199 lines
6.7 KiB
Python
199 lines
6.7 KiB
Python
|
from datetime import date
|
||
|
|
||
|
import dateutil
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
DatetimeIndex,
|
||
|
Index,
|
||
|
Timestamp,
|
||
|
date_range,
|
||
|
offsets,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestDatetimeIndex:
|
||
|
def test_sub_datetime_preserves_freq(self, tz_naive_fixture):
|
||
|
# GH#48818
|
||
|
dti = date_range("2016-01-01", periods=12, tz=tz_naive_fixture)
|
||
|
|
||
|
res = dti - dti[0]
|
||
|
expected = pd.timedelta_range("0 Days", "11 Days")
|
||
|
tm.assert_index_equal(res, expected)
|
||
|
assert res.freq == expected.freq
|
||
|
|
||
|
@pytest.mark.xfail(
|
||
|
reason="The inherited freq is incorrect bc dti.freq is incorrect "
|
||
|
"https://github.com/pandas-dev/pandas/pull/48818/files#r982793461"
|
||
|
)
|
||
|
def test_sub_datetime_preserves_freq_across_dst(self):
|
||
|
# GH#48818
|
||
|
ts = Timestamp("2016-03-11", tz="US/Pacific")
|
||
|
dti = date_range(ts, periods=4)
|
||
|
|
||
|
res = dti - dti[0]
|
||
|
expected = pd.TimedeltaIndex(
|
||
|
[
|
||
|
pd.Timedelta(days=0),
|
||
|
pd.Timedelta(days=1),
|
||
|
pd.Timedelta(days=2),
|
||
|
pd.Timedelta(days=2, hours=23),
|
||
|
]
|
||
|
)
|
||
|
tm.assert_index_equal(res, expected)
|
||
|
assert res.freq == expected.freq
|
||
|
|
||
|
def test_time_overflow_for_32bit_machines(self):
|
||
|
# GH8943. On some machines NumPy defaults to np.int32 (for example,
|
||
|
# 32-bit Linux machines). In the function _generate_regular_range
|
||
|
# found in tseries/index.py, `periods` gets multiplied by `strides`
|
||
|
# (which has value 1e9) and since the max value for np.int32 is ~2e9,
|
||
|
# and since those machines won't promote np.int32 to np.int64, we get
|
||
|
# overflow.
|
||
|
periods = np.int_(1000)
|
||
|
|
||
|
idx1 = date_range(start="2000", periods=periods, freq="S")
|
||
|
assert len(idx1) == periods
|
||
|
|
||
|
idx2 = date_range(end="2000", periods=periods, freq="S")
|
||
|
assert len(idx2) == periods
|
||
|
|
||
|
def test_nat(self):
|
||
|
assert DatetimeIndex([np.nan])[0] is pd.NaT
|
||
|
|
||
|
def test_week_of_month_frequency(self):
|
||
|
# GH 5348: "ValueError: Could not evaluate WOM-1SUN" shouldn't raise
|
||
|
d1 = date(2002, 9, 1)
|
||
|
d2 = date(2013, 10, 27)
|
||
|
d3 = date(2012, 9, 30)
|
||
|
idx1 = DatetimeIndex([d1, d2])
|
||
|
idx2 = DatetimeIndex([d3])
|
||
|
result_append = idx1.append(idx2)
|
||
|
expected = DatetimeIndex([d1, d2, d3])
|
||
|
tm.assert_index_equal(result_append, expected)
|
||
|
result_union = idx1.union(idx2)
|
||
|
expected = DatetimeIndex([d1, d3, d2])
|
||
|
tm.assert_index_equal(result_union, expected)
|
||
|
|
||
|
# GH 5115
|
||
|
result = date_range("2013-1-1", periods=4, freq="WOM-1SAT")
|
||
|
dates = ["2013-01-05", "2013-02-02", "2013-03-02", "2013-04-06"]
|
||
|
expected = DatetimeIndex(dates, freq="WOM-1SAT")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
def test_append_nondatetimeindex(self):
|
||
|
rng = date_range("1/1/2000", periods=10)
|
||
|
idx = Index(["a", "b", "c", "d"])
|
||
|
|
||
|
result = rng.append(idx)
|
||
|
assert isinstance(result[0], Timestamp)
|
||
|
|
||
|
def test_iteration_preserves_tz(self):
|
||
|
# see gh-8890
|
||
|
index = date_range("2012-01-01", periods=3, freq="H", tz="US/Eastern")
|
||
|
|
||
|
for i, ts in enumerate(index):
|
||
|
result = ts
|
||
|
expected = index[i] # pylint: disable=unnecessary-list-index-lookup
|
||
|
assert result == expected
|
||
|
|
||
|
index = date_range(
|
||
|
"2012-01-01", periods=3, freq="H", tz=dateutil.tz.tzoffset(None, -28800)
|
||
|
)
|
||
|
|
||
|
for i, ts in enumerate(index):
|
||
|
result = ts
|
||
|
expected = index[i] # pylint: disable=unnecessary-list-index-lookup
|
||
|
assert result._repr_base == expected._repr_base
|
||
|
assert result == expected
|
||
|
|
||
|
# 9100
|
||
|
index = DatetimeIndex(
|
||
|
["2014-12-01 03:32:39.987000-08:00", "2014-12-01 04:12:34.987000-08:00"]
|
||
|
)
|
||
|
for i, ts in enumerate(index):
|
||
|
result = ts
|
||
|
expected = index[i] # pylint: disable=unnecessary-list-index-lookup
|
||
|
assert result._repr_base == expected._repr_base
|
||
|
assert result == expected
|
||
|
|
||
|
@pytest.mark.parametrize("periods", [0, 9999, 10000, 10001])
|
||
|
def test_iteration_over_chunksize(self, periods):
|
||
|
# GH21012
|
||
|
|
||
|
index = date_range("2000-01-01 00:00:00", periods=periods, freq="min")
|
||
|
num = 0
|
||
|
for stamp in index:
|
||
|
assert index[num] == stamp
|
||
|
num += 1
|
||
|
assert num == len(index)
|
||
|
|
||
|
def test_misc_coverage(self):
|
||
|
rng = date_range("1/1/2000", periods=5)
|
||
|
result = rng.groupby(rng.day)
|
||
|
assert isinstance(list(result.values())[0][0], Timestamp)
|
||
|
|
||
|
def test_groupby_function_tuple_1677(self):
|
||
|
df = DataFrame(np.random.rand(100), index=date_range("1/1/2000", periods=100))
|
||
|
monthly_group = df.groupby(lambda x: (x.year, x.month))
|
||
|
|
||
|
result = monthly_group.mean()
|
||
|
assert isinstance(result.index[0], tuple)
|
||
|
|
||
|
def assert_index_parameters(self, index):
|
||
|
assert index.freq == "40960N"
|
||
|
assert index.inferred_freq == "40960N"
|
||
|
|
||
|
def test_ns_index(self):
|
||
|
nsamples = 400
|
||
|
ns = int(1e9 / 24414)
|
||
|
dtstart = np.datetime64("2012-09-20T00:00:00")
|
||
|
|
||
|
dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, "ns")
|
||
|
freq = ns * offsets.Nano()
|
||
|
index = DatetimeIndex(dt, freq=freq, name="time")
|
||
|
self.assert_index_parameters(index)
|
||
|
|
||
|
new_index = date_range(start=index[0], end=index[-1], freq=index.freq)
|
||
|
self.assert_index_parameters(new_index)
|
||
|
|
||
|
def test_asarray_tz_naive(self):
|
||
|
# This shouldn't produce a warning.
|
||
|
idx = date_range("2000", periods=2)
|
||
|
# M8[ns] by default
|
||
|
result = np.asarray(idx)
|
||
|
|
||
|
expected = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# optionally, object
|
||
|
result = np.asarray(idx, dtype=object)
|
||
|
|
||
|
expected = np.array([Timestamp("2000-01-01"), Timestamp("2000-01-02")])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
def test_asarray_tz_aware(self):
|
||
|
tz = "US/Central"
|
||
|
idx = date_range("2000", periods=2, tz=tz)
|
||
|
expected = np.array(["2000-01-01T06", "2000-01-02T06"], dtype="M8[ns]")
|
||
|
result = np.asarray(idx, dtype="datetime64[ns]")
|
||
|
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# Old behavior with no warning
|
||
|
result = np.asarray(idx, dtype="M8[ns]")
|
||
|
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# Future behavior with no warning
|
||
|
expected = np.array(
|
||
|
[Timestamp("2000-01-01", tz=tz), Timestamp("2000-01-02", tz=tz)]
|
||
|
)
|
||
|
result = np.asarray(idx, dtype=object)
|
||
|
|
||
|
tm.assert_numpy_array_equal(result, expected)
|