98 lines
2.8 KiB
Python
98 lines
2.8 KiB
Python
|
from typing import (
|
||
|
Any,
|
||
|
List,
|
||
|
)
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
m = 50
|
||
|
n = 1000
|
||
|
cols = ["jim", "joe", "jolie", "joline", "jolia"]
|
||
|
|
||
|
vals: List[Any] = [
|
||
|
np.random.randint(0, 10, n),
|
||
|
np.random.choice(list("abcdefghij"), n),
|
||
|
np.random.choice(pd.date_range("20141009", periods=10).tolist(), n),
|
||
|
np.random.choice(list("ZYXWVUTSRQ"), n),
|
||
|
np.random.randn(n),
|
||
|
]
|
||
|
vals = list(map(tuple, zip(*vals)))
|
||
|
|
||
|
# bunch of keys for testing
|
||
|
keys: List[Any] = [
|
||
|
np.random.randint(0, 11, m),
|
||
|
np.random.choice(list("abcdefghijk"), m),
|
||
|
np.random.choice(pd.date_range("20141009", periods=11).tolist(), m),
|
||
|
np.random.choice(list("ZYXWVUTSRQP"), m),
|
||
|
]
|
||
|
keys = list(map(tuple, zip(*keys)))
|
||
|
keys += list(map(lambda t: t[:-1], vals[:: n // m]))
|
||
|
|
||
|
|
||
|
# covers both unique index and non-unique index
|
||
|
df = DataFrame(vals, columns=cols)
|
||
|
a = pd.concat([df, df])
|
||
|
b = df.drop_duplicates(subset=cols[:-1])
|
||
|
|
||
|
|
||
|
def validate(mi, df, key):
|
||
|
# check indexing into a multi-index before & past the lexsort depth
|
||
|
|
||
|
mask = np.ones(len(df)).astype("bool")
|
||
|
|
||
|
# test for all partials of this key
|
||
|
for i, k in enumerate(key):
|
||
|
mask &= df.iloc[:, i] == k
|
||
|
|
||
|
if not mask.any():
|
||
|
assert key[: i + 1] not in mi.index
|
||
|
continue
|
||
|
|
||
|
assert key[: i + 1] in mi.index
|
||
|
right = df[mask].copy()
|
||
|
|
||
|
if i + 1 != len(key): # partial key
|
||
|
return_value = right.drop(cols[: i + 1], axis=1, inplace=True)
|
||
|
assert return_value is None
|
||
|
return_value = right.set_index(cols[i + 1 : -1], inplace=True)
|
||
|
assert return_value is None
|
||
|
tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
|
||
|
|
||
|
else: # full key
|
||
|
return_value = right.set_index(cols[:-1], inplace=True)
|
||
|
assert return_value is None
|
||
|
if len(right) == 1: # single hit
|
||
|
right = Series(
|
||
|
right["jolia"].values, name=right.index[0], index=["jolia"]
|
||
|
)
|
||
|
tm.assert_series_equal(mi.loc[key[: i + 1]], right)
|
||
|
else: # multi hit
|
||
|
tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
|
||
|
@pytest.mark.parametrize("lexsort_depth", list(range(5)))
|
||
|
@pytest.mark.parametrize("key", keys)
|
||
|
@pytest.mark.parametrize("frame", [a, b])
|
||
|
def test_multiindex_get_loc(lexsort_depth, key, frame):
|
||
|
# GH7724, GH2646
|
||
|
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
if lexsort_depth == 0:
|
||
|
df = frame.copy()
|
||
|
else:
|
||
|
df = frame.sort_values(by=cols[:lexsort_depth])
|
||
|
|
||
|
mi = df.set_index(cols[:-1])
|
||
|
assert not mi.index._lexsort_depth < lexsort_depth
|
||
|
validate(mi, df, key)
|