374 lines
12 KiB
Python
374 lines
12 KiB
Python
|
"""
|
||
|
Distribution functions used in GLM
|
||
|
"""
|
||
|
|
||
|
# Author: Christian Lorentzen <lorentzen.ch@googlemail.com>
|
||
|
# License: BSD 3 clause
|
||
|
#
|
||
|
# TODO(1.3): remove file
|
||
|
# This is only used for backward compatibility in _GeneralizedLinearRegressor
|
||
|
# for the deprecated family attribute.
|
||
|
|
||
|
from abc import ABCMeta, abstractmethod
|
||
|
from collections import namedtuple
|
||
|
import numbers
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.special import xlogy
|
||
|
|
||
|
|
||
|
DistributionBoundary = namedtuple("DistributionBoundary", ("value", "inclusive"))
|
||
|
|
||
|
|
||
|
class ExponentialDispersionModel(metaclass=ABCMeta):
|
||
|
r"""Base class for reproductive Exponential Dispersion Models (EDM).
|
||
|
|
||
|
The pdf of :math:`Y\sim \mathrm{EDM}(y_\textrm{pred}, \phi)` is given by
|
||
|
|
||
|
.. math:: p(y| \theta, \phi) = c(y, \phi)
|
||
|
\exp\left(\frac{\theta y-A(\theta)}{\phi}\right)
|
||
|
= \tilde{c}(y, \phi)
|
||
|
\exp\left(-\frac{d(y, y_\textrm{pred})}{2\phi}\right)
|
||
|
|
||
|
with mean :math:`\mathrm{E}[Y] = A'(\theta) = y_\textrm{pred}`,
|
||
|
variance :math:`\mathrm{Var}[Y] = \phi \cdot v(y_\textrm{pred})`,
|
||
|
unit variance :math:`v(y_\textrm{pred})` and
|
||
|
unit deviance :math:`d(y,y_\textrm{pred})`.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
deviance
|
||
|
deviance_derivative
|
||
|
in_y_range
|
||
|
unit_deviance
|
||
|
unit_deviance_derivative
|
||
|
unit_variance
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
https://en.wikipedia.org/wiki/Exponential_dispersion_model.
|
||
|
"""
|
||
|
|
||
|
def in_y_range(self, y):
|
||
|
"""Returns ``True`` if y is in the valid range of Y~EDM.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array of shape (n_samples,)
|
||
|
Target values.
|
||
|
"""
|
||
|
# Note that currently supported distributions have +inf upper bound
|
||
|
|
||
|
if not isinstance(self._lower_bound, DistributionBoundary):
|
||
|
raise TypeError(
|
||
|
"_lower_bound attribute must be of type DistributionBoundary"
|
||
|
)
|
||
|
|
||
|
if self._lower_bound.inclusive:
|
||
|
return np.greater_equal(y, self._lower_bound.value)
|
||
|
else:
|
||
|
return np.greater(y, self._lower_bound.value)
|
||
|
|
||
|
@abstractmethod
|
||
|
def unit_variance(self, y_pred):
|
||
|
r"""Compute the unit variance function.
|
||
|
|
||
|
The unit variance :math:`v(y_\textrm{pred})` determines the variance as
|
||
|
a function of the mean :math:`y_\textrm{pred}` by
|
||
|
:math:`\mathrm{Var}[Y_i] = \phi/s_i*v(y_\textrm{pred}_i)`.
|
||
|
It can also be derived from the unit deviance
|
||
|
:math:`d(y,y_\textrm{pred})` as
|
||
|
|
||
|
.. math:: v(y_\textrm{pred}) = \frac{2}{
|
||
|
\frac{\partial^2 d(y,y_\textrm{pred})}{
|
||
|
\partialy_\textrm{pred}^2}}\big|_{y=y_\textrm{pred}}
|
||
|
|
||
|
See also :func:`variance`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y_pred : array of shape (n_samples,)
|
||
|
Predicted mean.
|
||
|
"""
|
||
|
|
||
|
@abstractmethod
|
||
|
def unit_deviance(self, y, y_pred, check_input=False):
|
||
|
r"""Compute the unit deviance.
|
||
|
|
||
|
The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the
|
||
|
log-likelihood as
|
||
|
:math:`d(y,y_\textrm{pred}) = -2\phi\cdot
|
||
|
\left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).`
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array of shape (n_samples,)
|
||
|
Target values.
|
||
|
|
||
|
y_pred : array of shape (n_samples,)
|
||
|
Predicted mean.
|
||
|
|
||
|
check_input : bool, default=False
|
||
|
If True raise an exception on invalid y or y_pred values, otherwise
|
||
|
they will be propagated as NaN.
|
||
|
Returns
|
||
|
-------
|
||
|
deviance: array of shape (n_samples,)
|
||
|
Computed deviance
|
||
|
"""
|
||
|
|
||
|
def unit_deviance_derivative(self, y, y_pred):
|
||
|
r"""Compute the derivative of the unit deviance w.r.t. y_pred.
|
||
|
|
||
|
The derivative of the unit deviance is given by
|
||
|
:math:`\frac{\partial}{\partialy_\textrm{pred}}d(y,y_\textrm{pred})
|
||
|
= -2\frac{y-y_\textrm{pred}}{v(y_\textrm{pred})}`
|
||
|
with unit variance :math:`v(y_\textrm{pred})`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array of shape (n_samples,)
|
||
|
Target values.
|
||
|
|
||
|
y_pred : array of shape (n_samples,)
|
||
|
Predicted mean.
|
||
|
"""
|
||
|
return -2 * (y - y_pred) / self.unit_variance(y_pred)
|
||
|
|
||
|
def deviance(self, y, y_pred, weights=1):
|
||
|
r"""Compute the deviance.
|
||
|
|
||
|
The deviance is a weighted sum of the per sample unit deviances,
|
||
|
:math:`D = \sum_i s_i \cdot d(y_i, y_\textrm{pred}_i)`
|
||
|
with weights :math:`s_i` and unit deviance
|
||
|
:math:`d(y,y_\textrm{pred})`.
|
||
|
In terms of the log-likelihood it is :math:`D = -2\phi\cdot
|
||
|
\left(loglike(y,y_\textrm{pred},\frac{phi}{s})
|
||
|
- loglike(y,y,\frac{phi}{s})\right)`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array of shape (n_samples,)
|
||
|
Target values.
|
||
|
|
||
|
y_pred : array of shape (n_samples,)
|
||
|
Predicted mean.
|
||
|
|
||
|
weights : {int, array of shape (n_samples,)}, default=1
|
||
|
Weights or exposure to which variance is inverse proportional.
|
||
|
"""
|
||
|
return np.sum(weights * self.unit_deviance(y, y_pred))
|
||
|
|
||
|
def deviance_derivative(self, y, y_pred, weights=1):
|
||
|
r"""Compute the derivative of the deviance w.r.t. y_pred.
|
||
|
|
||
|
It gives :math:`\frac{\partial}{\partial y_\textrm{pred}}
|
||
|
D(y, \y_\textrm{pred}; weights)`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array, shape (n_samples,)
|
||
|
Target values.
|
||
|
|
||
|
y_pred : array, shape (n_samples,)
|
||
|
Predicted mean.
|
||
|
|
||
|
weights : {int, array of shape (n_samples,)}, default=1
|
||
|
Weights or exposure to which variance is inverse proportional.
|
||
|
"""
|
||
|
return weights * self.unit_deviance_derivative(y, y_pred)
|
||
|
|
||
|
|
||
|
class TweedieDistribution(ExponentialDispersionModel):
|
||
|
r"""A class for the Tweedie distribution.
|
||
|
|
||
|
A Tweedie distribution with mean :math:`y_\textrm{pred}=\mathrm{E}[Y]`
|
||
|
is uniquely defined by it's mean-variance relationship
|
||
|
:math:`\mathrm{Var}[Y] \propto y_\textrm{pred}^power`.
|
||
|
|
||
|
Special cases are:
|
||
|
|
||
|
===== ================
|
||
|
Power Distribution
|
||
|
===== ================
|
||
|
0 Normal
|
||
|
1 Poisson
|
||
|
(1,2) Compound Poisson
|
||
|
2 Gamma
|
||
|
3 Inverse Gaussian
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
power : float, default=0
|
||
|
The variance power of the `unit_variance`
|
||
|
:math:`v(y_\textrm{pred}) = y_\textrm{pred}^{power}`.
|
||
|
For ``0<power<1``, no distribution exists.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, power=0):
|
||
|
self.power = power
|
||
|
|
||
|
@property
|
||
|
def power(self):
|
||
|
return self._power
|
||
|
|
||
|
@power.setter
|
||
|
def power(self, power):
|
||
|
# We use a property with a setter, to update lower and
|
||
|
# upper bound when the power parameter is updated e.g. in grid
|
||
|
# search.
|
||
|
if not isinstance(power, numbers.Real):
|
||
|
raise TypeError("power must be a real number, input was {0}".format(power))
|
||
|
|
||
|
if power <= 0:
|
||
|
# Extreme Stable or Normal distribution
|
||
|
self._lower_bound = DistributionBoundary(-np.Inf, inclusive=False)
|
||
|
elif 0 < power < 1:
|
||
|
raise ValueError(
|
||
|
"Tweedie distribution is only defined for power<=0 and power>=1."
|
||
|
)
|
||
|
elif 1 <= power < 2:
|
||
|
# Poisson or Compound Poisson distribution
|
||
|
self._lower_bound = DistributionBoundary(0, inclusive=True)
|
||
|
elif power >= 2:
|
||
|
# Gamma, Positive Stable, Inverse Gaussian distributions
|
||
|
self._lower_bound = DistributionBoundary(0, inclusive=False)
|
||
|
else: # pragma: no cover
|
||
|
# this branch should be unreachable.
|
||
|
raise ValueError
|
||
|
|
||
|
self._power = power
|
||
|
|
||
|
def unit_variance(self, y_pred):
|
||
|
"""Compute the unit variance of a Tweedie distribution
|
||
|
v(y_\textrm{pred})=y_\textrm{pred}**power.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y_pred : array of shape (n_samples,)
|
||
|
Predicted mean.
|
||
|
"""
|
||
|
return np.power(y_pred, self.power)
|
||
|
|
||
|
def unit_deviance(self, y, y_pred, check_input=False):
|
||
|
r"""Compute the unit deviance.
|
||
|
|
||
|
The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the
|
||
|
log-likelihood as
|
||
|
:math:`d(y,y_\textrm{pred}) = -2\phi\cdot
|
||
|
\left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).`
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array of shape (n_samples,)
|
||
|
Target values.
|
||
|
|
||
|
y_pred : array of shape (n_samples,)
|
||
|
Predicted mean.
|
||
|
|
||
|
check_input : bool, default=False
|
||
|
If True raise an exception on invalid y or y_pred values, otherwise
|
||
|
they will be propagated as NaN.
|
||
|
Returns
|
||
|
-------
|
||
|
deviance: array of shape (n_samples,)
|
||
|
Computed deviance
|
||
|
"""
|
||
|
p = self.power
|
||
|
|
||
|
if check_input:
|
||
|
message = (
|
||
|
"Mean Tweedie deviance error with power={} can only be used on ".format(
|
||
|
p
|
||
|
)
|
||
|
)
|
||
|
if p < 0:
|
||
|
# 'Extreme stable', y any real number, y_pred > 0
|
||
|
if (y_pred <= 0).any():
|
||
|
raise ValueError(message + "strictly positive y_pred.")
|
||
|
elif p == 0:
|
||
|
# Normal, y and y_pred can be any real number
|
||
|
pass
|
||
|
elif 0 < p < 1:
|
||
|
raise ValueError(
|
||
|
"Tweedie deviance is only defined for power<=0 and power>=1."
|
||
|
)
|
||
|
elif 1 <= p < 2:
|
||
|
# Poisson and compound Poisson distribution, y >= 0, y_pred > 0
|
||
|
if (y < 0).any() or (y_pred <= 0).any():
|
||
|
raise ValueError(
|
||
|
message + "non-negative y and strictly positive y_pred."
|
||
|
)
|
||
|
elif p >= 2:
|
||
|
# Gamma and Extreme stable distribution, y and y_pred > 0
|
||
|
if (y <= 0).any() or (y_pred <= 0).any():
|
||
|
raise ValueError(message + "strictly positive y and y_pred.")
|
||
|
else: # pragma: nocover
|
||
|
# Unreachable statement
|
||
|
raise ValueError
|
||
|
|
||
|
if p < 0:
|
||
|
# 'Extreme stable', y any real number, y_pred > 0
|
||
|
dev = 2 * (
|
||
|
np.power(np.maximum(y, 0), 2 - p) / ((1 - p) * (2 - p))
|
||
|
- y * np.power(y_pred, 1 - p) / (1 - p)
|
||
|
+ np.power(y_pred, 2 - p) / (2 - p)
|
||
|
)
|
||
|
|
||
|
elif p == 0:
|
||
|
# Normal distribution, y and y_pred any real number
|
||
|
dev = (y - y_pred) ** 2
|
||
|
elif p < 1:
|
||
|
raise ValueError(
|
||
|
"Tweedie deviance is only defined for power<=0 and power>=1."
|
||
|
)
|
||
|
elif p == 1:
|
||
|
# Poisson distribution
|
||
|
dev = 2 * (xlogy(y, y / y_pred) - y + y_pred)
|
||
|
elif p == 2:
|
||
|
# Gamma distribution
|
||
|
dev = 2 * (np.log(y_pred / y) + y / y_pred - 1)
|
||
|
else:
|
||
|
dev = 2 * (
|
||
|
np.power(y, 2 - p) / ((1 - p) * (2 - p))
|
||
|
- y * np.power(y_pred, 1 - p) / (1 - p)
|
||
|
+ np.power(y_pred, 2 - p) / (2 - p)
|
||
|
)
|
||
|
return dev
|
||
|
|
||
|
|
||
|
class NormalDistribution(TweedieDistribution):
|
||
|
"""Class for the Normal (aka Gaussian) distribution."""
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__(power=0)
|
||
|
|
||
|
|
||
|
class PoissonDistribution(TweedieDistribution):
|
||
|
"""Class for the scaled Poisson distribution."""
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__(power=1)
|
||
|
|
||
|
|
||
|
class GammaDistribution(TweedieDistribution):
|
||
|
"""Class for the Gamma distribution."""
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__(power=2)
|
||
|
|
||
|
|
||
|
class InverseGaussianDistribution(TweedieDistribution):
|
||
|
"""Class for the scaled InverseGaussianDistribution distribution."""
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__(power=3)
|
||
|
|
||
|
|
||
|
EDM_DISTRIBUTIONS = {
|
||
|
"normal": NormalDistribution,
|
||
|
"poisson": PoissonDistribution,
|
||
|
"gamma": GammaDistribution,
|
||
|
"inverse-gaussian": InverseGaussianDistribution,
|
||
|
}
|