864 lines
27 KiB
Python
864 lines
27 KiB
Python
|
"""
|
||
|
Sparse matrix functions
|
||
|
"""
|
||
|
|
||
|
#
|
||
|
# Authors: Travis Oliphant, March 2002
|
||
|
# Anthony Scopatz, August 2012 (Sparse Updates)
|
||
|
# Jake Vanderplas, August 2012 (Sparse Updates)
|
||
|
#
|
||
|
|
||
|
__all__ = ['expm', 'inv']
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.linalg._basic import solve, solve_triangular
|
||
|
|
||
|
from scipy.sparse._base import isspmatrix
|
||
|
from scipy.sparse.linalg import spsolve
|
||
|
from scipy.sparse._sputils import is_pydata_spmatrix
|
||
|
|
||
|
import scipy.sparse
|
||
|
import scipy.sparse.linalg
|
||
|
from scipy.sparse.linalg._interface import LinearOperator
|
||
|
|
||
|
from ._expm_multiply import _ident_like, _exact_1_norm as _onenorm
|
||
|
|
||
|
|
||
|
UPPER_TRIANGULAR = 'upper_triangular'
|
||
|
|
||
|
|
||
|
def inv(A):
|
||
|
"""
|
||
|
Compute the inverse of a sparse matrix
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : (M, M) sparse matrix
|
||
|
square matrix to be inverted
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Ainv : (M, M) sparse matrix
|
||
|
inverse of `A`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This computes the sparse inverse of `A`. If the inverse of `A` is expected
|
||
|
to be non-sparse, it will likely be faster to convert `A` to dense and use
|
||
|
`scipy.linalg.inv`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import csc_matrix
|
||
|
>>> from scipy.sparse.linalg import inv
|
||
|
>>> A = csc_matrix([[1., 0.], [1., 2.]])
|
||
|
>>> Ainv = inv(A)
|
||
|
>>> Ainv
|
||
|
<2x2 sparse matrix of type '<class 'numpy.float64'>'
|
||
|
with 3 stored elements in Compressed Sparse Column format>
|
||
|
>>> A.dot(Ainv)
|
||
|
<2x2 sparse matrix of type '<class 'numpy.float64'>'
|
||
|
with 2 stored elements in Compressed Sparse Column format>
|
||
|
>>> A.dot(Ainv).toarray()
|
||
|
array([[ 1., 0.],
|
||
|
[ 0., 1.]])
|
||
|
|
||
|
.. versionadded:: 0.12.0
|
||
|
|
||
|
"""
|
||
|
# Check input
|
||
|
if not (scipy.sparse.isspmatrix(A) or is_pydata_spmatrix(A)):
|
||
|
raise TypeError('Input must be a sparse matrix')
|
||
|
|
||
|
# Use sparse direct solver to solve "AX = I" accurately
|
||
|
I = _ident_like(A)
|
||
|
Ainv = spsolve(A, I)
|
||
|
return Ainv
|
||
|
|
||
|
|
||
|
def _onenorm_matrix_power_nnm(A, p):
|
||
|
"""
|
||
|
Compute the 1-norm of a non-negative integer power of a non-negative matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : a square ndarray or matrix or sparse matrix
|
||
|
Input matrix with non-negative entries.
|
||
|
p : non-negative integer
|
||
|
The power to which the matrix is to be raised.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : float
|
||
|
The 1-norm of the matrix power p of A.
|
||
|
|
||
|
"""
|
||
|
# Check input
|
||
|
if int(p) != p or p < 0:
|
||
|
raise ValueError('expected non-negative integer p')
|
||
|
p = int(p)
|
||
|
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||
|
raise ValueError('expected A to be like a square matrix')
|
||
|
|
||
|
# Explicitly make a column vector so that this works when A is a
|
||
|
# numpy matrix (in addition to ndarray and sparse matrix).
|
||
|
v = np.ones((A.shape[0], 1), dtype=float)
|
||
|
M = A.T
|
||
|
for i in range(p):
|
||
|
v = M.dot(v)
|
||
|
return np.max(v)
|
||
|
|
||
|
|
||
|
def _is_upper_triangular(A):
|
||
|
# This function could possibly be of wider interest.
|
||
|
if isspmatrix(A):
|
||
|
lower_part = scipy.sparse.tril(A, -1)
|
||
|
# Check structural upper triangularity,
|
||
|
# then coincidental upper triangularity if needed.
|
||
|
return lower_part.nnz == 0 or lower_part.count_nonzero() == 0
|
||
|
elif is_pydata_spmatrix(A):
|
||
|
import sparse
|
||
|
lower_part = sparse.tril(A, -1)
|
||
|
return lower_part.nnz == 0
|
||
|
else:
|
||
|
return not np.tril(A, -1).any()
|
||
|
|
||
|
|
||
|
def _smart_matrix_product(A, B, alpha=None, structure=None):
|
||
|
"""
|
||
|
A matrix product that knows about sparse and structured matrices.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : 2d ndarray
|
||
|
First matrix.
|
||
|
B : 2d ndarray
|
||
|
Second matrix.
|
||
|
alpha : float
|
||
|
The matrix product will be scaled by this constant.
|
||
|
structure : str, optional
|
||
|
A string describing the structure of both matrices `A` and `B`.
|
||
|
Only `upper_triangular` is currently supported.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
M : 2d ndarray
|
||
|
Matrix product of A and B.
|
||
|
|
||
|
"""
|
||
|
if len(A.shape) != 2:
|
||
|
raise ValueError('expected A to be a rectangular matrix')
|
||
|
if len(B.shape) != 2:
|
||
|
raise ValueError('expected B to be a rectangular matrix')
|
||
|
f = None
|
||
|
if structure == UPPER_TRIANGULAR:
|
||
|
if (not isspmatrix(A) and not isspmatrix(B)
|
||
|
and not is_pydata_spmatrix(A) and not is_pydata_spmatrix(B)):
|
||
|
f, = scipy.linalg.get_blas_funcs(('trmm',), (A, B))
|
||
|
if f is not None:
|
||
|
if alpha is None:
|
||
|
alpha = 1.
|
||
|
out = f(alpha, A, B)
|
||
|
else:
|
||
|
if alpha is None:
|
||
|
out = A.dot(B)
|
||
|
else:
|
||
|
out = alpha * A.dot(B)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class MatrixPowerOperator(LinearOperator):
|
||
|
|
||
|
def __init__(self, A, p, structure=None):
|
||
|
if A.ndim != 2 or A.shape[0] != A.shape[1]:
|
||
|
raise ValueError('expected A to be like a square matrix')
|
||
|
if p < 0:
|
||
|
raise ValueError('expected p to be a non-negative integer')
|
||
|
self._A = A
|
||
|
self._p = p
|
||
|
self._structure = structure
|
||
|
self.dtype = A.dtype
|
||
|
self.ndim = A.ndim
|
||
|
self.shape = A.shape
|
||
|
|
||
|
def _matvec(self, x):
|
||
|
for i in range(self._p):
|
||
|
x = self._A.dot(x)
|
||
|
return x
|
||
|
|
||
|
def _rmatvec(self, x):
|
||
|
A_T = self._A.T
|
||
|
x = x.ravel()
|
||
|
for i in range(self._p):
|
||
|
x = A_T.dot(x)
|
||
|
return x
|
||
|
|
||
|
def _matmat(self, X):
|
||
|
for i in range(self._p):
|
||
|
X = _smart_matrix_product(self._A, X, structure=self._structure)
|
||
|
return X
|
||
|
|
||
|
@property
|
||
|
def T(self):
|
||
|
return MatrixPowerOperator(self._A.T, self._p)
|
||
|
|
||
|
|
||
|
class ProductOperator(LinearOperator):
|
||
|
"""
|
||
|
For now, this is limited to products of multiple square matrices.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
self._structure = kwargs.get('structure', None)
|
||
|
for A in args:
|
||
|
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||
|
raise ValueError(
|
||
|
'For now, the ProductOperator implementation is '
|
||
|
'limited to the product of multiple square matrices.')
|
||
|
if args:
|
||
|
n = args[0].shape[0]
|
||
|
for A in args:
|
||
|
for d in A.shape:
|
||
|
if d != n:
|
||
|
raise ValueError(
|
||
|
'The square matrices of the ProductOperator '
|
||
|
'must all have the same shape.')
|
||
|
self.shape = (n, n)
|
||
|
self.ndim = len(self.shape)
|
||
|
self.dtype = np.result_type(*[x.dtype for x in args])
|
||
|
self._operator_sequence = args
|
||
|
|
||
|
def _matvec(self, x):
|
||
|
for A in reversed(self._operator_sequence):
|
||
|
x = A.dot(x)
|
||
|
return x
|
||
|
|
||
|
def _rmatvec(self, x):
|
||
|
x = x.ravel()
|
||
|
for A in self._operator_sequence:
|
||
|
x = A.T.dot(x)
|
||
|
return x
|
||
|
|
||
|
def _matmat(self, X):
|
||
|
for A in reversed(self._operator_sequence):
|
||
|
X = _smart_matrix_product(A, X, structure=self._structure)
|
||
|
return X
|
||
|
|
||
|
@property
|
||
|
def T(self):
|
||
|
T_args = [A.T for A in reversed(self._operator_sequence)]
|
||
|
return ProductOperator(*T_args)
|
||
|
|
||
|
|
||
|
def _onenormest_matrix_power(A, p,
|
||
|
t=2, itmax=5, compute_v=False, compute_w=False, structure=None):
|
||
|
"""
|
||
|
Efficiently estimate the 1-norm of A^p.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : ndarray
|
||
|
Matrix whose 1-norm of a power is to be computed.
|
||
|
p : int
|
||
|
Non-negative integer power.
|
||
|
t : int, optional
|
||
|
A positive parameter controlling the tradeoff between
|
||
|
accuracy versus time and memory usage.
|
||
|
Larger values take longer and use more memory
|
||
|
but give more accurate output.
|
||
|
itmax : int, optional
|
||
|
Use at most this many iterations.
|
||
|
compute_v : bool, optional
|
||
|
Request a norm-maximizing linear operator input vector if True.
|
||
|
compute_w : bool, optional
|
||
|
Request a norm-maximizing linear operator output vector if True.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
est : float
|
||
|
An underestimate of the 1-norm of the sparse matrix.
|
||
|
v : ndarray, optional
|
||
|
The vector such that ||Av||_1 == est*||v||_1.
|
||
|
It can be thought of as an input to the linear operator
|
||
|
that gives an output with particularly large norm.
|
||
|
w : ndarray, optional
|
||
|
The vector Av which has relatively large 1-norm.
|
||
|
It can be thought of as an output of the linear operator
|
||
|
that is relatively large in norm compared to the input.
|
||
|
|
||
|
"""
|
||
|
return scipy.sparse.linalg.onenormest(
|
||
|
MatrixPowerOperator(A, p, structure=structure))
|
||
|
|
||
|
|
||
|
def _onenormest_product(operator_seq,
|
||
|
t=2, itmax=5, compute_v=False, compute_w=False, structure=None):
|
||
|
"""
|
||
|
Efficiently estimate the 1-norm of the matrix product of the args.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
operator_seq : linear operator sequence
|
||
|
Matrices whose 1-norm of product is to be computed.
|
||
|
t : int, optional
|
||
|
A positive parameter controlling the tradeoff between
|
||
|
accuracy versus time and memory usage.
|
||
|
Larger values take longer and use more memory
|
||
|
but give more accurate output.
|
||
|
itmax : int, optional
|
||
|
Use at most this many iterations.
|
||
|
compute_v : bool, optional
|
||
|
Request a norm-maximizing linear operator input vector if True.
|
||
|
compute_w : bool, optional
|
||
|
Request a norm-maximizing linear operator output vector if True.
|
||
|
structure : str, optional
|
||
|
A string describing the structure of all operators.
|
||
|
Only `upper_triangular` is currently supported.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
est : float
|
||
|
An underestimate of the 1-norm of the sparse matrix.
|
||
|
v : ndarray, optional
|
||
|
The vector such that ||Av||_1 == est*||v||_1.
|
||
|
It can be thought of as an input to the linear operator
|
||
|
that gives an output with particularly large norm.
|
||
|
w : ndarray, optional
|
||
|
The vector Av which has relatively large 1-norm.
|
||
|
It can be thought of as an output of the linear operator
|
||
|
that is relatively large in norm compared to the input.
|
||
|
|
||
|
"""
|
||
|
return scipy.sparse.linalg.onenormest(
|
||
|
ProductOperator(*operator_seq, structure=structure))
|
||
|
|
||
|
|
||
|
class _ExpmPadeHelper:
|
||
|
"""
|
||
|
Help lazily evaluate a matrix exponential.
|
||
|
|
||
|
The idea is to not do more work than we need for high expm precision,
|
||
|
so we lazily compute matrix powers and store or precompute
|
||
|
other properties of the matrix.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, A, structure=None, use_exact_onenorm=False):
|
||
|
"""
|
||
|
Initialize the object.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : a dense or sparse square numpy matrix or ndarray
|
||
|
The matrix to be exponentiated.
|
||
|
structure : str, optional
|
||
|
A string describing the structure of matrix `A`.
|
||
|
Only `upper_triangular` is currently supported.
|
||
|
use_exact_onenorm : bool, optional
|
||
|
If True then only the exact one-norm of matrix powers and products
|
||
|
will be used. Otherwise, the one-norm of powers and products
|
||
|
may initially be estimated.
|
||
|
"""
|
||
|
self.A = A
|
||
|
self._A2 = None
|
||
|
self._A4 = None
|
||
|
self._A6 = None
|
||
|
self._A8 = None
|
||
|
self._A10 = None
|
||
|
self._d4_exact = None
|
||
|
self._d6_exact = None
|
||
|
self._d8_exact = None
|
||
|
self._d10_exact = None
|
||
|
self._d4_approx = None
|
||
|
self._d6_approx = None
|
||
|
self._d8_approx = None
|
||
|
self._d10_approx = None
|
||
|
self.ident = _ident_like(A)
|
||
|
self.structure = structure
|
||
|
self.use_exact_onenorm = use_exact_onenorm
|
||
|
|
||
|
@property
|
||
|
def A2(self):
|
||
|
if self._A2 is None:
|
||
|
self._A2 = _smart_matrix_product(
|
||
|
self.A, self.A, structure=self.structure)
|
||
|
return self._A2
|
||
|
|
||
|
@property
|
||
|
def A4(self):
|
||
|
if self._A4 is None:
|
||
|
self._A4 = _smart_matrix_product(
|
||
|
self.A2, self.A2, structure=self.structure)
|
||
|
return self._A4
|
||
|
|
||
|
@property
|
||
|
def A6(self):
|
||
|
if self._A6 is None:
|
||
|
self._A6 = _smart_matrix_product(
|
||
|
self.A4, self.A2, structure=self.structure)
|
||
|
return self._A6
|
||
|
|
||
|
@property
|
||
|
def A8(self):
|
||
|
if self._A8 is None:
|
||
|
self._A8 = _smart_matrix_product(
|
||
|
self.A6, self.A2, structure=self.structure)
|
||
|
return self._A8
|
||
|
|
||
|
@property
|
||
|
def A10(self):
|
||
|
if self._A10 is None:
|
||
|
self._A10 = _smart_matrix_product(
|
||
|
self.A4, self.A6, structure=self.structure)
|
||
|
return self._A10
|
||
|
|
||
|
@property
|
||
|
def d4_tight(self):
|
||
|
if self._d4_exact is None:
|
||
|
self._d4_exact = _onenorm(self.A4)**(1/4.)
|
||
|
return self._d4_exact
|
||
|
|
||
|
@property
|
||
|
def d6_tight(self):
|
||
|
if self._d6_exact is None:
|
||
|
self._d6_exact = _onenorm(self.A6)**(1/6.)
|
||
|
return self._d6_exact
|
||
|
|
||
|
@property
|
||
|
def d8_tight(self):
|
||
|
if self._d8_exact is None:
|
||
|
self._d8_exact = _onenorm(self.A8)**(1/8.)
|
||
|
return self._d8_exact
|
||
|
|
||
|
@property
|
||
|
def d10_tight(self):
|
||
|
if self._d10_exact is None:
|
||
|
self._d10_exact = _onenorm(self.A10)**(1/10.)
|
||
|
return self._d10_exact
|
||
|
|
||
|
@property
|
||
|
def d4_loose(self):
|
||
|
if self.use_exact_onenorm:
|
||
|
return self.d4_tight
|
||
|
if self._d4_exact is not None:
|
||
|
return self._d4_exact
|
||
|
else:
|
||
|
if self._d4_approx is None:
|
||
|
self._d4_approx = _onenormest_matrix_power(self.A2, 2,
|
||
|
structure=self.structure)**(1/4.)
|
||
|
return self._d4_approx
|
||
|
|
||
|
@property
|
||
|
def d6_loose(self):
|
||
|
if self.use_exact_onenorm:
|
||
|
return self.d6_tight
|
||
|
if self._d6_exact is not None:
|
||
|
return self._d6_exact
|
||
|
else:
|
||
|
if self._d6_approx is None:
|
||
|
self._d6_approx = _onenormest_matrix_power(self.A2, 3,
|
||
|
structure=self.structure)**(1/6.)
|
||
|
return self._d6_approx
|
||
|
|
||
|
@property
|
||
|
def d8_loose(self):
|
||
|
if self.use_exact_onenorm:
|
||
|
return self.d8_tight
|
||
|
if self._d8_exact is not None:
|
||
|
return self._d8_exact
|
||
|
else:
|
||
|
if self._d8_approx is None:
|
||
|
self._d8_approx = _onenormest_matrix_power(self.A4, 2,
|
||
|
structure=self.structure)**(1/8.)
|
||
|
return self._d8_approx
|
||
|
|
||
|
@property
|
||
|
def d10_loose(self):
|
||
|
if self.use_exact_onenorm:
|
||
|
return self.d10_tight
|
||
|
if self._d10_exact is not None:
|
||
|
return self._d10_exact
|
||
|
else:
|
||
|
if self._d10_approx is None:
|
||
|
self._d10_approx = _onenormest_product((self.A4, self.A6),
|
||
|
structure=self.structure)**(1/10.)
|
||
|
return self._d10_approx
|
||
|
|
||
|
def pade3(self):
|
||
|
b = (120., 60., 12., 1.)
|
||
|
U = _smart_matrix_product(self.A,
|
||
|
b[3]*self.A2 + b[1]*self.ident,
|
||
|
structure=self.structure)
|
||
|
V = b[2]*self.A2 + b[0]*self.ident
|
||
|
return U, V
|
||
|
|
||
|
def pade5(self):
|
||
|
b = (30240., 15120., 3360., 420., 30., 1.)
|
||
|
U = _smart_matrix_product(self.A,
|
||
|
b[5]*self.A4 + b[3]*self.A2 + b[1]*self.ident,
|
||
|
structure=self.structure)
|
||
|
V = b[4]*self.A4 + b[2]*self.A2 + b[0]*self.ident
|
||
|
return U, V
|
||
|
|
||
|
def pade7(self):
|
||
|
b = (17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.)
|
||
|
U = _smart_matrix_product(self.A,
|
||
|
b[7]*self.A6 + b[5]*self.A4 + b[3]*self.A2 + b[1]*self.ident,
|
||
|
structure=self.structure)
|
||
|
V = b[6]*self.A6 + b[4]*self.A4 + b[2]*self.A2 + b[0]*self.ident
|
||
|
return U, V
|
||
|
|
||
|
def pade9(self):
|
||
|
b = (17643225600., 8821612800., 2075673600., 302702400., 30270240.,
|
||
|
2162160., 110880., 3960., 90., 1.)
|
||
|
U = _smart_matrix_product(self.A,
|
||
|
(b[9]*self.A8 + b[7]*self.A6 + b[5]*self.A4 +
|
||
|
b[3]*self.A2 + b[1]*self.ident),
|
||
|
structure=self.structure)
|
||
|
V = (b[8]*self.A8 + b[6]*self.A6 + b[4]*self.A4 +
|
||
|
b[2]*self.A2 + b[0]*self.ident)
|
||
|
return U, V
|
||
|
|
||
|
def pade13_scaled(self, s):
|
||
|
b = (64764752532480000., 32382376266240000., 7771770303897600.,
|
||
|
1187353796428800., 129060195264000., 10559470521600.,
|
||
|
670442572800., 33522128640., 1323241920., 40840800., 960960.,
|
||
|
16380., 182., 1.)
|
||
|
B = self.A * 2**-s
|
||
|
B2 = self.A2 * 2**(-2*s)
|
||
|
B4 = self.A4 * 2**(-4*s)
|
||
|
B6 = self.A6 * 2**(-6*s)
|
||
|
U2 = _smart_matrix_product(B6,
|
||
|
b[13]*B6 + b[11]*B4 + b[9]*B2,
|
||
|
structure=self.structure)
|
||
|
U = _smart_matrix_product(B,
|
||
|
(U2 + b[7]*B6 + b[5]*B4 +
|
||
|
b[3]*B2 + b[1]*self.ident),
|
||
|
structure=self.structure)
|
||
|
V2 = _smart_matrix_product(B6,
|
||
|
b[12]*B6 + b[10]*B4 + b[8]*B2,
|
||
|
structure=self.structure)
|
||
|
V = V2 + b[6]*B6 + b[4]*B4 + b[2]*B2 + b[0]*self.ident
|
||
|
return U, V
|
||
|
|
||
|
|
||
|
def expm(A):
|
||
|
"""
|
||
|
Compute the matrix exponential using Pade approximation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : (M,M) array_like or sparse matrix
|
||
|
2D Array or Matrix (sparse or dense) to be exponentiated
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
expA : (M,M) ndarray
|
||
|
Matrix exponential of `A`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is algorithm (6.1) which is a simplification of algorithm (5.1).
|
||
|
|
||
|
.. versionadded:: 0.12.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009)
|
||
|
"A New Scaling and Squaring Algorithm for the Matrix Exponential."
|
||
|
SIAM Journal on Matrix Analysis and Applications.
|
||
|
31 (3). pp. 970-989. ISSN 1095-7162
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import csc_matrix
|
||
|
>>> from scipy.sparse.linalg import expm
|
||
|
>>> A = csc_matrix([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
|
||
|
>>> A.toarray()
|
||
|
array([[1, 0, 0],
|
||
|
[0, 2, 0],
|
||
|
[0, 0, 3]], dtype=int64)
|
||
|
>>> Aexp = expm(A)
|
||
|
>>> Aexp
|
||
|
<3x3 sparse matrix of type '<class 'numpy.float64'>'
|
||
|
with 3 stored elements in Compressed Sparse Column format>
|
||
|
>>> Aexp.toarray()
|
||
|
array([[ 2.71828183, 0. , 0. ],
|
||
|
[ 0. , 7.3890561 , 0. ],
|
||
|
[ 0. , 0. , 20.08553692]])
|
||
|
"""
|
||
|
return _expm(A, use_exact_onenorm='auto')
|
||
|
|
||
|
|
||
|
def _expm(A, use_exact_onenorm):
|
||
|
# Core of expm, separated to allow testing exact and approximate
|
||
|
# algorithms.
|
||
|
|
||
|
# Avoid indiscriminate asarray() to allow sparse or other strange arrays.
|
||
|
if isinstance(A, (list, tuple, np.matrix)):
|
||
|
A = np.asarray(A)
|
||
|
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||
|
raise ValueError('expected a square matrix')
|
||
|
|
||
|
# gracefully handle size-0 input,
|
||
|
# carefully handling sparse scenario
|
||
|
if A.shape == (0, 0):
|
||
|
out = np.zeros([0, 0], dtype=A.dtype)
|
||
|
if isspmatrix(A) or is_pydata_spmatrix(A):
|
||
|
return A.__class__(out)
|
||
|
return out
|
||
|
|
||
|
# Trivial case
|
||
|
if A.shape == (1, 1):
|
||
|
out = [[np.exp(A[0, 0])]]
|
||
|
|
||
|
# Avoid indiscriminate casting to ndarray to
|
||
|
# allow for sparse or other strange arrays
|
||
|
if isspmatrix(A) or is_pydata_spmatrix(A):
|
||
|
return A.__class__(out)
|
||
|
|
||
|
return np.array(out)
|
||
|
|
||
|
# Ensure input is of float type, to avoid integer overflows etc.
|
||
|
if ((isinstance(A, np.ndarray) or isspmatrix(A) or is_pydata_spmatrix(A))
|
||
|
and not np.issubdtype(A.dtype, np.inexact)):
|
||
|
A = A.astype(float)
|
||
|
|
||
|
# Detect upper triangularity.
|
||
|
structure = UPPER_TRIANGULAR if _is_upper_triangular(A) else None
|
||
|
|
||
|
if use_exact_onenorm == "auto":
|
||
|
# Hardcode a matrix order threshold for exact vs. estimated one-norms.
|
||
|
use_exact_onenorm = A.shape[0] < 200
|
||
|
|
||
|
# Track functions of A to help compute the matrix exponential.
|
||
|
h = _ExpmPadeHelper(
|
||
|
A, structure=structure, use_exact_onenorm=use_exact_onenorm)
|
||
|
|
||
|
# Try Pade order 3.
|
||
|
eta_1 = max(h.d4_loose, h.d6_loose)
|
||
|
if eta_1 < 1.495585217958292e-002 and _ell(h.A, 3) == 0:
|
||
|
U, V = h.pade3()
|
||
|
return _solve_P_Q(U, V, structure=structure)
|
||
|
|
||
|
# Try Pade order 5.
|
||
|
eta_2 = max(h.d4_tight, h.d6_loose)
|
||
|
if eta_2 < 2.539398330063230e-001 and _ell(h.A, 5) == 0:
|
||
|
U, V = h.pade5()
|
||
|
return _solve_P_Q(U, V, structure=structure)
|
||
|
|
||
|
# Try Pade orders 7 and 9.
|
||
|
eta_3 = max(h.d6_tight, h.d8_loose)
|
||
|
if eta_3 < 9.504178996162932e-001 and _ell(h.A, 7) == 0:
|
||
|
U, V = h.pade7()
|
||
|
return _solve_P_Q(U, V, structure=structure)
|
||
|
if eta_3 < 2.097847961257068e+000 and _ell(h.A, 9) == 0:
|
||
|
U, V = h.pade9()
|
||
|
return _solve_P_Q(U, V, structure=structure)
|
||
|
|
||
|
# Use Pade order 13.
|
||
|
eta_4 = max(h.d8_loose, h.d10_loose)
|
||
|
eta_5 = min(eta_3, eta_4)
|
||
|
theta_13 = 4.25
|
||
|
|
||
|
# Choose smallest s>=0 such that 2**(-s) eta_5 <= theta_13
|
||
|
if eta_5 == 0:
|
||
|
# Nilpotent special case
|
||
|
s = 0
|
||
|
else:
|
||
|
s = max(int(np.ceil(np.log2(eta_5 / theta_13))), 0)
|
||
|
s = s + _ell(2**-s * h.A, 13)
|
||
|
U, V = h.pade13_scaled(s)
|
||
|
X = _solve_P_Q(U, V, structure=structure)
|
||
|
if structure == UPPER_TRIANGULAR:
|
||
|
# Invoke Code Fragment 2.1.
|
||
|
X = _fragment_2_1(X, h.A, s)
|
||
|
else:
|
||
|
# X = r_13(A)^(2^s) by repeated squaring.
|
||
|
for i in range(s):
|
||
|
X = X.dot(X)
|
||
|
return X
|
||
|
|
||
|
|
||
|
def _solve_P_Q(U, V, structure=None):
|
||
|
"""
|
||
|
A helper function for expm_2009.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
U : ndarray
|
||
|
Pade numerator.
|
||
|
V : ndarray
|
||
|
Pade denominator.
|
||
|
structure : str, optional
|
||
|
A string describing the structure of both matrices `U` and `V`.
|
||
|
Only `upper_triangular` is currently supported.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The `structure` argument is inspired by similar args
|
||
|
for theano and cvxopt functions.
|
||
|
|
||
|
"""
|
||
|
P = U + V
|
||
|
Q = -U + V
|
||
|
if isspmatrix(U) or is_pydata_spmatrix(U):
|
||
|
return spsolve(Q, P)
|
||
|
elif structure is None:
|
||
|
return solve(Q, P)
|
||
|
elif structure == UPPER_TRIANGULAR:
|
||
|
return solve_triangular(Q, P)
|
||
|
else:
|
||
|
raise ValueError('unsupported matrix structure: ' + str(structure))
|
||
|
|
||
|
|
||
|
def _exp_sinch(a, x):
|
||
|
"""
|
||
|
Stably evaluate exp(a)*sinh(x)/x
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The strategy of falling back to a sixth order Taylor expansion
|
||
|
was suggested by the Spallation Neutron Source docs
|
||
|
which was found on the internet by google search.
|
||
|
http://www.ornl.gov/~t6p/resources/xal/javadoc/gov/sns/tools/math/ElementaryFunction.html
|
||
|
The details of the cutoff point and the Horner-like evaluation
|
||
|
was picked without reference to anything in particular.
|
||
|
|
||
|
Note that sinch is not currently implemented in scipy.special,
|
||
|
whereas the "engineer's" definition of sinc is implemented.
|
||
|
The implementation of sinc involves a scaling factor of pi
|
||
|
that distinguishes it from the "mathematician's" version of sinc.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# If x is small then use sixth order Taylor expansion.
|
||
|
# How small is small? I am using the point where the relative error
|
||
|
# of the approximation is less than 1e-14.
|
||
|
# If x is large then directly evaluate sinh(x) / x.
|
||
|
if abs(x) < 0.0135:
|
||
|
x2 = x*x
|
||
|
return np.exp(a) * (1 + (x2/6.)*(1 + (x2/20.)*(1 + (x2/42.))))
|
||
|
else:
|
||
|
return (np.exp(a + x) - np.exp(a - x)) / (2*x)
|
||
|
|
||
|
|
||
|
def _eq_10_42(lam_1, lam_2, t_12):
|
||
|
"""
|
||
|
Equation (10.42) of Functions of Matrices: Theory and Computation.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is a helper function for _fragment_2_1 of expm_2009.
|
||
|
Equation (10.42) is on page 251 in the section on Schur algorithms.
|
||
|
In particular, section 10.4.3 explains the Schur-Parlett algorithm.
|
||
|
expm([[lam_1, t_12], [0, lam_1])
|
||
|
=
|
||
|
[[exp(lam_1), t_12*exp((lam_1 + lam_2)/2)*sinch((lam_1 - lam_2)/2)],
|
||
|
[0, exp(lam_2)]
|
||
|
"""
|
||
|
|
||
|
# The plain formula t_12 * (exp(lam_2) - exp(lam_2)) / (lam_2 - lam_1)
|
||
|
# apparently suffers from cancellation, according to Higham's textbook.
|
||
|
# A nice implementation of sinch, defined as sinh(x)/x,
|
||
|
# will apparently work around the cancellation.
|
||
|
a = 0.5 * (lam_1 + lam_2)
|
||
|
b = 0.5 * (lam_1 - lam_2)
|
||
|
return t_12 * _exp_sinch(a, b)
|
||
|
|
||
|
|
||
|
def _fragment_2_1(X, T, s):
|
||
|
"""
|
||
|
A helper function for expm_2009.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The argument X is modified in-place, but this modification is not the same
|
||
|
as the returned value of the function.
|
||
|
This function also takes pains to do things in ways that are compatible
|
||
|
with sparse matrices, for example by avoiding fancy indexing
|
||
|
and by using methods of the matrices whenever possible instead of
|
||
|
using functions of the numpy or scipy libraries themselves.
|
||
|
|
||
|
"""
|
||
|
# Form X = r_m(2^-s T)
|
||
|
# Replace diag(X) by exp(2^-s diag(T)).
|
||
|
n = X.shape[0]
|
||
|
diag_T = np.ravel(T.diagonal().copy())
|
||
|
|
||
|
# Replace diag(X) by exp(2^-s diag(T)).
|
||
|
scale = 2 ** -s
|
||
|
exp_diag = np.exp(scale * diag_T)
|
||
|
for k in range(n):
|
||
|
X[k, k] = exp_diag[k]
|
||
|
|
||
|
for i in range(s-1, -1, -1):
|
||
|
X = X.dot(X)
|
||
|
|
||
|
# Replace diag(X) by exp(2^-i diag(T)).
|
||
|
scale = 2 ** -i
|
||
|
exp_diag = np.exp(scale * diag_T)
|
||
|
for k in range(n):
|
||
|
X[k, k] = exp_diag[k]
|
||
|
|
||
|
# Replace (first) superdiagonal of X by explicit formula
|
||
|
# for superdiagonal of exp(2^-i T) from Eq (10.42) of
|
||
|
# the author's 2008 textbook
|
||
|
# Functions of Matrices: Theory and Computation.
|
||
|
for k in range(n-1):
|
||
|
lam_1 = scale * diag_T[k]
|
||
|
lam_2 = scale * diag_T[k+1]
|
||
|
t_12 = scale * T[k, k+1]
|
||
|
value = _eq_10_42(lam_1, lam_2, t_12)
|
||
|
X[k, k+1] = value
|
||
|
|
||
|
# Return the updated X matrix.
|
||
|
return X
|
||
|
|
||
|
|
||
|
def _ell(A, m):
|
||
|
"""
|
||
|
A helper function for expm_2009.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : linear operator
|
||
|
A linear operator whose norm of power we care about.
|
||
|
m : int
|
||
|
The power of the linear operator
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : int
|
||
|
A value related to a bound.
|
||
|
|
||
|
"""
|
||
|
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||
|
raise ValueError('expected A to be like a square matrix')
|
||
|
|
||
|
# The c_i are explained in (2.2) and (2.6) of the 2005 expm paper.
|
||
|
# They are coefficients of terms of a generating function series expansion.
|
||
|
c_i = {3: 100800.,
|
||
|
5: 10059033600.,
|
||
|
7: 4487938430976000.,
|
||
|
9: 5914384781877411840000.,
|
||
|
13: 113250775606021113483283660800000000.
|
||
|
}
|
||
|
abs_c_recip = c_i[m]
|
||
|
|
||
|
# This is explained after Eq. (1.2) of the 2009 expm paper.
|
||
|
# It is the "unit roundoff" of IEEE double precision arithmetic.
|
||
|
u = 2**-53
|
||
|
|
||
|
# Compute the one-norm of matrix power p of abs(A).
|
||
|
A_abs_onenorm = _onenorm_matrix_power_nnm(abs(A), 2*m + 1)
|
||
|
|
||
|
# Treat zero norm as a special case.
|
||
|
if not A_abs_onenorm:
|
||
|
return 0
|
||
|
|
||
|
alpha = A_abs_onenorm / (_onenorm(A) * abs_c_recip)
|
||
|
log2_alpha_div_u = np.log2(alpha/u)
|
||
|
value = int(np.ceil(log2_alpha_div_u / (2 * m)))
|
||
|
return max(value, 0)
|