Inzynierka/Lib/site-packages/scipy/sparse/linalg/tests/test_expm_multiply.py

346 lines
14 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""Test functions for the sparse.linalg._expm_multiply module."""
from functools import partial
from itertools import product
import numpy as np
import pytest
from numpy.testing import (assert_allclose, assert_, assert_equal,
suppress_warnings)
from scipy.sparse import SparseEfficiencyWarning
from scipy.sparse.linalg import aslinearoperator
import scipy.linalg
from scipy.sparse.linalg import expm as sp_expm
from scipy.sparse.linalg._expm_multiply import (_theta, _compute_p_max,
_onenormest_matrix_power, expm_multiply, _expm_multiply_simple,
_expm_multiply_interval)
IMPRECISE = {np.single, np.csingle}
REAL_DTYPES = {np.intc, np.int_, np.longlong,
np.single, np.double, np.longdouble}
COMPLEX_DTYPES = {np.csingle, np.cdouble, np.clongdouble}
# use sorted tuple to ensure fixed order of tests
DTYPES = tuple(sorted(REAL_DTYPES ^ COMPLEX_DTYPES, key=str))
def estimated(func):
"""If trace is estimated, it should warn.
We warn that estimation of trace might impact performance.
All result have to be correct nevertheless!
"""
def wrapped(*args, **kwds):
with pytest.warns(UserWarning,
match="Trace of LinearOperator not available"):
return func(*args, **kwds)
return wrapped
def less_than_or_close(a, b):
return np.allclose(a, b) or (a < b)
class TestExpmActionSimple:
"""
These tests do not consider the case of multiple time steps in one call.
"""
def test_theta_monotonicity(self):
pairs = sorted(_theta.items())
for (m_a, theta_a), (m_b, theta_b) in zip(pairs[:-1], pairs[1:]):
assert_(theta_a < theta_b)
def test_p_max_default(self):
m_max = 55
expected_p_max = 8
observed_p_max = _compute_p_max(m_max)
assert_equal(observed_p_max, expected_p_max)
def test_p_max_range(self):
for m_max in range(1, 55+1):
p_max = _compute_p_max(m_max)
assert_(p_max*(p_max - 1) <= m_max + 1)
p_too_big = p_max + 1
assert_(p_too_big*(p_too_big - 1) > m_max + 1)
def test_onenormest_matrix_power(self):
np.random.seed(1234)
n = 40
nsamples = 10
for i in range(nsamples):
A = scipy.linalg.inv(np.random.randn(n, n))
for p in range(4):
if not p:
M = np.identity(n)
else:
M = np.dot(M, A)
estimated = _onenormest_matrix_power(A, p)
exact = np.linalg.norm(M, 1)
assert_(less_than_or_close(estimated, exact))
assert_(less_than_or_close(exact, 3*estimated))
def test_expm_multiply(self):
np.random.seed(1234)
n = 40
k = 3
nsamples = 10
for i in range(nsamples):
A = scipy.linalg.inv(np.random.randn(n, n))
B = np.random.randn(n, k)
observed = expm_multiply(A, B)
expected = np.dot(sp_expm(A), B)
assert_allclose(observed, expected)
observed = estimated(expm_multiply)(aslinearoperator(A), B)
assert_allclose(observed, expected)
traceA = np.trace(A)
observed = expm_multiply(aslinearoperator(A), B, traceA=traceA)
assert_allclose(observed, expected)
def test_matrix_vector_multiply(self):
np.random.seed(1234)
n = 40
nsamples = 10
for i in range(nsamples):
A = scipy.linalg.inv(np.random.randn(n, n))
v = np.random.randn(n)
observed = expm_multiply(A, v)
expected = np.dot(sp_expm(A), v)
assert_allclose(observed, expected)
observed = estimated(expm_multiply)(aslinearoperator(A), v)
assert_allclose(observed, expected)
def test_scaled_expm_multiply(self):
np.random.seed(1234)
n = 40
k = 3
nsamples = 10
for i, t in product(range(nsamples), [0.2, 1.0, 1.5]):
with np.errstate(invalid='ignore'):
A = scipy.linalg.inv(np.random.randn(n, n))
B = np.random.randn(n, k)
observed = _expm_multiply_simple(A, B, t=t)
expected = np.dot(sp_expm(t*A), B)
assert_allclose(observed, expected)
observed = estimated(_expm_multiply_simple)(
aslinearoperator(A), B, t=t
)
assert_allclose(observed, expected)
def test_scaled_expm_multiply_single_timepoint(self):
np.random.seed(1234)
t = 0.1
n = 5
k = 2
A = np.random.randn(n, n)
B = np.random.randn(n, k)
observed = _expm_multiply_simple(A, B, t=t)
expected = sp_expm(t*A).dot(B)
assert_allclose(observed, expected)
observed = estimated(_expm_multiply_simple)(
aslinearoperator(A), B, t=t
)
assert_allclose(observed, expected)
def test_sparse_expm_multiply(self):
np.random.seed(1234)
n = 40
k = 3
nsamples = 10
for i in range(nsamples):
A = scipy.sparse.rand(n, n, density=0.05)
B = np.random.randn(n, k)
observed = expm_multiply(A, B)
with suppress_warnings() as sup:
sup.filter(SparseEfficiencyWarning,
"splu converted its input to CSC format")
sup.filter(SparseEfficiencyWarning,
"spsolve is more efficient when sparse b is in the"
" CSC matrix format")
expected = sp_expm(A).dot(B)
assert_allclose(observed, expected)
observed = estimated(expm_multiply)(aslinearoperator(A), B)
assert_allclose(observed, expected)
def test_complex(self):
A = np.array([
[1j, 1j],
[0, 1j]], dtype=complex)
B = np.array([1j, 1j])
observed = expm_multiply(A, B)
expected = np.array([
1j * np.exp(1j) + 1j * (1j*np.cos(1) - np.sin(1)),
1j * np.exp(1j)], dtype=complex)
assert_allclose(observed, expected)
observed = estimated(expm_multiply)(aslinearoperator(A), B)
assert_allclose(observed, expected)
class TestExpmActionInterval:
def test_sparse_expm_multiply_interval(self):
np.random.seed(1234)
start = 0.1
stop = 3.2
n = 40
k = 3
endpoint = True
for num in (14, 13, 2):
A = scipy.sparse.rand(n, n, density=0.05)
B = np.random.randn(n, k)
v = np.random.randn(n)
for target in (B, v):
X = expm_multiply(A, target, start=start, stop=stop,
num=num, endpoint=endpoint)
samples = np.linspace(start=start, stop=stop,
num=num, endpoint=endpoint)
with suppress_warnings() as sup:
sup.filter(SparseEfficiencyWarning,
"splu converted its input to CSC format")
sup.filter(SparseEfficiencyWarning,
"spsolve is more efficient when sparse b is in"
" the CSC matrix format")
for solution, t in zip(X, samples):
assert_allclose(solution, sp_expm(t*A).dot(target))
def test_expm_multiply_interval_vector(self):
np.random.seed(1234)
interval = {'start': 0.1, 'stop': 3.2, 'endpoint': True}
for num, n in product([14, 13, 2], [1, 2, 5, 20, 40]):
A = scipy.linalg.inv(np.random.randn(n, n))
v = np.random.randn(n)
samples = np.linspace(num=num, **interval)
X = expm_multiply(A, v, num=num, **interval)
for solution, t in zip(X, samples):
assert_allclose(solution, sp_expm(t*A).dot(v))
# test for linear operator with unknown trace -> estimate trace
Xguess = estimated(expm_multiply)(aslinearoperator(A), v,
num=num, **interval)
# test for linear operator with given trace
Xgiven = expm_multiply(aslinearoperator(A), v, num=num, **interval,
traceA=np.trace(A))
# test robustness for linear operator with wrong trace
Xwrong = expm_multiply(aslinearoperator(A), v, num=num, **interval,
traceA=np.trace(A)*5)
for sol_guess, sol_given, sol_wrong, t in zip(Xguess, Xgiven,
Xwrong, samples):
correct = sp_expm(t*A).dot(v)
assert_allclose(sol_guess, correct)
assert_allclose(sol_given, correct)
assert_allclose(sol_wrong, correct)
def test_expm_multiply_interval_matrix(self):
np.random.seed(1234)
interval = {'start': 0.1, 'stop': 3.2, 'endpoint': True}
for num, n, k in product([14, 13, 2], [1, 2, 5, 20, 40], [1, 2]):
A = scipy.linalg.inv(np.random.randn(n, n))
B = np.random.randn(n, k)
samples = np.linspace(num=num, **interval)
X = expm_multiply(A, B, num=num, **interval)
for solution, t in zip(X, samples):
assert_allclose(solution, sp_expm(t*A).dot(B))
X = estimated(expm_multiply)(aslinearoperator(A), B, num=num,
**interval)
for solution, t in zip(X, samples):
assert_allclose(solution, sp_expm(t*A).dot(B))
def test_sparse_expm_multiply_interval_dtypes(self):
# Test A & B int
A = scipy.sparse.diags(np.arange(5),format='csr', dtype=int)
B = np.ones(5, dtype=int)
Aexpm = scipy.sparse.diags(np.exp(np.arange(5)),format='csr')
assert_allclose(expm_multiply(A,B,0,1)[-1], Aexpm.dot(B))
# Test A complex, B int
A = scipy.sparse.diags(-1j*np.arange(5),format='csr', dtype=complex)
B = np.ones(5, dtype=int)
Aexpm = scipy.sparse.diags(np.exp(-1j*np.arange(5)),format='csr')
assert_allclose(expm_multiply(A,B,0,1)[-1], Aexpm.dot(B))
# Test A int, B complex
A = scipy.sparse.diags(np.arange(5),format='csr', dtype=int)
B = np.full(5, 1j, dtype=complex)
Aexpm = scipy.sparse.diags(np.exp(np.arange(5)),format='csr')
assert_allclose(expm_multiply(A,B,0,1)[-1], Aexpm.dot(B))
def test_expm_multiply_interval_status_0(self):
self._help_test_specific_expm_interval_status(0)
def test_expm_multiply_interval_status_1(self):
self._help_test_specific_expm_interval_status(1)
def test_expm_multiply_interval_status_2(self):
self._help_test_specific_expm_interval_status(2)
def _help_test_specific_expm_interval_status(self, target_status):
np.random.seed(1234)
start = 0.1
stop = 3.2
num = 13
endpoint = True
n = 5
k = 2
nrepeats = 10
nsuccesses = 0
for num in [14, 13, 2] * nrepeats:
A = np.random.randn(n, n)
B = np.random.randn(n, k)
status = _expm_multiply_interval(A, B,
start=start, stop=stop, num=num, endpoint=endpoint,
status_only=True)
if status == target_status:
X, status = _expm_multiply_interval(A, B,
start=start, stop=stop, num=num, endpoint=endpoint,
status_only=False)
assert_equal(X.shape, (num, n, k))
samples = np.linspace(start=start, stop=stop,
num=num, endpoint=endpoint)
for solution, t in zip(X, samples):
assert_allclose(solution, sp_expm(t*A).dot(B))
nsuccesses += 1
if not nsuccesses:
msg = 'failed to find a status-' + str(target_status) + ' interval'
raise Exception(msg)
@pytest.mark.parametrize("dtype_a", DTYPES)
@pytest.mark.parametrize("dtype_b", DTYPES)
@pytest.mark.parametrize("b_is_matrix", [False, True])
def test_expm_multiply_dtype(dtype_a, dtype_b, b_is_matrix):
"""Make sure `expm_multiply` handles all numerical dtypes correctly."""
assert_allclose_ = (partial(assert_allclose, rtol=1.2e-3, atol=1e-5)
if {dtype_a, dtype_b} & IMPRECISE else assert_allclose)
rng = np.random.default_rng(1234)
# test data
n = 7
b_shape = (n, 3) if b_is_matrix else (n, )
if dtype_a in REAL_DTYPES:
A = scipy.linalg.inv(rng.random([n, n])).astype(dtype_a)
else:
A = scipy.linalg.inv(
rng.random([n, n]) + 1j*rng.random([n, n])
).astype(dtype_a)
if dtype_b in REAL_DTYPES:
B = (2*rng.random(b_shape)).astype(dtype_b)
else:
B = (rng.random(b_shape) + 1j*rng.random(b_shape)).astype(dtype_b)
# single application
sol_mat = expm_multiply(A, B)
sol_op = estimated(expm_multiply)(aslinearoperator(A), B)
direct_sol = np.dot(sp_expm(A), B)
assert_allclose_(sol_mat, direct_sol)
assert_allclose_(sol_op, direct_sol)
sol_op = expm_multiply(aslinearoperator(A), B, traceA=np.trace(A))
assert_allclose_(sol_op, direct_sol)
# for time points
interval = {'start': 0.1, 'stop': 3.2, 'num': 13, 'endpoint': True}
samples = np.linspace(**interval)
X_mat = expm_multiply(A, B, **interval)
X_op = estimated(expm_multiply)(aslinearoperator(A), B, **interval)
for sol_mat, sol_op, t in zip(X_mat, X_op, samples):
direct_sol = sp_expm(t*A).dot(B)
assert_allclose_(sol_mat, direct_sol)
assert_allclose_(sol_op, direct_sol)