Inzynierka/Lib/site-packages/pandas/tests/indexes/timedeltas/test_timedelta.py

160 lines
5.1 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from datetime import timedelta
import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
NaT,
Series,
Timedelta,
TimedeltaIndex,
timedelta_range,
)
import pandas._testing as tm
from pandas.core.arrays import TimedeltaArray
from pandas.tests.indexes.datetimelike import DatetimeLike
randn = np.random.randn
class TestTimedeltaIndex(DatetimeLike):
_index_cls = TimedeltaIndex
@pytest.fixture
def simple_index(self) -> TimedeltaIndex:
index = pd.to_timedelta(range(5), unit="d")._with_freq("infer")
assert index.freq == "D"
ret = index + pd.offsets.Hour(1)
assert ret.freq == "D"
return ret
@pytest.fixture
def index(self):
return tm.makeTimedeltaIndex(10)
def test_numeric_compat(self):
# Dummy method to override super's version; this test is now done
# in test_arithmetic.py
pass
def test_shift(self):
pass # this is handled in test_arithmetic.py
def test_misc_coverage(self):
rng = timedelta_range("1 day", periods=5)
result = rng.groupby(rng.days)
assert isinstance(list(result.values())[0][0], Timedelta)
def test_map(self):
# test_map_dictlike generally tests
rng = timedelta_range("1 day", periods=10)
f = lambda x: x.days
result = rng.map(f)
exp = Index([f(x) for x in rng], dtype=np.int64)
tm.assert_index_equal(result, exp)
def test_pass_TimedeltaIndex_to_index(self):
rng = timedelta_range("1 days", "10 days")
idx = Index(rng, dtype=object)
expected = Index(rng.to_pytimedelta(), dtype=object)
tm.assert_numpy_array_equal(idx.values, expected.values)
def test_fields(self):
rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s")
tm.assert_index_equal(rng.days, Index([1, 1], dtype=np.int64))
tm.assert_index_equal(
rng.seconds,
Index([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13], dtype=np.int32),
)
tm.assert_index_equal(
rng.microseconds,
Index([100 * 1000 + 123, 100 * 1000 + 123], dtype=np.int32),
)
tm.assert_index_equal(rng.nanoseconds, Index([456, 456], dtype=np.int32))
msg = "'TimedeltaIndex' object has no attribute '{}'"
with pytest.raises(AttributeError, match=msg.format("hours")):
rng.hours
with pytest.raises(AttributeError, match=msg.format("minutes")):
rng.minutes
with pytest.raises(AttributeError, match=msg.format("milliseconds")):
rng.milliseconds
# with nat
s = Series(rng)
s[1] = np.nan
tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1]))
tm.assert_series_equal(
s.dt.seconds, Series([10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1])
)
# preserve name (GH15589)
rng.name = "name"
assert rng.days.name == "name"
def test_freq_conversion_always_floating(self):
# pre-2.0 td64 astype converted to float64. now for supported units
# (s, ms, us, ns) this converts to the requested dtype.
# This matches TDA and Series
tdi = timedelta_range("1 Day", periods=30)
res = tdi.astype("m8[s]")
exp_values = np.asarray(tdi).astype("m8[s]")
exp_tda = TimedeltaArray._simple_new(
exp_values, dtype=exp_values.dtype, freq=tdi.freq
)
expected = Index(exp_tda)
assert expected.dtype == "m8[s]"
tm.assert_index_equal(res, expected)
# check this matches Series and TimedeltaArray
res = tdi._data.astype("m8[s]")
tm.assert_equal(res, expected._values)
res = tdi.to_series().astype("m8[s]")
tm.assert_equal(res._values, expected._values._with_freq(None))
def test_freq_conversion(self, index_or_series):
# doc example
scalar = Timedelta(days=31)
td = index_or_series(
[scalar, scalar, scalar + timedelta(minutes=5, seconds=3), NaT],
dtype="m8[ns]",
)
result = td / np.timedelta64(1, "D")
expected = index_or_series(
[31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan]
)
tm.assert_equal(result, expected)
# We don't support "D" reso, so we use the pre-2.0 behavior
# casting to float64
msg = (
r"Cannot convert from timedelta64\[ns\] to timedelta64\[D\]. "
"Supported resolutions are 's', 'ms', 'us', 'ns'"
)
with pytest.raises(ValueError, match=msg):
td.astype("timedelta64[D]")
result = td / np.timedelta64(1, "s")
expected = index_or_series(
[31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan]
)
tm.assert_equal(result, expected)
exp_values = np.asarray(td).astype("m8[s]")
exp_tda = TimedeltaArray._simple_new(exp_values, dtype=exp_values.dtype)
expected = index_or_series(exp_tda)
assert expected.dtype == "m8[s]"
result = td.astype("timedelta64[s]")
tm.assert_equal(result, expected)