Inzynierka/Lib/site-packages/pandas/tests/indexing/test_indexing.py

1093 lines
37 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
""" test fancy indexing & misc """
import array
from datetime import datetime
import re
import weakref
import numpy as np
import pytest
from pandas.errors import IndexingError
from pandas.core.dtypes.common import (
is_float_dtype,
is_integer_dtype,
is_object_dtype,
)
import pandas as pd
from pandas import (
DataFrame,
Index,
NaT,
Series,
date_range,
offsets,
timedelta_range,
)
import pandas._testing as tm
from pandas.tests.indexing.common import _mklbl
from pandas.tests.indexing.test_floats import gen_obj
# ------------------------------------------------------------------------
# Indexing test cases
class TestFancy:
"""pure get/set item & fancy indexing"""
def test_setitem_ndarray_1d(self):
# GH5508
# len of indexer vs length of the 1d ndarray
df = DataFrame(index=Index(np.arange(1, 11), dtype=np.int64))
df["foo"] = np.zeros(10, dtype=np.float64)
df["bar"] = np.zeros(10, dtype=complex)
# invalid
msg = "Must have equal len keys and value when setting with an iterable"
with pytest.raises(ValueError, match=msg):
df.loc[df.index[2:5], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0])
# valid
df.loc[df.index[2:6], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0])
result = df.loc[df.index[2:6], "bar"]
expected = Series(
[2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name="bar"
)
tm.assert_series_equal(result, expected)
def test_setitem_ndarray_1d_2(self):
# GH5508
# dtype getting changed?
df = DataFrame(index=Index(np.arange(1, 11)))
df["foo"] = np.zeros(10, dtype=np.float64)
df["bar"] = np.zeros(10, dtype=complex)
msg = "Must have equal len keys and value when setting with an iterable"
with pytest.raises(ValueError, match=msg):
df[2:5] = np.arange(1, 4) * 1j
def test_getitem_ndarray_3d(
self, index, frame_or_series, indexer_sli, using_array_manager
):
# GH 25567
obj = gen_obj(frame_or_series, index)
idxr = indexer_sli(obj)
nd3 = np.random.randint(5, size=(2, 2, 2))
msgs = []
if frame_or_series is Series and indexer_sli in [tm.setitem, tm.iloc]:
msgs.append(r"Wrong number of dimensions. values.ndim > ndim \[3 > 1\]")
if using_array_manager:
msgs.append("Passed array should be 1-dimensional")
if frame_or_series is Series or indexer_sli is tm.iloc:
msgs.append(r"Buffer has wrong number of dimensions \(expected 1, got 3\)")
if using_array_manager:
msgs.append("indexer should be 1-dimensional")
if indexer_sli is tm.loc or (
frame_or_series is Series and indexer_sli is tm.setitem
):
msgs.append("Cannot index with multidimensional key")
if frame_or_series is DataFrame and indexer_sli is tm.setitem:
msgs.append("Index data must be 1-dimensional")
if isinstance(index, pd.IntervalIndex) and indexer_sli is tm.iloc:
msgs.append("Index data must be 1-dimensional")
if isinstance(index, (pd.TimedeltaIndex, pd.DatetimeIndex, pd.PeriodIndex)):
msgs.append("Data must be 1-dimensional")
if len(index) == 0 or isinstance(index, pd.MultiIndex):
msgs.append("positional indexers are out-of-bounds")
if type(index) is Index and not isinstance(index._values, np.ndarray):
# e.g. Int64
msgs.append("values must be a 1D array")
# string[pyarrow]
msgs.append("only handle 1-dimensional arrays")
msg = "|".join(msgs)
potential_errors = (IndexError, ValueError, NotImplementedError)
with pytest.raises(potential_errors, match=msg):
idxr[nd3]
def test_setitem_ndarray_3d(self, index, frame_or_series, indexer_sli):
# GH 25567
obj = gen_obj(frame_or_series, index)
idxr = indexer_sli(obj)
nd3 = np.random.randint(5, size=(2, 2, 2))
if indexer_sli is tm.iloc:
err = ValueError
msg = f"Cannot set values with ndim > {obj.ndim}"
else:
err = ValueError
msg = "|".join(
[
r"Buffer has wrong number of dimensions \(expected 1, got 3\)",
"Cannot set values with ndim > 1",
"Index data must be 1-dimensional",
"Data must be 1-dimensional",
"Array conditional must be same shape as self",
]
)
with pytest.raises(err, match=msg):
idxr[nd3] = 0
def test_getitem_ndarray_0d(self):
# GH#24924
key = np.array(0)
# dataframe __getitem__
df = DataFrame([[1, 2], [3, 4]])
result = df[key]
expected = Series([1, 3], name=0)
tm.assert_series_equal(result, expected)
# series __getitem__
ser = Series([1, 2])
result = ser[key]
assert result == 1
def test_inf_upcast(self):
# GH 16957
# We should be able to use np.inf as a key
# np.inf should cause an index to convert to float
# Test with np.inf in rows
df = DataFrame(columns=[0])
df.loc[1] = 1
df.loc[2] = 2
df.loc[np.inf] = 3
# make sure we can look up the value
assert df.loc[np.inf, 0] == 3
result = df.index
expected = Index([1, 2, np.inf], dtype=np.float64)
tm.assert_index_equal(result, expected)
def test_setitem_dtype_upcast(self):
# GH3216
df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
df["c"] = np.nan
assert df["c"].dtype == np.float64
df.loc[0, "c"] = "foo"
expected = DataFrame(
[{"a": 1, "b": np.nan, "c": "foo"}, {"a": 3, "b": 2, "c": np.nan}]
)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("val", [3.14, "wxyz"])
def test_setitem_dtype_upcast2(self, val):
# GH10280
df = DataFrame(
np.arange(6, dtype="int64").reshape(2, 3),
index=list("ab"),
columns=["foo", "bar", "baz"],
)
left = df.copy()
left.loc["a", "bar"] = val
right = DataFrame(
[[0, val, 2], [3, 4, 5]],
index=list("ab"),
columns=["foo", "bar", "baz"],
)
tm.assert_frame_equal(left, right)
assert is_integer_dtype(left["foo"])
assert is_integer_dtype(left["baz"])
def test_setitem_dtype_upcast3(self):
left = DataFrame(
np.arange(6, dtype="int64").reshape(2, 3) / 10.0,
index=list("ab"),
columns=["foo", "bar", "baz"],
)
left.loc["a", "bar"] = "wxyz"
right = DataFrame(
[[0, "wxyz", 0.2], [0.3, 0.4, 0.5]],
index=list("ab"),
columns=["foo", "bar", "baz"],
)
tm.assert_frame_equal(left, right)
assert is_float_dtype(left["foo"])
assert is_float_dtype(left["baz"])
def test_dups_fancy_indexing(self):
# GH 3455
df = tm.makeCustomDataframe(10, 3)
df.columns = ["a", "a", "b"]
result = df[["b", "a"]].columns
expected = Index(["b", "a", "a"])
tm.assert_index_equal(result, expected)
def test_dups_fancy_indexing_across_dtypes(self):
# across dtypes
df = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("aaaaaaa"))
df.head()
str(df)
result = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]])
result.columns = list("aaaaaaa") # GH#3468
# GH#3509 smoke tests for indexing with duplicate columns
df.iloc[:, 4]
result.iloc[:, 4]
tm.assert_frame_equal(df, result)
def test_dups_fancy_indexing_not_in_order(self):
# GH 3561, dups not in selected order
df = DataFrame(
{"test": [5, 7, 9, 11], "test1": [4.0, 5, 6, 7], "other": list("abcd")},
index=["A", "A", "B", "C"],
)
rows = ["C", "B"]
expected = DataFrame(
{"test": [11, 9], "test1": [7.0, 6], "other": ["d", "c"]}, index=rows
)
result = df.loc[rows]
tm.assert_frame_equal(result, expected)
result = df.loc[Index(rows)]
tm.assert_frame_equal(result, expected)
rows = ["C", "B", "E"]
with pytest.raises(KeyError, match="not in index"):
df.loc[rows]
# see GH5553, make sure we use the right indexer
rows = ["F", "G", "H", "C", "B", "E"]
with pytest.raises(KeyError, match="not in index"):
df.loc[rows]
def test_dups_fancy_indexing_only_missing_label(self):
# List containing only missing label
dfnu = DataFrame(np.random.randn(5, 3), index=list("AABCD"))
with pytest.raises(
KeyError,
match=re.escape(
"\"None of [Index(['E'], dtype='object')] are in the [index]\""
),
):
dfnu.loc[["E"]]
@pytest.mark.parametrize("vals", [[0, 1, 2], list("abc")])
def test_dups_fancy_indexing_missing_label(self, vals):
# GH 4619; duplicate indexer with missing label
df = DataFrame({"A": vals})
with pytest.raises(KeyError, match="not in index"):
df.loc[[0, 8, 0]]
def test_dups_fancy_indexing_non_unique(self):
# non unique with non unique selector
df = DataFrame({"test": [5, 7, 9, 11]}, index=["A", "A", "B", "C"])
with pytest.raises(KeyError, match="not in index"):
df.loc[["A", "A", "E"]]
def test_dups_fancy_indexing2(self):
# GH 5835
# dups on index and missing values
df = DataFrame(np.random.randn(5, 5), columns=["A", "B", "B", "B", "A"])
with pytest.raises(KeyError, match="not in index"):
df.loc[:, ["A", "B", "C"]]
def test_dups_fancy_indexing3(self):
# GH 6504, multi-axis indexing
df = DataFrame(
np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=["a", "b"]
)
expected = df.iloc[0:6]
result = df.loc[[1, 2]]
tm.assert_frame_equal(result, expected)
expected = df
result = df.loc[:, ["a", "b"]]
tm.assert_frame_equal(result, expected)
expected = df.iloc[0:6, :]
result = df.loc[[1, 2], ["a", "b"]]
tm.assert_frame_equal(result, expected)
def test_duplicate_int_indexing(self, indexer_sl):
# GH 17347
ser = Series(range(3), index=[1, 1, 3])
expected = Series(range(2), index=[1, 1])
result = indexer_sl(ser)[[1]]
tm.assert_series_equal(result, expected)
def test_indexing_mixed_frame_bug(self):
# GH3492
df = DataFrame(
{"a": {1: "aaa", 2: "bbb", 3: "ccc"}, "b": {1: 111, 2: 222, 3: 333}}
)
# this works, new column is created correctly
df["test"] = df["a"].apply(lambda x: "_" if x == "aaa" else x)
# this does not work, ie column test is not changed
idx = df["test"] == "_"
temp = df.loc[idx, "a"].apply(lambda x: "-----" if x == "aaa" else x)
df.loc[idx, "test"] = temp
assert df.iloc[0, 2] == "-----"
def test_multitype_list_index_access(self):
# GH 10610
df = DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23])
with pytest.raises(KeyError, match=re.escape("'[26, -8] not in index'")):
df[[22, 26, -8]]
assert df[21].shape[0] == df.shape[0]
def test_set_index_nan(self):
# GH 3586
df = DataFrame(
{
"PRuid": {
17: "nonQC",
18: "nonQC",
19: "nonQC",
20: "10",
21: "11",
22: "12",
23: "13",
24: "24",
25: "35",
26: "46",
27: "47",
28: "48",
29: "59",
30: "10",
},
"QC": {
17: 0.0,
18: 0.0,
19: 0.0,
20: np.nan,
21: np.nan,
22: np.nan,
23: np.nan,
24: 1.0,
25: np.nan,
26: np.nan,
27: np.nan,
28: np.nan,
29: np.nan,
30: np.nan,
},
"data": {
17: 7.9544899999999998,
18: 8.0142609999999994,
19: 7.8591520000000008,
20: 0.86140349999999999,
21: 0.87853110000000001,
22: 0.8427041999999999,
23: 0.78587700000000005,
24: 0.73062459999999996,
25: 0.81668560000000001,
26: 0.81927080000000008,
27: 0.80705009999999999,
28: 0.81440240000000008,
29: 0.80140849999999997,
30: 0.81307740000000006,
},
"year": {
17: 2006,
18: 2007,
19: 2008,
20: 1985,
21: 1985,
22: 1985,
23: 1985,
24: 1985,
25: 1985,
26: 1985,
27: 1985,
28: 1985,
29: 1985,
30: 1986,
},
}
).reset_index()
result = (
df.set_index(["year", "PRuid", "QC"])
.reset_index()
.reindex(columns=df.columns)
)
tm.assert_frame_equal(result, df)
def test_multi_assign(self):
# GH 3626, an assignment of a sub-df to a df
df = DataFrame(
{
"FC": ["a", "b", "a", "b", "a", "b"],
"PF": [0, 0, 0, 0, 1, 1],
"col1": list(range(6)),
"col2": list(range(6, 12)),
}
)
df.iloc[1, 0] = np.nan
df2 = df.copy()
mask = ~df2.FC.isna()
cols = ["col1", "col2"]
dft = df2 * 2
dft.iloc[3, 3] = np.nan
expected = DataFrame(
{
"FC": ["a", np.nan, "a", "b", "a", "b"],
"PF": [0, 0, 0, 0, 1, 1],
"col1": Series([0, 1, 4, 6, 8, 10]),
"col2": [12, 7, 16, np.nan, 20, 22],
}
)
# frame on rhs
df2.loc[mask, cols] = dft.loc[mask, cols]
tm.assert_frame_equal(df2, expected)
# with an ndarray on rhs
# coerces to float64 because values has float64 dtype
# GH 14001
expected = DataFrame(
{
"FC": ["a", np.nan, "a", "b", "a", "b"],
"PF": [0, 0, 0, 0, 1, 1],
"col1": [0, 1, 4, 6, 8, 10],
"col2": [12, 7, 16, np.nan, 20, 22],
}
)
df2 = df.copy()
df2.loc[mask, cols] = dft.loc[mask, cols].values
tm.assert_frame_equal(df2, expected)
def test_multi_assign_broadcasting_rhs(self):
# broadcasting on the rhs is required
df = DataFrame(
{
"A": [1, 2, 0, 0, 0],
"B": [0, 0, 0, 10, 11],
"C": [0, 0, 0, 10, 11],
"D": [3, 4, 5, 6, 7],
}
)
expected = df.copy()
mask = expected["A"] == 0
for col in ["A", "B"]:
expected.loc[mask, col] = df["D"]
df.loc[df["A"] == 0, ["A", "B"]] = df["D"]
tm.assert_frame_equal(df, expected)
def test_setitem_list(self):
# GH 6043
# iloc with a list
df = DataFrame(index=[0, 1], columns=[0])
df.iloc[1, 0] = [1, 2, 3]
df.iloc[1, 0] = [1, 2]
result = DataFrame(index=[0, 1], columns=[0])
result.iloc[1, 0] = [1, 2]
tm.assert_frame_equal(result, df)
def test_string_slice(self):
# GH 14424
# string indexing against datetimelike with object
# dtype should properly raises KeyError
df = DataFrame([1], Index([pd.Timestamp("2011-01-01")], dtype=object))
assert df.index._is_all_dates
with pytest.raises(KeyError, match="'2011'"):
df["2011"]
with pytest.raises(KeyError, match="'2011'"):
df.loc["2011", 0]
def test_string_slice_empty(self):
# GH 14424
df = DataFrame()
assert not df.index._is_all_dates
with pytest.raises(KeyError, match="'2011'"):
df["2011"]
with pytest.raises(KeyError, match="^0$"):
df.loc["2011", 0]
def test_astype_assignment(self):
# GH4312 (iloc)
df_orig = DataFrame(
[["1", "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
)
df = df_orig.copy()
# with the enforcement of GH#45333 in 2.0, this setting is attempted inplace,
# so object dtype is retained
df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64)
expected = DataFrame(
[[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
)
expected["A"] = expected["A"].astype(object)
expected["B"] = expected["B"].astype(object)
tm.assert_frame_equal(df, expected)
# GH5702 (loc)
df = df_orig.copy()
df.loc[:, "A"] = df.loc[:, "A"].astype(np.int64)
expected = DataFrame(
[[1, "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
)
expected["A"] = expected["A"].astype(object)
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[:, ["B", "C"]] = df.loc[:, ["B", "C"]].astype(np.int64)
expected = DataFrame(
[["1", 2, 3, ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
)
expected["B"] = expected["B"].astype(object)
expected["C"] = expected["C"].astype(object)
tm.assert_frame_equal(df, expected)
def test_astype_assignment_full_replacements(self):
# full replacements / no nans
df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
# With the enforcement of GH#45333 in 2.0, this assignment occurs inplace,
# so float64 is retained
df.iloc[:, 0] = df["A"].astype(np.int64)
expected = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
tm.assert_frame_equal(df, expected)
df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
df.loc[:, "A"] = df["A"].astype(np.int64)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("indexer", [tm.getitem, tm.loc])
def test_index_type_coercion(self, indexer):
# GH 11836
# if we have an index type and set it with something that looks
# to numpy like the same, but is actually, not
# (e.g. setting with a float or string '0')
# then we need to coerce to object
# integer indexes
for s in [Series(range(5)), Series(range(5), index=range(1, 6))]:
assert is_integer_dtype(s.index)
s2 = s.copy()
indexer(s2)[0.1] = 0
assert is_float_dtype(s2.index)
assert indexer(s2)[0.1] == 0
s2 = s.copy()
indexer(s2)[0.0] = 0
exp = s.index
if 0 not in s:
exp = Index(s.index.tolist() + [0])
tm.assert_index_equal(s2.index, exp)
s2 = s.copy()
indexer(s2)["0"] = 0
assert is_object_dtype(s2.index)
for s in [Series(range(5), index=np.arange(5.0))]:
assert is_float_dtype(s.index)
s2 = s.copy()
indexer(s2)[0.1] = 0
assert is_float_dtype(s2.index)
assert indexer(s2)[0.1] == 0
s2 = s.copy()
indexer(s2)[0.0] = 0
tm.assert_index_equal(s2.index, s.index)
s2 = s.copy()
indexer(s2)["0"] = 0
assert is_object_dtype(s2.index)
class TestMisc:
def test_float_index_to_mixed(self):
df = DataFrame({0.0: np.random.rand(10), 1.0: np.random.rand(10)})
df["a"] = 10
expected = DataFrame({0.0: df[0.0], 1.0: df[1.0], "a": [10] * 10})
tm.assert_frame_equal(expected, df)
def test_float_index_non_scalar_assignment(self):
df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0])
df.loc[df.index[:2]] = 1
expected = DataFrame({"a": [1, 1, 3], "b": [1, 1, 5]}, index=df.index)
tm.assert_frame_equal(expected, df)
def test_loc_setitem_fullindex_views(self):
df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0])
df2 = df.copy()
df.loc[df.index] = df.loc[df.index]
tm.assert_frame_equal(df, df2)
def test_rhs_alignment(self):
# GH8258, tests that both rows & columns are aligned to what is
# assigned to. covers both uniform data-type & multi-type cases
def run_tests(df, rhs, right_loc, right_iloc):
# label, index, slice
lbl_one, idx_one, slice_one = list("bcd"), [1, 2, 3], slice(1, 4)
lbl_two, idx_two, slice_two = ["joe", "jolie"], [1, 2], slice(1, 3)
left = df.copy()
left.loc[lbl_one, lbl_two] = rhs
tm.assert_frame_equal(left, right_loc)
left = df.copy()
left.iloc[idx_one, idx_two] = rhs
tm.assert_frame_equal(left, right_iloc)
left = df.copy()
left.iloc[slice_one, slice_two] = rhs
tm.assert_frame_equal(left, right_iloc)
xs = np.arange(20).reshape(5, 4)
cols = ["jim", "joe", "jolie", "joline"]
df = DataFrame(xs, columns=cols, index=list("abcde"), dtype="int64")
# right hand side; permute the indices and multiplpy by -2
rhs = -2 * df.iloc[3:0:-1, 2:0:-1]
# expected `right` result; just multiply by -2
right_iloc = df.copy()
right_iloc["joe"] = [1, 14, 10, 6, 17]
right_iloc["jolie"] = [2, 13, 9, 5, 18]
right_iloc.iloc[1:4, 1:3] *= -2
right_loc = df.copy()
right_loc.iloc[1:4, 1:3] *= -2
# run tests with uniform dtypes
run_tests(df, rhs, right_loc, right_iloc)
# make frames multi-type & re-run tests
for frame in [df, rhs, right_loc, right_iloc]:
frame["joe"] = frame["joe"].astype("float64")
frame["jolie"] = frame["jolie"].map(lambda x: f"@{x}")
right_iloc["joe"] = [1.0, "@-28", "@-20", "@-12", 17.0]
right_iloc["jolie"] = ["@2", -26.0, -18.0, -10.0, "@18"]
run_tests(df, rhs, right_loc, right_iloc)
@pytest.mark.parametrize(
"idx", [_mklbl("A", 20), np.arange(20) + 100, np.linspace(100, 150, 20)]
)
def test_str_label_slicing_with_negative_step(self, idx):
SLC = pd.IndexSlice
idx = Index(idx)
ser = Series(np.arange(20), index=idx)
tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] :: -1], SLC[9::-1])
tm.assert_indexing_slices_equivalent(ser, SLC[: idx[9] : -1], SLC[:8:-1])
tm.assert_indexing_slices_equivalent(
ser, SLC[idx[13] : idx[9] : -1], SLC[13:8:-1]
)
tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] : idx[13] : -1], SLC[:0])
def test_slice_with_zero_step_raises(self, index, indexer_sl, frame_or_series):
obj = frame_or_series(np.arange(len(index)), index=index)
with pytest.raises(ValueError, match="slice step cannot be zero"):
indexer_sl(obj)[::0]
def test_loc_setitem_indexing_assignment_dict_already_exists(self):
index = Index([-5, 0, 5], name="z")
df = DataFrame({"x": [1, 2, 6], "y": [2, 2, 8]}, index=index)
expected = df.copy()
rhs = {"x": 9, "y": 99}
df.loc[5] = rhs
expected.loc[5] = [9, 99]
tm.assert_frame_equal(df, expected)
# GH#38335 same thing, mixed dtypes
df = DataFrame({"x": [1, 2, 6], "y": [2.0, 2.0, 8.0]}, index=index)
df.loc[5] = rhs
expected = DataFrame({"x": [1, 2, 9], "y": [2.0, 2.0, 99.0]}, index=index)
tm.assert_frame_equal(df, expected)
def test_iloc_getitem_indexing_dtypes_on_empty(self):
# Check that .iloc returns correct dtypes GH9983
df = DataFrame({"a": [1, 2, 3], "b": ["b", "b2", "b3"]})
df2 = df.iloc[[], :]
assert df2.loc[:, "a"].dtype == np.int64
tm.assert_series_equal(df2.loc[:, "a"], df2.iloc[:, 0])
@pytest.mark.parametrize("size", [5, 999999, 1000000])
def test_loc_range_in_series_indexing(self, size):
# range can cause an indexing error
# GH 11652
s = Series(index=range(size), dtype=np.float64)
s.loc[range(1)] = 42
tm.assert_series_equal(s.loc[range(1)], Series(42.0, index=[0]))
s.loc[range(2)] = 43
tm.assert_series_equal(s.loc[range(2)], Series(43.0, index=[0, 1]))
def test_partial_boolean_frame_indexing(self):
# GH 17170
df = DataFrame(
np.arange(9.0).reshape(3, 3), index=list("abc"), columns=list("ABC")
)
index_df = DataFrame(1, index=list("ab"), columns=list("AB"))
result = df[index_df.notnull()]
expected = DataFrame(
np.array([[0.0, 1.0, np.nan], [3.0, 4.0, np.nan], [np.nan] * 3]),
index=list("abc"),
columns=list("ABC"),
)
tm.assert_frame_equal(result, expected)
def test_no_reference_cycle(self):
df = DataFrame({"a": [0, 1], "b": [2, 3]})
for name in ("loc", "iloc", "at", "iat"):
getattr(df, name)
wr = weakref.ref(df)
del df
assert wr() is None
def test_label_indexing_on_nan(self, nulls_fixture):
# GH 32431
df = Series([1, "{1,2}", 1, nulls_fixture])
vc = df.value_counts(dropna=False)
result1 = vc.loc[nulls_fixture]
result2 = vc[nulls_fixture]
expected = 1
assert result1 == expected
assert result2 == expected
class TestDataframeNoneCoercion:
EXPECTED_SINGLE_ROW_RESULTS = [
# For numeric series, we should coerce to NaN.
([1, 2, 3], [np.nan, 2, 3]),
([1.0, 2.0, 3.0], [np.nan, 2.0, 3.0]),
# For datetime series, we should coerce to NaT.
(
[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
[NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)],
),
# For objects, we should preserve the None value.
(["foo", "bar", "baz"], [None, "bar", "baz"]),
]
@pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
def test_coercion_with_loc(self, expected):
start_data, expected_result = expected
start_dataframe = DataFrame({"foo": start_data})
start_dataframe.loc[0, ["foo"]] = None
expected_dataframe = DataFrame({"foo": expected_result})
tm.assert_frame_equal(start_dataframe, expected_dataframe)
@pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
def test_coercion_with_setitem_and_dataframe(self, expected):
start_data, expected_result = expected
start_dataframe = DataFrame({"foo": start_data})
start_dataframe[start_dataframe["foo"] == start_dataframe["foo"][0]] = None
expected_dataframe = DataFrame({"foo": expected_result})
tm.assert_frame_equal(start_dataframe, expected_dataframe)
@pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
def test_none_coercion_loc_and_dataframe(self, expected):
start_data, expected_result = expected
start_dataframe = DataFrame({"foo": start_data})
start_dataframe.loc[start_dataframe["foo"] == start_dataframe["foo"][0]] = None
expected_dataframe = DataFrame({"foo": expected_result})
tm.assert_frame_equal(start_dataframe, expected_dataframe)
def test_none_coercion_mixed_dtypes(self):
start_dataframe = DataFrame(
{
"a": [1, 2, 3],
"b": [1.0, 2.0, 3.0],
"c": [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
"d": ["a", "b", "c"],
}
)
start_dataframe.iloc[0] = None
exp = DataFrame(
{
"a": [np.nan, 2, 3],
"b": [np.nan, 2.0, 3.0],
"c": [NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)],
"d": [None, "b", "c"],
}
)
tm.assert_frame_equal(start_dataframe, exp)
class TestDatetimelikeCoercion:
def test_setitem_dt64_string_scalar(self, tz_naive_fixture, indexer_sli):
# dispatching _can_hold_element to underlying DatetimeArray
tz = tz_naive_fixture
dti = date_range("2016-01-01", periods=3, tz=tz)
ser = Series(dti.copy(deep=True))
values = ser._values
newval = "2018-01-01"
values._validate_setitem_value(newval)
indexer_sli(ser)[0] = newval
if tz is None:
# TODO(EA2D): we can make this no-copy in tz-naive case too
assert ser.dtype == dti.dtype
assert ser._values._ndarray is values._ndarray
else:
assert ser._values is values
@pytest.mark.parametrize("box", [list, np.array, pd.array, pd.Categorical, Index])
@pytest.mark.parametrize(
"key", [[0, 1], slice(0, 2), np.array([True, True, False])]
)
def test_setitem_dt64_string_values(self, tz_naive_fixture, indexer_sli, key, box):
# dispatching _can_hold_element to underling DatetimeArray
tz = tz_naive_fixture
if isinstance(key, slice) and indexer_sli is tm.loc:
key = slice(0, 1)
dti = date_range("2016-01-01", periods=3, tz=tz)
ser = Series(dti.copy(deep=True))
values = ser._values
newvals = box(["2019-01-01", "2010-01-02"])
values._validate_setitem_value(newvals)
indexer_sli(ser)[key] = newvals
if tz is None:
# TODO(EA2D): we can make this no-copy in tz-naive case too
assert ser.dtype == dti.dtype
assert ser._values._ndarray is values._ndarray
else:
assert ser._values is values
@pytest.mark.parametrize("scalar", ["3 Days", offsets.Hour(4)])
def test_setitem_td64_scalar(self, indexer_sli, scalar):
# dispatching _can_hold_element to underling TimedeltaArray
tdi = timedelta_range("1 Day", periods=3)
ser = Series(tdi.copy(deep=True))
values = ser._values
values._validate_setitem_value(scalar)
indexer_sli(ser)[0] = scalar
assert ser._values._ndarray is values._ndarray
@pytest.mark.parametrize("box", [list, np.array, pd.array, pd.Categorical, Index])
@pytest.mark.parametrize(
"key", [[0, 1], slice(0, 2), np.array([True, True, False])]
)
def test_setitem_td64_string_values(self, indexer_sli, key, box):
# dispatching _can_hold_element to underling TimedeltaArray
if isinstance(key, slice) and indexer_sli is tm.loc:
key = slice(0, 1)
tdi = timedelta_range("1 Day", periods=3)
ser = Series(tdi.copy(deep=True))
values = ser._values
newvals = box(["10 Days", "44 hours"])
values._validate_setitem_value(newvals)
indexer_sli(ser)[key] = newvals
assert ser._values._ndarray is values._ndarray
def test_extension_array_cross_section():
# A cross-section of a homogeneous EA should be an EA
df = DataFrame(
{
"A": pd.array([1, 2], dtype="Int64"),
"B": pd.array([3, 4], dtype="Int64"),
},
index=["a", "b"],
)
expected = Series(pd.array([1, 3], dtype="Int64"), index=["A", "B"], name="a")
result = df.loc["a"]
tm.assert_series_equal(result, expected)
result = df.iloc[0]
tm.assert_series_equal(result, expected)
def test_extension_array_cross_section_converts():
# all numeric columns -> numeric series
df = DataFrame(
{
"A": pd.array([1, 2], dtype="Int64"),
"B": np.array([1, 2], dtype="int64"),
},
index=["a", "b"],
)
result = df.loc["a"]
expected = Series([1, 1], dtype="Int64", index=["A", "B"], name="a")
tm.assert_series_equal(result, expected)
result = df.iloc[0]
tm.assert_series_equal(result, expected)
# mixed columns -> object series
df = DataFrame(
{"A": pd.array([1, 2], dtype="Int64"), "B": np.array(["a", "b"])},
index=["a", "b"],
)
result = df.loc["a"]
expected = Series([1, "a"], dtype=object, index=["A", "B"], name="a")
tm.assert_series_equal(result, expected)
result = df.iloc[0]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, keys",
[(Series([10]), (0, 0)), (Series([1, 2, 3], index=list("abc")), (0, 1))],
)
def test_ser_tup_indexer_exceeds_dimensions(ser, keys, indexer_li):
# GH#13831
exp_err, exp_msg = IndexingError, "Too many indexers"
with pytest.raises(exp_err, match=exp_msg):
indexer_li(ser)[keys]
if indexer_li == tm.iloc:
# For iloc.__setitem__ we let numpy handle the error reporting.
exp_err, exp_msg = IndexError, "too many indices for array"
with pytest.raises(exp_err, match=exp_msg):
indexer_li(ser)[keys] = 0
def test_ser_list_indexer_exceeds_dimensions(indexer_li):
# GH#13831
# Make sure an exception is raised when a tuple exceeds the dimension of the series,
# but not list when a list is used.
ser = Series([10])
res = indexer_li(ser)[[0, 0]]
exp = Series([10, 10], index=Index([0, 0]))
tm.assert_series_equal(res, exp)
@pytest.mark.parametrize(
"value", [(0, 1), [0, 1], np.array([0, 1]), array.array("b", [0, 1])]
)
def test_scalar_setitem_with_nested_value(value):
# For numeric data, we try to unpack and thus raise for mismatching length
df = DataFrame({"A": [1, 2, 3]})
msg = "|".join(
[
"Must have equal len keys and value",
"setting an array element with a sequence",
]
)
with pytest.raises(ValueError, match=msg):
df.loc[0, "B"] = value
# TODO For object dtype this happens as well, but should we rather preserve
# the nested data and set as such?
df = DataFrame({"A": [1, 2, 3], "B": np.array([1, "a", "b"], dtype=object)})
with pytest.raises(ValueError, match="Must have equal len keys and value"):
df.loc[0, "B"] = value
# if isinstance(value, np.ndarray):
# assert (df.loc[0, "B"] == value).all()
# else:
# assert df.loc[0, "B"] == value
@pytest.mark.parametrize(
"value", [(0, 1), [0, 1], np.array([0, 1]), array.array("b", [0, 1])]
)
def test_scalar_setitem_series_with_nested_value(value, indexer_sli):
# For numeric data, we try to unpack and thus raise for mismatching length
ser = Series([1, 2, 3])
with pytest.raises(ValueError, match="setting an array element with a sequence"):
indexer_sli(ser)[0] = value
# but for object dtype we preserve the nested data and set as such
ser = Series([1, "a", "b"], dtype=object)
indexer_sli(ser)[0] = value
if isinstance(value, np.ndarray):
assert (ser.loc[0] == value).all()
else:
assert ser.loc[0] == value
@pytest.mark.parametrize(
"value", [(0.0,), [0.0], np.array([0.0]), array.array("d", [0.0])]
)
def test_scalar_setitem_with_nested_value_length1(value):
# https://github.com/pandas-dev/pandas/issues/46268
# For numeric data, assigning length-1 array to scalar position gets unpacked
df = DataFrame({"A": [1, 2, 3]})
df.loc[0, "B"] = value
expected = DataFrame({"A": [1, 2, 3], "B": [0.0, np.nan, np.nan]})
tm.assert_frame_equal(df, expected)
# but for object dtype we preserve the nested data
df = DataFrame({"A": [1, 2, 3], "B": np.array([1, "a", "b"], dtype=object)})
df.loc[0, "B"] = value
if isinstance(value, np.ndarray):
assert (df.loc[0, "B"] == value).all()
else:
assert df.loc[0, "B"] == value
@pytest.mark.parametrize(
"value", [(0.0,), [0.0], np.array([0.0]), array.array("d", [0.0])]
)
def test_scalar_setitem_series_with_nested_value_length1(value, indexer_sli):
# For numeric data, assigning length-1 array to scalar position gets unpacked
# TODO this only happens in case of ndarray, should we make this consistent
# for all list-likes? (as happens for DataFrame.(i)loc, see test above)
ser = Series([1.0, 2.0, 3.0])
if isinstance(value, np.ndarray):
indexer_sli(ser)[0] = value
expected = Series([0.0, 2.0, 3.0])
tm.assert_series_equal(ser, expected)
else:
with pytest.raises(
ValueError, match="setting an array element with a sequence"
):
indexer_sli(ser)[0] = value
# but for object dtype we preserve the nested data
ser = Series([1, "a", "b"], dtype=object)
indexer_sli(ser)[0] = value
if isinstance(value, np.ndarray):
assert (ser.loc[0] == value).all()
else:
assert ser.loc[0] == value