reset_index()
tm.assert_frame_equal(result, expected)
# with index name which is a too long tuple...
msg = "Item must have length equal to number of levels."
with pytest.raises(ValueError, match=msg):
multiindex_df.rename_axis([("C", "c", "i")]).reset_index()
# or too short...
levels = [["A", "a", ""], ["B", "b", "i"]]
df2 = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
idx_col = DataFrame(
[[0], [1]], columns=MultiIndex.from_tuples([("C", "c", "ii")])
)
expected = pd.concat([idx_col, df2], axis=1)
result = df2.rename_axis([("C", "c")]).reset_index(col_fill="ii")
tm.assert_frame_equal(result, expected)
# ... which is incompatible with col_fill=None
with pytest.raises(
ValueError,
match=(
"col_fill=None is incompatible with "
r"incomplete column name \('C', 'c'\)"
),
):
df2.rename_axis([("C", "c")]).reset_index(col_fill=None)
# with col_level != 0
result = df2.rename_axis([("c", "ii")]).reset_index(col_level=1, col_fill="C")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("flag", [False, True])
@pytest.mark.parametrize("allow_duplicates", [False, True])
def test_reset_index_duplicate_columns_allow(
self, multiindex_df, flag, allow_duplicates
):
# GH#44755 reset_index with duplicate column labels
df = multiindex_df.rename_axis("A")
df = df.set_flags(allows_duplicate_labels=flag)
if flag and allow_duplicates:
result = df.reset_index(allow_duplicates=allow_duplicates)
levels = [["A", ""], ["A", ""], ["B", "b"]]
expected = DataFrame(
[[0, 0, 2], [1, 1, 3]], columns=MultiIndex.from_tuples(levels)
)
tm.assert_frame_equal(result, expected)
else:
if not flag and allow_duplicates:
msg = (
"Cannot specify 'allow_duplicates=True' when "
"'self.flags.allows_duplicate_labels' is False"
)
else:
msg = r"cannot insert \('A', ''\), already exists"
with pytest.raises(ValueError, match=msg):
df.reset_index(allow_duplicates=allow_duplicates)
@pytest.mark.parametrize("flag", [False, True])
def test_reset_index_duplicate_columns_default(self, multiindex_df, flag):
df = multiindex_df.rename_axis("A")
df = df.set_flags(allows_duplicate_labels=flag)
msg = r"cannot insert \('A', ''\), already exists"
with pytest.raises(ValueError, match=msg):
df.reset_index()
@pytest.mark.parametrize("allow_duplicates", ["bad value"])
def test_reset_index_allow_duplicates_check(self, multiindex_df, allow_duplicates):
with pytest.raises(ValueError, match="expected type bool"):
multiindex_df.reset_index(allow_duplicates=allow_duplicates)
def test_reset_index_datetime(self, tz_naive_fixture):
# GH#3950
tz = tz_naive_fixture
idx1 = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx1")
idx2 = Index(range(5), name="idx2", dtype="int64")
idx = MultiIndex.from_arrays([idx1, idx2])
df = DataFrame(
{"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
index=idx,
)
expected = DataFrame(
{
"idx1": [
datetime(2011, 1, 1),
datetime(2011, 1, 2),
datetime(2011, 1, 3),
datetime(2011, 1, 4),
datetime(2011, 1, 5),
],
"idx2": np.arange(5, dtype="int64"),
"a": np.arange(5, dtype="int64"),
"b": ["A", "B", "C", "D", "E"],
},
columns=["idx1", "idx2", "a", "b"],
)
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
tm.assert_frame_equal(df.reset_index(), expected)
idx3 = date_range(
"1/1/2012", periods=5, freq="MS", tz="Europe/Paris", name="idx3"
)
idx = MultiIndex.from_arrays([idx1, idx2, idx3])
df = DataFrame(
{"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
index=idx,
)
expected = DataFrame(
{
"idx1": [
datetime(2011, 1, 1),
datetime(2011, 1, 2),
datetime(2011, 1, 3),
datetime(2011, 1, 4),
datetime(2011, 1, 5),
],
"idx2": np.arange(5, dtype="int64"),
"idx3": [
datetime(2012, 1, 1),
datetime(2012, 2, 1),
datetime(2012, 3, 1),
datetime(2012, 4, 1),
datetime(2012, 5, 1),
],
"a": np.arange(5, dtype="int64"),
"b": ["A", "B", "C", "D", "E"],
},
columns=["idx1", "idx2", "idx3", "a", "b"],
)
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
expected["idx3"] = expected["idx3"].apply(
lambda d: Timestamp(d, tz="Europe/Paris")
)
tm.assert_frame_equal(df.reset_index(), expected)
# GH#7793
idx = MultiIndex.from_product(
[["a", "b"], date_range("20130101", periods=3, tz=tz)]
)
df = DataFrame(
np.arange(6, dtype="int64").reshape(6, 1), columns=["a"], index=idx
)
expected = DataFrame(
{
"level_0": "a a a b b b".split(),
"level_1": [
datetime(2013, 1, 1),
datetime(2013, 1, 2),
datetime(2013, 1, 3),
]
* 2,
"a": np.arange(6, dtype="int64"),
},
columns=["level_0", "level_1", "a"],
)
expected["level_1"] = expected["level_1"].apply(lambda d: Timestamp(d, tz=tz))
result = df.reset_index()
tm.assert_frame_equal(result, expected)
def test_reset_index_period(self):
# GH#7746
idx = MultiIndex.from_product(
[pd.period_range("20130101", periods=3, freq="M"), list("abc")],
names=["month", "feature"],
)
df = DataFrame(
np.arange(9, dtype="int64").reshape(-1, 1), index=idx, columns=["a"]
)
expected = DataFrame(
{
"month": (
[pd.Period("2013-01", freq="M")] * 3
+ [pd.Period("2013-02", freq="M")] * 3
+ [pd.Period("2013-03", freq="M")] * 3
),
"feature": ["a", "b", "c"] * 3,
"a": np.arange(9, dtype="int64"),
},
columns=["month", "feature", "a"],
)
result = df.reset_index()
tm.assert_frame_equal(result, expected)
def test_reset_index_delevel_infer_dtype(self):
tuples = list(product(["foo", "bar"], [10, 20], [1.0, 1.1]))
index = MultiIndex.from_tuples(tuples, names=["prm0", "prm1", "prm2"])
df = DataFrame(np.random.randn(8, 3), columns=["A", "B", "C"], index=index)
deleveled = df.reset_index()
assert is_integer_dtype(deleveled["prm1"])
assert is_float_dtype(deleveled["prm2"])
def test_reset_index_with_drop(
self, multiindex_year_month_day_dataframe_random_data
):
ymd = multiindex_year_month_day_dataframe_random_data
deleveled = ymd.reset_index(drop=True)
assert len(deleveled.columns) == len(ymd.columns)
assert deleveled.index.name == ymd.index.name
@pytest.mark.parametrize(
"ix_data, exp_data",
[
(
[(pd.NaT, 1), (pd.NaT, 2)],
{"a": [pd.NaT, pd.NaT], "b": [1, 2], "x": [11, 12]},
),
(
[(pd.NaT, 1), (Timestamp("2020-01-01"), 2)],
{"a": [pd.NaT, Timestamp("2020-01-01")], "b": [1, 2], "x": [11, 12]},
),
(
[(pd.NaT, 1), (pd.Timedelta(123, "d"), 2)],
{"a": [pd.NaT, pd.Timedelta(123, "d")], "b": [1, 2], "x": [11, 12]},
),
],
)
def test_reset_index_nat_multiindex(self, ix_data, exp_data):
# GH#36541: that reset_index() does not raise ValueError
ix = MultiIndex.from_tuples(ix_data, names=["a", "b"])
result = DataFrame({"x": [11, 12]}, index=ix)
result = result.reset_index()
expected = DataFrame(exp_data)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"codes", ([[0, 0, 1, 1], [0, 1, 0, 1]], [[0, 0, -1, 1], [0, 1, 0, 1]])
)
def test_rest_index_multiindex_categorical_with_missing_values(self, codes):
# GH#24206
index = MultiIndex(
[CategoricalIndex(["A", "B"]), CategoricalIndex(["a", "b"])], codes
)
data = {"col": range(len(index))}
df = DataFrame(data=data, index=index)
expected = DataFrame(
{
"level_0": Categorical.from_codes(codes[0], categories=["A", "B"]),
"level_1": Categorical.from_codes(codes[1], categories=["a", "b"]),
"col": range(4),
}
)
res = df.reset_index()
tm.assert_frame_equal(res, expected)
# roundtrip
res = expected.set_index(["level_0", "level_1"]).reset_index()
tm.assert_frame_equal(res, expected)
@pytest.mark.parametrize(
"array, dtype",
[
(["a", "b"], object),
(
pd.period_range("12-1-2000", periods=2, freq="Q-DEC"),
pd.PeriodDtype(freq="Q-DEC"),
),
],
)
def test_reset_index_dtypes_on_empty_frame_with_multiindex(array, dtype):
# GH 19602 - Preserve dtype on empty DataFrame with MultiIndex
idx = MultiIndex.from_product([[0, 1], [0.5, 1.0], array])
result = DataFrame(index=idx)[:0].reset_index().dtypes
expected = Series({"level_0": np.int64, "level_1": np.float64, "level_2": dtype})
tm.assert_series_equal(result, expected)
def test_reset_index_empty_frame_with_datetime64_multiindex():
# https://github.com/pandas-dev/pandas/issues/35606
idx = MultiIndex(
levels=[[Timestamp("2020-07-20 00:00:00")], [3, 4]],
codes=[[], []],
names=["a", "b"],
)
df = DataFrame(index=idx, columns=["c", "d"])
result = df.reset_index()
expected = DataFrame(
columns=list("abcd"), index=RangeIndex(start=0, stop=0, step=1)
)
expected["a"] = expected["a"].astype("datetime64[ns]")
expected["b"] = expected["b"].astype("int64")
tm.assert_frame_equal(result, expected)
def test_reset_index_empty_frame_with_datetime64_multiindex_from_groupby():
# https://github.com/pandas-dev/pandas/issues/35657
df = DataFrame({"c1": [10.0], "c2": ["a"], "c3": pd.to_datetime("2020-01-01")})
df = df.head(0).groupby(["c2", "c3"])[["c1"]].sum()
result = df.reset_index()
expected = DataFrame(
columns=["c2", "c3", "c1"], index=RangeIndex(start=0, stop=0, step=1)
)
expected["c3"] = expected["c3"].astype("datetime64[ns]")
expected["c1"] = expected["c1"].astype("float64")
tm.assert_frame_equal(result, expected)
def test_reset_index_multiindex_nat():
# GH 11479
idx = range(3)
tstamp = date_range("2015-07-01", freq="D", periods=3)
df = DataFrame({"id": idx, "tstamp": tstamp, "a": list("abc")})
df.loc[2, "tstamp"] = pd.NaT
result = df.set_index(["id", "tstamp"]).reset_index("id")
expected = DataFrame(
{"id": range(3), "a": list("abc")},
index=pd.DatetimeIndex(["2015-07-01", "2015-07-02", "NaT"], name="tstamp"),
)
tm.assert_frame_equal(result, expected)
def test_reset_index_interval_columns_object_cast():
# GH 19136
df = DataFrame(
np.eye(2), index=Index([1, 2], name="Year"), columns=cut([1, 2], [0, 1, 2])
)
result = df.reset_index()
expected = DataFrame(
[[1, 1.0, 0.0], [2, 0.0, 1.0]],
columns=Index(["Year", Interval(0, 1), Interval(1, 2)]),
)
tm.assert_frame_equal(result, expected)
def test_reset_index_rename(float_frame):
# GH 6878
result = float_frame.reset_index(names="new_name")
expected = Series(float_frame.index.values, name="new_name")
tm.assert_series_equal(result["new_name"], expected)
result = float_frame.reset_index(names=123)
expected = Series(float_frame.index.values, name=123)
tm.assert_series_equal(result[123], expected)
def test_reset_index_rename_multiindex(float_frame):
# GH 6878
stacked_df = float_frame.stack()[::2]
stacked_df = DataFrame({"foo": stacked_df, "bar": stacked_df})
names = ["first", "second"]
stacked_df.index.names = names
result = stacked_df.reset_index()
expected = stacked_df.reset_index(names=["new_first", "new_second"])
tm.assert_series_equal(result["first"], expected["new_first"], check_names=False)
tm.assert_series_equal(result["second"], expected["new_second"], check_names=False)
def test_errorreset_index_rename(float_frame):
# GH 6878
stacked_df = float_frame.stack()[::2]
stacked_df = DataFrame({"first": stacked_df, "second": stacked_df})
with pytest.raises(
ValueError, match="Index names must be str or 1-dimensional list"
):
stacked_df.reset_index(names={"first": "new_first", "second": "new_second"})
with pytest.raises(IndexError, match="list index out of range"):
stacked_df.reset_index(names=["new_first"])