309 lines
11 KiB
Python
309 lines
11 KiB
Python
|
"""
|
||
|
Testing for Clustering methods
|
||
|
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import warnings
|
||
|
|
||
|
from scipy.sparse import csr_matrix
|
||
|
|
||
|
from sklearn.exceptions import ConvergenceWarning, NotFittedError
|
||
|
from sklearn.utils._testing import assert_array_equal, assert_allclose
|
||
|
|
||
|
from sklearn.cluster import AffinityPropagation
|
||
|
from sklearn.cluster._affinity_propagation import _equal_similarities_and_preferences
|
||
|
from sklearn.cluster import affinity_propagation
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.metrics import euclidean_distances
|
||
|
|
||
|
n_clusters = 3
|
||
|
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
|
||
|
X, _ = make_blobs(
|
||
|
n_samples=60,
|
||
|
n_features=2,
|
||
|
centers=centers,
|
||
|
cluster_std=0.4,
|
||
|
shuffle=True,
|
||
|
random_state=0,
|
||
|
)
|
||
|
|
||
|
# TODO: AffinityPropagation must preserve dtype for its fitted attributes
|
||
|
# and test must be created accordingly to this new behavior.
|
||
|
# For more details, see: https://github.com/scikit-learn/scikit-learn/issues/11000
|
||
|
|
||
|
|
||
|
def test_affinity_propagation(global_random_seed, global_dtype):
|
||
|
"""Test consistency of the affinity propagations."""
|
||
|
S = -euclidean_distances(X.astype(global_dtype, copy=False), squared=True)
|
||
|
preference = np.median(S) * 10
|
||
|
cluster_centers_indices, labels = affinity_propagation(
|
||
|
S, preference=preference, random_state=global_random_seed
|
||
|
)
|
||
|
|
||
|
n_clusters_ = len(cluster_centers_indices)
|
||
|
|
||
|
assert n_clusters == n_clusters_
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_precomputed():
|
||
|
"""Check equality of precomputed affinity matrix to internally computed affinity
|
||
|
matrix.
|
||
|
"""
|
||
|
S = -euclidean_distances(X, squared=True)
|
||
|
preference = np.median(S) * 10
|
||
|
af = AffinityPropagation(
|
||
|
preference=preference, affinity="precomputed", random_state=28
|
||
|
)
|
||
|
labels_precomputed = af.fit(S).labels_
|
||
|
|
||
|
af = AffinityPropagation(preference=preference, verbose=True, random_state=37)
|
||
|
labels = af.fit(X).labels_
|
||
|
|
||
|
assert_array_equal(labels, labels_precomputed)
|
||
|
|
||
|
cluster_centers_indices = af.cluster_centers_indices_
|
||
|
|
||
|
n_clusters_ = len(cluster_centers_indices)
|
||
|
assert np.unique(labels).size == n_clusters_
|
||
|
assert n_clusters == n_clusters_
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_no_copy():
|
||
|
"""Check behaviour of not copying the input data."""
|
||
|
S = -euclidean_distances(X, squared=True)
|
||
|
S_original = S.copy()
|
||
|
preference = np.median(S) * 10
|
||
|
assert not np.allclose(S.diagonal(), preference)
|
||
|
|
||
|
# with copy=True S should not be modified
|
||
|
affinity_propagation(S, preference=preference, copy=True, random_state=0)
|
||
|
assert_allclose(S, S_original)
|
||
|
assert not np.allclose(S.diagonal(), preference)
|
||
|
assert_allclose(S.diagonal(), np.zeros(S.shape[0]))
|
||
|
|
||
|
# with copy=False S will be modified inplace
|
||
|
affinity_propagation(S, preference=preference, copy=False, random_state=0)
|
||
|
assert_allclose(S.diagonal(), preference)
|
||
|
|
||
|
# test that copy=True and copy=False lead to the same result
|
||
|
S = S_original.copy()
|
||
|
af = AffinityPropagation(preference=preference, verbose=True, random_state=0)
|
||
|
|
||
|
labels = af.fit(X).labels_
|
||
|
_, labels_no_copy = affinity_propagation(
|
||
|
S, preference=preference, copy=False, random_state=74
|
||
|
)
|
||
|
assert_array_equal(labels, labels_no_copy)
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_affinity_shape():
|
||
|
"""Check the shape of the affinity matrix when using `affinity_propagation."""
|
||
|
S = -euclidean_distances(X, squared=True)
|
||
|
err_msg = "The matrix of similarities must be a square array"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
affinity_propagation(S[:, :-1])
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_precomputed_with_sparse_input():
|
||
|
err_msg = "A sparse matrix was passed, but dense data is required"
|
||
|
with pytest.raises(TypeError, match=err_msg):
|
||
|
AffinityPropagation(affinity="precomputed").fit(csr_matrix((3, 3)))
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_predict(global_random_seed, global_dtype):
|
||
|
# Test AffinityPropagation.predict
|
||
|
af = AffinityPropagation(affinity="euclidean", random_state=global_random_seed)
|
||
|
X_ = X.astype(global_dtype, copy=False)
|
||
|
labels = af.fit_predict(X_)
|
||
|
labels2 = af.predict(X_)
|
||
|
assert_array_equal(labels, labels2)
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_predict_error():
|
||
|
# Test exception in AffinityPropagation.predict
|
||
|
# Not fitted.
|
||
|
af = AffinityPropagation(affinity="euclidean")
|
||
|
with pytest.raises(NotFittedError):
|
||
|
af.predict(X)
|
||
|
|
||
|
# Predict not supported when affinity="precomputed".
|
||
|
S = np.dot(X, X.T)
|
||
|
af = AffinityPropagation(affinity="precomputed", random_state=57)
|
||
|
af.fit(S)
|
||
|
with pytest.raises(ValueError, match="expecting 60 features as input"):
|
||
|
af.predict(X)
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_fit_non_convergence(global_dtype):
|
||
|
# In case of non-convergence of affinity_propagation(), the cluster
|
||
|
# centers should be an empty array and training samples should be labelled
|
||
|
# as noise (-1)
|
||
|
X = np.array([[0, 0], [1, 1], [-2, -2]], dtype=global_dtype)
|
||
|
|
||
|
# Force non-convergence by allowing only a single iteration
|
||
|
af = AffinityPropagation(preference=-10, max_iter=1, random_state=82)
|
||
|
|
||
|
with pytest.warns(ConvergenceWarning):
|
||
|
af.fit(X)
|
||
|
assert_allclose(np.empty((0, 2)), af.cluster_centers_)
|
||
|
assert_array_equal(np.array([-1, -1, -1]), af.labels_)
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_equal_mutual_similarities(global_dtype):
|
||
|
X = np.array([[-1, 1], [1, -1]], dtype=global_dtype)
|
||
|
S = -euclidean_distances(X, squared=True)
|
||
|
|
||
|
# setting preference > similarity
|
||
|
with pytest.warns(UserWarning, match="mutually equal"):
|
||
|
cluster_center_indices, labels = affinity_propagation(S, preference=0)
|
||
|
|
||
|
# expect every sample to become an exemplar
|
||
|
assert_array_equal([0, 1], cluster_center_indices)
|
||
|
assert_array_equal([0, 1], labels)
|
||
|
|
||
|
# setting preference < similarity
|
||
|
with pytest.warns(UserWarning, match="mutually equal"):
|
||
|
cluster_center_indices, labels = affinity_propagation(S, preference=-10)
|
||
|
|
||
|
# expect one cluster, with arbitrary (first) sample as exemplar
|
||
|
assert_array_equal([0], cluster_center_indices)
|
||
|
assert_array_equal([0, 0], labels)
|
||
|
|
||
|
# setting different preferences
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("error", UserWarning)
|
||
|
cluster_center_indices, labels = affinity_propagation(
|
||
|
S, preference=[-20, -10], random_state=37
|
||
|
)
|
||
|
|
||
|
# expect one cluster, with highest-preference sample as exemplar
|
||
|
assert_array_equal([1], cluster_center_indices)
|
||
|
assert_array_equal([0, 0], labels)
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_predict_non_convergence(global_dtype):
|
||
|
# In case of non-convergence of affinity_propagation(), the cluster
|
||
|
# centers should be an empty array
|
||
|
X = np.array([[0, 0], [1, 1], [-2, -2]], dtype=global_dtype)
|
||
|
|
||
|
# Force non-convergence by allowing only a single iteration
|
||
|
with pytest.warns(ConvergenceWarning):
|
||
|
af = AffinityPropagation(preference=-10, max_iter=1, random_state=75).fit(X)
|
||
|
|
||
|
# At prediction time, consider new samples as noise since there are no
|
||
|
# clusters
|
||
|
to_predict = np.array([[2, 2], [3, 3], [4, 4]])
|
||
|
with pytest.warns(ConvergenceWarning):
|
||
|
y = af.predict(to_predict)
|
||
|
assert_array_equal(np.array([-1, -1, -1]), y)
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_non_convergence_regressiontest(global_dtype):
|
||
|
X = np.array(
|
||
|
[[1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0], [0, 0, 1, 0, 0, 1]], dtype=global_dtype
|
||
|
)
|
||
|
af = AffinityPropagation(affinity="euclidean", max_iter=2, random_state=34)
|
||
|
msg = (
|
||
|
"Affinity propagation did not converge, this model may return degenerate"
|
||
|
" cluster centers and labels."
|
||
|
)
|
||
|
with pytest.warns(ConvergenceWarning, match=msg):
|
||
|
af.fit(X)
|
||
|
|
||
|
assert_array_equal(np.array([0, 0, 0]), af.labels_)
|
||
|
|
||
|
|
||
|
def test_equal_similarities_and_preferences(global_dtype):
|
||
|
# Unequal distances
|
||
|
X = np.array([[0, 0], [1, 1], [-2, -2]], dtype=global_dtype)
|
||
|
S = -euclidean_distances(X, squared=True)
|
||
|
|
||
|
assert not _equal_similarities_and_preferences(S, np.array(0))
|
||
|
assert not _equal_similarities_and_preferences(S, np.array([0, 0]))
|
||
|
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
|
||
|
|
||
|
# Equal distances
|
||
|
X = np.array([[0, 0], [1, 1]], dtype=global_dtype)
|
||
|
S = -euclidean_distances(X, squared=True)
|
||
|
|
||
|
# Different preferences
|
||
|
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
|
||
|
|
||
|
# Same preferences
|
||
|
assert _equal_similarities_and_preferences(S, np.array([0, 0]))
|
||
|
assert _equal_similarities_and_preferences(S, np.array(0))
|
||
|
|
||
|
|
||
|
def test_affinity_propagation_random_state():
|
||
|
"""Check that different random states lead to different initialisations
|
||
|
by looking at the center locations after two iterations.
|
||
|
"""
|
||
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
||
|
X, labels_true = make_blobs(
|
||
|
n_samples=300, centers=centers, cluster_std=0.5, random_state=0
|
||
|
)
|
||
|
# random_state = 0
|
||
|
ap = AffinityPropagation(convergence_iter=1, max_iter=2, random_state=0)
|
||
|
ap.fit(X)
|
||
|
centers0 = ap.cluster_centers_
|
||
|
|
||
|
# random_state = 76
|
||
|
ap = AffinityPropagation(convergence_iter=1, max_iter=2, random_state=76)
|
||
|
ap.fit(X)
|
||
|
centers76 = ap.cluster_centers_
|
||
|
# check that the centers have not yet converged to the same solution
|
||
|
assert np.mean((centers0 - centers76) ** 2) > 1
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("centers", [csr_matrix(np.zeros((1, 10))), np.zeros((1, 10))])
|
||
|
def test_affinity_propagation_convergence_warning_dense_sparse(centers, global_dtype):
|
||
|
"""
|
||
|
Check that having sparse or dense `centers` format should not
|
||
|
influence the convergence.
|
||
|
Non-regression test for gh-13334.
|
||
|
"""
|
||
|
rng = np.random.RandomState(42)
|
||
|
X = rng.rand(40, 10).astype(global_dtype, copy=False)
|
||
|
y = (4 * rng.rand(40)).astype(int)
|
||
|
ap = AffinityPropagation(random_state=46)
|
||
|
ap.fit(X, y)
|
||
|
ap.cluster_centers_ = centers
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("error", ConvergenceWarning)
|
||
|
assert_array_equal(ap.predict(X), np.zeros(X.shape[0], dtype=int))
|
||
|
|
||
|
|
||
|
# FIXME; this test is broken with different random states, needs to be revisited
|
||
|
def test_correct_clusters(global_dtype):
|
||
|
# Test to fix incorrect clusters due to dtype change
|
||
|
# (non-regression test for issue #10832)
|
||
|
X = np.array(
|
||
|
[[1, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 1]], dtype=global_dtype
|
||
|
)
|
||
|
afp = AffinityPropagation(preference=1, affinity="precomputed", random_state=0).fit(
|
||
|
X
|
||
|
)
|
||
|
expected = np.array([0, 1, 1, 2])
|
||
|
assert_array_equal(afp.labels_, expected)
|
||
|
|
||
|
|
||
|
def test_sparse_input_for_predict():
|
||
|
# Test to make sure sparse inputs are accepted for predict
|
||
|
# (non-regression test for issue #20049)
|
||
|
af = AffinityPropagation(affinity="euclidean", random_state=42)
|
||
|
af.fit(X)
|
||
|
labels = af.predict(csr_matrix((2, 2)))
|
||
|
assert_array_equal(labels, (2, 2))
|
||
|
|
||
|
|
||
|
def test_sparse_input_for_fit_predict():
|
||
|
# Test to make sure sparse inputs are accepted for fit_predict
|
||
|
# (non-regression test for issue #20049)
|
||
|
af = AffinityPropagation(affinity="euclidean", random_state=42)
|
||
|
rng = np.random.RandomState(42)
|
||
|
X = csr_matrix(rng.randint(0, 2, size=(5, 5)))
|
||
|
labels = af.fit_predict(X)
|
||
|
assert_array_equal(labels, (0, 1, 1, 2, 3))
|