Inzynierka/Lib/site-packages/pandas/tests/indexes/period/test_partial_slicing.py

196 lines
7.0 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
import numpy as np
import pytest
from pandas import (
DataFrame,
PeriodIndex,
Series,
date_range,
period_range,
)
import pandas._testing as tm
class TestPeriodIndex:
def test_getitem_periodindex_duplicates_string_slice(self, using_copy_on_write):
# monotonic
idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq="A-JUN")
ts = Series(np.random.randn(len(idx)), index=idx)
original = ts.copy()
result = ts["2007"]
expected = ts[1:3]
tm.assert_series_equal(result, expected)
result[:] = 1
if using_copy_on_write:
tm.assert_series_equal(ts, original)
else:
assert (ts[1:3] == 1).all()
# not monotonic
idx = PeriodIndex([2000, 2007, 2007, 2009, 2007], freq="A-JUN")
ts = Series(np.random.randn(len(idx)), index=idx)
result = ts["2007"]
expected = ts[idx == "2007"]
tm.assert_series_equal(result, expected)
def test_getitem_periodindex_quarter_string(self):
pi = PeriodIndex(["2Q05", "3Q05", "4Q05", "1Q06", "2Q06"], freq="Q")
ser = Series(np.random.rand(len(pi)), index=pi).cumsum()
# Todo: fix these accessors!
assert ser["05Q4"] == ser[2]
def test_pindex_slice_index(self):
pi = period_range(start="1/1/10", end="12/31/12", freq="M")
s = Series(np.random.rand(len(pi)), index=pi)
res = s["2010"]
exp = s[0:12]
tm.assert_series_equal(res, exp)
res = s["2011"]
exp = s[12:24]
tm.assert_series_equal(res, exp)
@pytest.mark.parametrize("make_range", [date_range, period_range])
def test_range_slice_day(self, make_range):
# GH#6716
idx = make_range(start="2013/01/01", freq="D", periods=400)
msg = "slice indices must be integers or None or have an __index__ method"
# slices against index should raise IndexError
values = [
"2014",
"2013/02",
"2013/01/02",
"2013/02/01 9H",
"2013/02/01 09:00",
]
for v in values:
with pytest.raises(TypeError, match=msg):
idx[v:]
s = Series(np.random.rand(len(idx)), index=idx)
tm.assert_series_equal(s["2013/01/02":], s[1:])
tm.assert_series_equal(s["2013/01/02":"2013/01/05"], s[1:5])
tm.assert_series_equal(s["2013/02":], s[31:])
tm.assert_series_equal(s["2014":], s[365:])
invalid = ["2013/02/01 9H", "2013/02/01 09:00"]
for v in invalid:
with pytest.raises(TypeError, match=msg):
idx[v:]
@pytest.mark.parametrize("make_range", [date_range, period_range])
def test_range_slice_seconds(self, make_range):
# GH#6716
idx = make_range(start="2013/01/01 09:00:00", freq="S", periods=4000)
msg = "slice indices must be integers or None or have an __index__ method"
# slices against index should raise IndexError
values = [
"2014",
"2013/02",
"2013/01/02",
"2013/02/01 9H",
"2013/02/01 09:00",
]
for v in values:
with pytest.raises(TypeError, match=msg):
idx[v:]
s = Series(np.random.rand(len(idx)), index=idx)
tm.assert_series_equal(s["2013/01/01 09:05":"2013/01/01 09:10"], s[300:660])
tm.assert_series_equal(s["2013/01/01 10:00":"2013/01/01 10:05"], s[3600:3960])
tm.assert_series_equal(s["2013/01/01 10H":], s[3600:])
tm.assert_series_equal(s[:"2013/01/01 09:30"], s[:1860])
for d in ["2013/01/01", "2013/01", "2013"]:
tm.assert_series_equal(s[d:], s)
@pytest.mark.parametrize("make_range", [date_range, period_range])
def test_range_slice_outofbounds(self, make_range):
# GH#5407
idx = make_range(start="2013/10/01", freq="D", periods=10)
df = DataFrame({"units": [100 + i for i in range(10)]}, index=idx)
empty = DataFrame(index=type(idx)([], freq="D"), columns=["units"])
empty["units"] = empty["units"].astype("int64")
tm.assert_frame_equal(df["2013/09/01":"2013/09/30"], empty)
tm.assert_frame_equal(df["2013/09/30":"2013/10/02"], df.iloc[:2])
tm.assert_frame_equal(df["2013/10/01":"2013/10/02"], df.iloc[:2])
tm.assert_frame_equal(df["2013/10/02":"2013/09/30"], empty)
tm.assert_frame_equal(df["2013/10/15":"2013/10/17"], empty)
tm.assert_frame_equal(df["2013-06":"2013-09"], empty)
tm.assert_frame_equal(df["2013-11":"2013-12"], empty)
@pytest.mark.parametrize("make_range", [date_range, period_range])
def test_maybe_cast_slice_bound(self, make_range, frame_or_series):
idx = make_range(start="2013/10/01", freq="D", periods=10)
obj = DataFrame({"units": [100 + i for i in range(10)]}, index=idx)
obj = tm.get_obj(obj, frame_or_series)
msg = (
f"cannot do slice indexing on {type(idx).__name__} with "
r"these indexers \[foo\] of type str"
)
# Check the lower-level calls are raising where expected.
with pytest.raises(TypeError, match=msg):
idx._maybe_cast_slice_bound("foo", "left")
with pytest.raises(TypeError, match=msg):
idx.get_slice_bound("foo", "left")
with pytest.raises(TypeError, match=msg):
obj["2013/09/30":"foo"]
with pytest.raises(TypeError, match=msg):
obj["foo":"2013/09/30"]
with pytest.raises(TypeError, match=msg):
obj.loc["2013/09/30":"foo"]
with pytest.raises(TypeError, match=msg):
obj.loc["foo":"2013/09/30"]
def test_partial_slice_doesnt_require_monotonicity(self):
# See also: DatetimeIndex test ofm the same name
dti = date_range("2014-01-01", periods=30, freq="30D")
pi = dti.to_period("D")
ser_montonic = Series(np.arange(30), index=pi)
shuffler = list(range(0, 30, 2)) + list(range(1, 31, 2))
ser = ser_montonic[shuffler]
nidx = ser.index
# Manually identified locations of year==2014
indexer_2014 = np.array(
[0, 1, 2, 3, 4, 5, 6, 15, 16, 17, 18, 19, 20], dtype=np.intp
)
assert (nidx[indexer_2014].year == 2014).all()
assert not (nidx[~indexer_2014].year == 2014).any()
result = nidx.get_loc("2014")
tm.assert_numpy_array_equal(result, indexer_2014)
expected = ser[indexer_2014]
result = ser.loc["2014"]
tm.assert_series_equal(result, expected)
result = ser["2014"]
tm.assert_series_equal(result, expected)
# Manually identified locations where ser.index is within Mat 2015
indexer_may2015 = np.array([23], dtype=np.intp)
assert nidx[23].year == 2015 and nidx[23].month == 5
result = nidx.get_loc("May 2015")
tm.assert_numpy_array_equal(result, indexer_may2015)
expected = ser[indexer_may2015]
result = ser.loc["May 2015"]
tm.assert_series_equal(result, expected)
result = ser["May 2015"]
tm.assert_series_equal(result, expected)