160 lines
5.1 KiB
Python
160 lines
5.1 KiB
Python
|
from datetime import timedelta
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
Index,
|
||
|
NaT,
|
||
|
Series,
|
||
|
Timedelta,
|
||
|
TimedeltaIndex,
|
||
|
timedelta_range,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.arrays import TimedeltaArray
|
||
|
from pandas.tests.indexes.datetimelike import DatetimeLike
|
||
|
|
||
|
randn = np.random.randn
|
||
|
|
||
|
|
||
|
class TestTimedeltaIndex(DatetimeLike):
|
||
|
_index_cls = TimedeltaIndex
|
||
|
|
||
|
@pytest.fixture
|
||
|
def simple_index(self) -> TimedeltaIndex:
|
||
|
index = pd.to_timedelta(range(5), unit="d")._with_freq("infer")
|
||
|
assert index.freq == "D"
|
||
|
ret = index + pd.offsets.Hour(1)
|
||
|
assert ret.freq == "D"
|
||
|
return ret
|
||
|
|
||
|
@pytest.fixture
|
||
|
def index(self):
|
||
|
return tm.makeTimedeltaIndex(10)
|
||
|
|
||
|
def test_numeric_compat(self):
|
||
|
# Dummy method to override super's version; this test is now done
|
||
|
# in test_arithmetic.py
|
||
|
pass
|
||
|
|
||
|
def test_shift(self):
|
||
|
pass # this is handled in test_arithmetic.py
|
||
|
|
||
|
def test_misc_coverage(self):
|
||
|
rng = timedelta_range("1 day", periods=5)
|
||
|
result = rng.groupby(rng.days)
|
||
|
assert isinstance(list(result.values())[0][0], Timedelta)
|
||
|
|
||
|
def test_map(self):
|
||
|
# test_map_dictlike generally tests
|
||
|
|
||
|
rng = timedelta_range("1 day", periods=10)
|
||
|
|
||
|
f = lambda x: x.days
|
||
|
result = rng.map(f)
|
||
|
exp = Index([f(x) for x in rng], dtype=np.int64)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
|
||
|
def test_pass_TimedeltaIndex_to_index(self):
|
||
|
rng = timedelta_range("1 days", "10 days")
|
||
|
idx = Index(rng, dtype=object)
|
||
|
|
||
|
expected = Index(rng.to_pytimedelta(), dtype=object)
|
||
|
|
||
|
tm.assert_numpy_array_equal(idx.values, expected.values)
|
||
|
|
||
|
def test_fields(self):
|
||
|
rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s")
|
||
|
tm.assert_index_equal(rng.days, Index([1, 1], dtype=np.int64))
|
||
|
tm.assert_index_equal(
|
||
|
rng.seconds,
|
||
|
Index([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13], dtype=np.int32),
|
||
|
)
|
||
|
tm.assert_index_equal(
|
||
|
rng.microseconds,
|
||
|
Index([100 * 1000 + 123, 100 * 1000 + 123], dtype=np.int32),
|
||
|
)
|
||
|
tm.assert_index_equal(rng.nanoseconds, Index([456, 456], dtype=np.int32))
|
||
|
|
||
|
msg = "'TimedeltaIndex' object has no attribute '{}'"
|
||
|
with pytest.raises(AttributeError, match=msg.format("hours")):
|
||
|
rng.hours
|
||
|
with pytest.raises(AttributeError, match=msg.format("minutes")):
|
||
|
rng.minutes
|
||
|
with pytest.raises(AttributeError, match=msg.format("milliseconds")):
|
||
|
rng.milliseconds
|
||
|
|
||
|
# with nat
|
||
|
s = Series(rng)
|
||
|
s[1] = np.nan
|
||
|
|
||
|
tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1]))
|
||
|
tm.assert_series_equal(
|
||
|
s.dt.seconds, Series([10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1])
|
||
|
)
|
||
|
|
||
|
# preserve name (GH15589)
|
||
|
rng.name = "name"
|
||
|
assert rng.days.name == "name"
|
||
|
|
||
|
def test_freq_conversion_always_floating(self):
|
||
|
# pre-2.0 td64 astype converted to float64. now for supported units
|
||
|
# (s, ms, us, ns) this converts to the requested dtype.
|
||
|
# This matches TDA and Series
|
||
|
tdi = timedelta_range("1 Day", periods=30)
|
||
|
|
||
|
res = tdi.astype("m8[s]")
|
||
|
exp_values = np.asarray(tdi).astype("m8[s]")
|
||
|
exp_tda = TimedeltaArray._simple_new(
|
||
|
exp_values, dtype=exp_values.dtype, freq=tdi.freq
|
||
|
)
|
||
|
expected = Index(exp_tda)
|
||
|
assert expected.dtype == "m8[s]"
|
||
|
tm.assert_index_equal(res, expected)
|
||
|
|
||
|
# check this matches Series and TimedeltaArray
|
||
|
res = tdi._data.astype("m8[s]")
|
||
|
tm.assert_equal(res, expected._values)
|
||
|
|
||
|
res = tdi.to_series().astype("m8[s]")
|
||
|
tm.assert_equal(res._values, expected._values._with_freq(None))
|
||
|
|
||
|
def test_freq_conversion(self, index_or_series):
|
||
|
# doc example
|
||
|
|
||
|
scalar = Timedelta(days=31)
|
||
|
td = index_or_series(
|
||
|
[scalar, scalar, scalar + timedelta(minutes=5, seconds=3), NaT],
|
||
|
dtype="m8[ns]",
|
||
|
)
|
||
|
|
||
|
result = td / np.timedelta64(1, "D")
|
||
|
expected = index_or_series(
|
||
|
[31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan]
|
||
|
)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# We don't support "D" reso, so we use the pre-2.0 behavior
|
||
|
# casting to float64
|
||
|
msg = (
|
||
|
r"Cannot convert from timedelta64\[ns\] to timedelta64\[D\]. "
|
||
|
"Supported resolutions are 's', 'ms', 'us', 'ns'"
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
td.astype("timedelta64[D]")
|
||
|
|
||
|
result = td / np.timedelta64(1, "s")
|
||
|
expected = index_or_series(
|
||
|
[31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan]
|
||
|
)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
exp_values = np.asarray(td).astype("m8[s]")
|
||
|
exp_tda = TimedeltaArray._simple_new(exp_values, dtype=exp_values.dtype)
|
||
|
expected = index_or_series(exp_tda)
|
||
|
assert expected.dtype == "m8[s]"
|
||
|
result = td.astype("timedelta64[s]")
|
||
|
tm.assert_equal(result, expected)
|