346 lines
14 KiB
Python
346 lines
14 KiB
Python
|
"""Test functions for the sparse.linalg._expm_multiply module."""
|
||
|
from functools import partial
|
||
|
from itertools import product
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
from numpy.testing import (assert_allclose, assert_, assert_equal,
|
||
|
suppress_warnings)
|
||
|
from scipy.sparse import SparseEfficiencyWarning
|
||
|
from scipy.sparse.linalg import aslinearoperator
|
||
|
import scipy.linalg
|
||
|
from scipy.sparse.linalg import expm as sp_expm
|
||
|
from scipy.sparse.linalg._expm_multiply import (_theta, _compute_p_max,
|
||
|
_onenormest_matrix_power, expm_multiply, _expm_multiply_simple,
|
||
|
_expm_multiply_interval)
|
||
|
|
||
|
|
||
|
IMPRECISE = {np.single, np.csingle}
|
||
|
REAL_DTYPES = {np.intc, np.int_, np.longlong,
|
||
|
np.single, np.double, np.longdouble}
|
||
|
COMPLEX_DTYPES = {np.csingle, np.cdouble, np.clongdouble}
|
||
|
# use sorted tuple to ensure fixed order of tests
|
||
|
DTYPES = tuple(sorted(REAL_DTYPES ^ COMPLEX_DTYPES, key=str))
|
||
|
|
||
|
|
||
|
def estimated(func):
|
||
|
"""If trace is estimated, it should warn.
|
||
|
|
||
|
We warn that estimation of trace might impact performance.
|
||
|
All result have to be correct nevertheless!
|
||
|
|
||
|
"""
|
||
|
def wrapped(*args, **kwds):
|
||
|
with pytest.warns(UserWarning,
|
||
|
match="Trace of LinearOperator not available"):
|
||
|
return func(*args, **kwds)
|
||
|
return wrapped
|
||
|
|
||
|
|
||
|
def less_than_or_close(a, b):
|
||
|
return np.allclose(a, b) or (a < b)
|
||
|
|
||
|
|
||
|
class TestExpmActionSimple:
|
||
|
"""
|
||
|
These tests do not consider the case of multiple time steps in one call.
|
||
|
"""
|
||
|
|
||
|
def test_theta_monotonicity(self):
|
||
|
pairs = sorted(_theta.items())
|
||
|
for (m_a, theta_a), (m_b, theta_b) in zip(pairs[:-1], pairs[1:]):
|
||
|
assert_(theta_a < theta_b)
|
||
|
|
||
|
def test_p_max_default(self):
|
||
|
m_max = 55
|
||
|
expected_p_max = 8
|
||
|
observed_p_max = _compute_p_max(m_max)
|
||
|
assert_equal(observed_p_max, expected_p_max)
|
||
|
|
||
|
def test_p_max_range(self):
|
||
|
for m_max in range(1, 55+1):
|
||
|
p_max = _compute_p_max(m_max)
|
||
|
assert_(p_max*(p_max - 1) <= m_max + 1)
|
||
|
p_too_big = p_max + 1
|
||
|
assert_(p_too_big*(p_too_big - 1) > m_max + 1)
|
||
|
|
||
|
def test_onenormest_matrix_power(self):
|
||
|
np.random.seed(1234)
|
||
|
n = 40
|
||
|
nsamples = 10
|
||
|
for i in range(nsamples):
|
||
|
A = scipy.linalg.inv(np.random.randn(n, n))
|
||
|
for p in range(4):
|
||
|
if not p:
|
||
|
M = np.identity(n)
|
||
|
else:
|
||
|
M = np.dot(M, A)
|
||
|
estimated = _onenormest_matrix_power(A, p)
|
||
|
exact = np.linalg.norm(M, 1)
|
||
|
assert_(less_than_or_close(estimated, exact))
|
||
|
assert_(less_than_or_close(exact, 3*estimated))
|
||
|
|
||
|
def test_expm_multiply(self):
|
||
|
np.random.seed(1234)
|
||
|
n = 40
|
||
|
k = 3
|
||
|
nsamples = 10
|
||
|
for i in range(nsamples):
|
||
|
A = scipy.linalg.inv(np.random.randn(n, n))
|
||
|
B = np.random.randn(n, k)
|
||
|
observed = expm_multiply(A, B)
|
||
|
expected = np.dot(sp_expm(A), B)
|
||
|
assert_allclose(observed, expected)
|
||
|
observed = estimated(expm_multiply)(aslinearoperator(A), B)
|
||
|
assert_allclose(observed, expected)
|
||
|
traceA = np.trace(A)
|
||
|
observed = expm_multiply(aslinearoperator(A), B, traceA=traceA)
|
||
|
assert_allclose(observed, expected)
|
||
|
|
||
|
def test_matrix_vector_multiply(self):
|
||
|
np.random.seed(1234)
|
||
|
n = 40
|
||
|
nsamples = 10
|
||
|
for i in range(nsamples):
|
||
|
A = scipy.linalg.inv(np.random.randn(n, n))
|
||
|
v = np.random.randn(n)
|
||
|
observed = expm_multiply(A, v)
|
||
|
expected = np.dot(sp_expm(A), v)
|
||
|
assert_allclose(observed, expected)
|
||
|
observed = estimated(expm_multiply)(aslinearoperator(A), v)
|
||
|
assert_allclose(observed, expected)
|
||
|
|
||
|
def test_scaled_expm_multiply(self):
|
||
|
np.random.seed(1234)
|
||
|
n = 40
|
||
|
k = 3
|
||
|
nsamples = 10
|
||
|
for i, t in product(range(nsamples), [0.2, 1.0, 1.5]):
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
A = scipy.linalg.inv(np.random.randn(n, n))
|
||
|
B = np.random.randn(n, k)
|
||
|
observed = _expm_multiply_simple(A, B, t=t)
|
||
|
expected = np.dot(sp_expm(t*A), B)
|
||
|
assert_allclose(observed, expected)
|
||
|
observed = estimated(_expm_multiply_simple)(
|
||
|
aslinearoperator(A), B, t=t
|
||
|
)
|
||
|
assert_allclose(observed, expected)
|
||
|
|
||
|
def test_scaled_expm_multiply_single_timepoint(self):
|
||
|
np.random.seed(1234)
|
||
|
t = 0.1
|
||
|
n = 5
|
||
|
k = 2
|
||
|
A = np.random.randn(n, n)
|
||
|
B = np.random.randn(n, k)
|
||
|
observed = _expm_multiply_simple(A, B, t=t)
|
||
|
expected = sp_expm(t*A).dot(B)
|
||
|
assert_allclose(observed, expected)
|
||
|
observed = estimated(_expm_multiply_simple)(
|
||
|
aslinearoperator(A), B, t=t
|
||
|
)
|
||
|
assert_allclose(observed, expected)
|
||
|
|
||
|
def test_sparse_expm_multiply(self):
|
||
|
np.random.seed(1234)
|
||
|
n = 40
|
||
|
k = 3
|
||
|
nsamples = 10
|
||
|
for i in range(nsamples):
|
||
|
A = scipy.sparse.rand(n, n, density=0.05)
|
||
|
B = np.random.randn(n, k)
|
||
|
observed = expm_multiply(A, B)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"splu converted its input to CSC format")
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"spsolve is more efficient when sparse b is in the"
|
||
|
" CSC matrix format")
|
||
|
expected = sp_expm(A).dot(B)
|
||
|
assert_allclose(observed, expected)
|
||
|
observed = estimated(expm_multiply)(aslinearoperator(A), B)
|
||
|
assert_allclose(observed, expected)
|
||
|
|
||
|
def test_complex(self):
|
||
|
A = np.array([
|
||
|
[1j, 1j],
|
||
|
[0, 1j]], dtype=complex)
|
||
|
B = np.array([1j, 1j])
|
||
|
observed = expm_multiply(A, B)
|
||
|
expected = np.array([
|
||
|
1j * np.exp(1j) + 1j * (1j*np.cos(1) - np.sin(1)),
|
||
|
1j * np.exp(1j)], dtype=complex)
|
||
|
assert_allclose(observed, expected)
|
||
|
observed = estimated(expm_multiply)(aslinearoperator(A), B)
|
||
|
assert_allclose(observed, expected)
|
||
|
|
||
|
|
||
|
class TestExpmActionInterval:
|
||
|
|
||
|
def test_sparse_expm_multiply_interval(self):
|
||
|
np.random.seed(1234)
|
||
|
start = 0.1
|
||
|
stop = 3.2
|
||
|
n = 40
|
||
|
k = 3
|
||
|
endpoint = True
|
||
|
for num in (14, 13, 2):
|
||
|
A = scipy.sparse.rand(n, n, density=0.05)
|
||
|
B = np.random.randn(n, k)
|
||
|
v = np.random.randn(n)
|
||
|
for target in (B, v):
|
||
|
X = expm_multiply(A, target, start=start, stop=stop,
|
||
|
num=num, endpoint=endpoint)
|
||
|
samples = np.linspace(start=start, stop=stop,
|
||
|
num=num, endpoint=endpoint)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"splu converted its input to CSC format")
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"spsolve is more efficient when sparse b is in"
|
||
|
" the CSC matrix format")
|
||
|
for solution, t in zip(X, samples):
|
||
|
assert_allclose(solution, sp_expm(t*A).dot(target))
|
||
|
|
||
|
def test_expm_multiply_interval_vector(self):
|
||
|
np.random.seed(1234)
|
||
|
interval = {'start': 0.1, 'stop': 3.2, 'endpoint': True}
|
||
|
for num, n in product([14, 13, 2], [1, 2, 5, 20, 40]):
|
||
|
A = scipy.linalg.inv(np.random.randn(n, n))
|
||
|
v = np.random.randn(n)
|
||
|
samples = np.linspace(num=num, **interval)
|
||
|
X = expm_multiply(A, v, num=num, **interval)
|
||
|
for solution, t in zip(X, samples):
|
||
|
assert_allclose(solution, sp_expm(t*A).dot(v))
|
||
|
# test for linear operator with unknown trace -> estimate trace
|
||
|
Xguess = estimated(expm_multiply)(aslinearoperator(A), v,
|
||
|
num=num, **interval)
|
||
|
# test for linear operator with given trace
|
||
|
Xgiven = expm_multiply(aslinearoperator(A), v, num=num, **interval,
|
||
|
traceA=np.trace(A))
|
||
|
# test robustness for linear operator with wrong trace
|
||
|
Xwrong = expm_multiply(aslinearoperator(A), v, num=num, **interval,
|
||
|
traceA=np.trace(A)*5)
|
||
|
for sol_guess, sol_given, sol_wrong, t in zip(Xguess, Xgiven,
|
||
|
Xwrong, samples):
|
||
|
correct = sp_expm(t*A).dot(v)
|
||
|
assert_allclose(sol_guess, correct)
|
||
|
assert_allclose(sol_given, correct)
|
||
|
assert_allclose(sol_wrong, correct)
|
||
|
|
||
|
def test_expm_multiply_interval_matrix(self):
|
||
|
np.random.seed(1234)
|
||
|
interval = {'start': 0.1, 'stop': 3.2, 'endpoint': True}
|
||
|
for num, n, k in product([14, 13, 2], [1, 2, 5, 20, 40], [1, 2]):
|
||
|
A = scipy.linalg.inv(np.random.randn(n, n))
|
||
|
B = np.random.randn(n, k)
|
||
|
samples = np.linspace(num=num, **interval)
|
||
|
X = expm_multiply(A, B, num=num, **interval)
|
||
|
for solution, t in zip(X, samples):
|
||
|
assert_allclose(solution, sp_expm(t*A).dot(B))
|
||
|
X = estimated(expm_multiply)(aslinearoperator(A), B, num=num,
|
||
|
**interval)
|
||
|
for solution, t in zip(X, samples):
|
||
|
assert_allclose(solution, sp_expm(t*A).dot(B))
|
||
|
|
||
|
def test_sparse_expm_multiply_interval_dtypes(self):
|
||
|
# Test A & B int
|
||
|
A = scipy.sparse.diags(np.arange(5),format='csr', dtype=int)
|
||
|
B = np.ones(5, dtype=int)
|
||
|
Aexpm = scipy.sparse.diags(np.exp(np.arange(5)),format='csr')
|
||
|
assert_allclose(expm_multiply(A,B,0,1)[-1], Aexpm.dot(B))
|
||
|
|
||
|
# Test A complex, B int
|
||
|
A = scipy.sparse.diags(-1j*np.arange(5),format='csr', dtype=complex)
|
||
|
B = np.ones(5, dtype=int)
|
||
|
Aexpm = scipy.sparse.diags(np.exp(-1j*np.arange(5)),format='csr')
|
||
|
assert_allclose(expm_multiply(A,B,0,1)[-1], Aexpm.dot(B))
|
||
|
|
||
|
# Test A int, B complex
|
||
|
A = scipy.sparse.diags(np.arange(5),format='csr', dtype=int)
|
||
|
B = np.full(5, 1j, dtype=complex)
|
||
|
Aexpm = scipy.sparse.diags(np.exp(np.arange(5)),format='csr')
|
||
|
assert_allclose(expm_multiply(A,B,0,1)[-1], Aexpm.dot(B))
|
||
|
|
||
|
def test_expm_multiply_interval_status_0(self):
|
||
|
self._help_test_specific_expm_interval_status(0)
|
||
|
|
||
|
def test_expm_multiply_interval_status_1(self):
|
||
|
self._help_test_specific_expm_interval_status(1)
|
||
|
|
||
|
def test_expm_multiply_interval_status_2(self):
|
||
|
self._help_test_specific_expm_interval_status(2)
|
||
|
|
||
|
def _help_test_specific_expm_interval_status(self, target_status):
|
||
|
np.random.seed(1234)
|
||
|
start = 0.1
|
||
|
stop = 3.2
|
||
|
num = 13
|
||
|
endpoint = True
|
||
|
n = 5
|
||
|
k = 2
|
||
|
nrepeats = 10
|
||
|
nsuccesses = 0
|
||
|
for num in [14, 13, 2] * nrepeats:
|
||
|
A = np.random.randn(n, n)
|
||
|
B = np.random.randn(n, k)
|
||
|
status = _expm_multiply_interval(A, B,
|
||
|
start=start, stop=stop, num=num, endpoint=endpoint,
|
||
|
status_only=True)
|
||
|
if status == target_status:
|
||
|
X, status = _expm_multiply_interval(A, B,
|
||
|
start=start, stop=stop, num=num, endpoint=endpoint,
|
||
|
status_only=False)
|
||
|
assert_equal(X.shape, (num, n, k))
|
||
|
samples = np.linspace(start=start, stop=stop,
|
||
|
num=num, endpoint=endpoint)
|
||
|
for solution, t in zip(X, samples):
|
||
|
assert_allclose(solution, sp_expm(t*A).dot(B))
|
||
|
nsuccesses += 1
|
||
|
if not nsuccesses:
|
||
|
msg = 'failed to find a status-' + str(target_status) + ' interval'
|
||
|
raise Exception(msg)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype_a", DTYPES)
|
||
|
@pytest.mark.parametrize("dtype_b", DTYPES)
|
||
|
@pytest.mark.parametrize("b_is_matrix", [False, True])
|
||
|
def test_expm_multiply_dtype(dtype_a, dtype_b, b_is_matrix):
|
||
|
"""Make sure `expm_multiply` handles all numerical dtypes correctly."""
|
||
|
assert_allclose_ = (partial(assert_allclose, rtol=1.2e-3, atol=1e-5)
|
||
|
if {dtype_a, dtype_b} & IMPRECISE else assert_allclose)
|
||
|
rng = np.random.default_rng(1234)
|
||
|
# test data
|
||
|
n = 7
|
||
|
b_shape = (n, 3) if b_is_matrix else (n, )
|
||
|
if dtype_a in REAL_DTYPES:
|
||
|
A = scipy.linalg.inv(rng.random([n, n])).astype(dtype_a)
|
||
|
else:
|
||
|
A = scipy.linalg.inv(
|
||
|
rng.random([n, n]) + 1j*rng.random([n, n])
|
||
|
).astype(dtype_a)
|
||
|
if dtype_b in REAL_DTYPES:
|
||
|
B = (2*rng.random(b_shape)).astype(dtype_b)
|
||
|
else:
|
||
|
B = (rng.random(b_shape) + 1j*rng.random(b_shape)).astype(dtype_b)
|
||
|
|
||
|
# single application
|
||
|
sol_mat = expm_multiply(A, B)
|
||
|
sol_op = estimated(expm_multiply)(aslinearoperator(A), B)
|
||
|
direct_sol = np.dot(sp_expm(A), B)
|
||
|
assert_allclose_(sol_mat, direct_sol)
|
||
|
assert_allclose_(sol_op, direct_sol)
|
||
|
sol_op = expm_multiply(aslinearoperator(A), B, traceA=np.trace(A))
|
||
|
assert_allclose_(sol_op, direct_sol)
|
||
|
|
||
|
# for time points
|
||
|
interval = {'start': 0.1, 'stop': 3.2, 'num': 13, 'endpoint': True}
|
||
|
samples = np.linspace(**interval)
|
||
|
X_mat = expm_multiply(A, B, **interval)
|
||
|
X_op = estimated(expm_multiply)(aslinearoperator(A), B, **interval)
|
||
|
for sol_mat, sol_op, t in zip(X_mat, X_op, samples):
|
||
|
direct_sol = sp_expm(t*A).dot(B)
|
||
|
assert_allclose_(sol_mat, direct_sol)
|
||
|
assert_allclose_(sol_op, direct_sol)
|