243 lines
8.5 KiB
Python
243 lines
8.5 KiB
Python
|
""" Test the graphical_lasso module.
|
||
|
"""
|
||
|
import sys
|
||
|
import pytest
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import linalg
|
||
|
|
||
|
from numpy.testing import assert_allclose
|
||
|
from sklearn.utils._testing import assert_array_almost_equal
|
||
|
from sklearn.utils._testing import assert_array_less
|
||
|
from sklearn.utils._testing import _convert_container
|
||
|
|
||
|
from sklearn.covariance import (
|
||
|
graphical_lasso,
|
||
|
GraphicalLasso,
|
||
|
GraphicalLassoCV,
|
||
|
empirical_covariance,
|
||
|
)
|
||
|
from sklearn.datasets import make_sparse_spd_matrix
|
||
|
from io import StringIO
|
||
|
from sklearn.utils import check_random_state
|
||
|
from sklearn import datasets
|
||
|
|
||
|
|
||
|
def test_graphical_lasso(random_state=0):
|
||
|
# Sample data from a sparse multivariate normal
|
||
|
dim = 20
|
||
|
n_samples = 100
|
||
|
random_state = check_random_state(random_state)
|
||
|
prec = make_sparse_spd_matrix(dim, alpha=0.95, random_state=random_state)
|
||
|
cov = linalg.inv(prec)
|
||
|
X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples)
|
||
|
emp_cov = empirical_covariance(X)
|
||
|
|
||
|
for alpha in (0.0, 0.1, 0.25):
|
||
|
covs = dict()
|
||
|
icovs = dict()
|
||
|
for method in ("cd", "lars"):
|
||
|
cov_, icov_, costs = graphical_lasso(
|
||
|
emp_cov, return_costs=True, alpha=alpha, mode=method
|
||
|
)
|
||
|
covs[method] = cov_
|
||
|
icovs[method] = icov_
|
||
|
costs, dual_gap = np.array(costs).T
|
||
|
# Check that the costs always decrease (doesn't hold if alpha == 0)
|
||
|
if not alpha == 0:
|
||
|
assert_array_less(np.diff(costs), 0)
|
||
|
# Check that the 2 approaches give similar results
|
||
|
assert_array_almost_equal(covs["cd"], covs["lars"], decimal=4)
|
||
|
assert_array_almost_equal(icovs["cd"], icovs["lars"], decimal=4)
|
||
|
|
||
|
# Smoke test the estimator
|
||
|
model = GraphicalLasso(alpha=0.25).fit(X)
|
||
|
model.score(X)
|
||
|
assert_array_almost_equal(model.covariance_, covs["cd"], decimal=4)
|
||
|
assert_array_almost_equal(model.covariance_, covs["lars"], decimal=4)
|
||
|
|
||
|
# For a centered matrix, assume_centered could be chosen True or False
|
||
|
# Check that this returns indeed the same result for centered data
|
||
|
Z = X - X.mean(0)
|
||
|
precs = list()
|
||
|
for assume_centered in (False, True):
|
||
|
prec_ = GraphicalLasso(assume_centered=assume_centered).fit(Z).precision_
|
||
|
precs.append(prec_)
|
||
|
assert_array_almost_equal(precs[0], precs[1])
|
||
|
|
||
|
|
||
|
def test_graphical_lasso_iris():
|
||
|
# Hard-coded solution from R glasso package for alpha=1.0
|
||
|
# (need to set penalize.diagonal to FALSE)
|
||
|
cov_R = np.array(
|
||
|
[
|
||
|
[0.68112222, 0.0000000, 0.265820, 0.02464314],
|
||
|
[0.00000000, 0.1887129, 0.000000, 0.00000000],
|
||
|
[0.26582000, 0.0000000, 3.095503, 0.28697200],
|
||
|
[0.02464314, 0.0000000, 0.286972, 0.57713289],
|
||
|
]
|
||
|
)
|
||
|
icov_R = np.array(
|
||
|
[
|
||
|
[1.5190747, 0.000000, -0.1304475, 0.0000000],
|
||
|
[0.0000000, 5.299055, 0.0000000, 0.0000000],
|
||
|
[-0.1304475, 0.000000, 0.3498624, -0.1683946],
|
||
|
[0.0000000, 0.000000, -0.1683946, 1.8164353],
|
||
|
]
|
||
|
)
|
||
|
X = datasets.load_iris().data
|
||
|
emp_cov = empirical_covariance(X)
|
||
|
for method in ("cd", "lars"):
|
||
|
cov, icov = graphical_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method)
|
||
|
assert_array_almost_equal(cov, cov_R)
|
||
|
assert_array_almost_equal(icov, icov_R)
|
||
|
|
||
|
|
||
|
def test_graph_lasso_2D():
|
||
|
# Hard-coded solution from Python skggm package
|
||
|
# obtained by calling `quic(emp_cov, lam=.1, tol=1e-8)`
|
||
|
cov_skggm = np.array([[3.09550269, 1.186972], [1.186972, 0.57713289]])
|
||
|
|
||
|
icov_skggm = np.array([[1.52836773, -3.14334831], [-3.14334831, 8.19753385]])
|
||
|
X = datasets.load_iris().data[:, 2:]
|
||
|
emp_cov = empirical_covariance(X)
|
||
|
for method in ("cd", "lars"):
|
||
|
cov, icov = graphical_lasso(emp_cov, alpha=0.1, return_costs=False, mode=method)
|
||
|
assert_array_almost_equal(cov, cov_skggm)
|
||
|
assert_array_almost_equal(icov, icov_skggm)
|
||
|
|
||
|
|
||
|
def test_graphical_lasso_iris_singular():
|
||
|
# Small subset of rows to test the rank-deficient case
|
||
|
# Need to choose samples such that none of the variances are zero
|
||
|
indices = np.arange(10, 13)
|
||
|
|
||
|
# Hard-coded solution from R glasso package for alpha=0.01
|
||
|
cov_R = np.array(
|
||
|
[
|
||
|
[0.08, 0.056666662595, 0.00229729713223, 0.00153153142149],
|
||
|
[0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222],
|
||
|
[0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009],
|
||
|
[0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222],
|
||
|
]
|
||
|
)
|
||
|
icov_R = np.array(
|
||
|
[
|
||
|
[24.42244057, -16.831679593, 0.0, 0.0],
|
||
|
[-16.83168201, 24.351841681, -6.206896552, -12.5],
|
||
|
[0.0, -6.206896171, 153.103448276, 0.0],
|
||
|
[0.0, -12.499999143, 0.0, 462.5],
|
||
|
]
|
||
|
)
|
||
|
X = datasets.load_iris().data[indices, :]
|
||
|
emp_cov = empirical_covariance(X)
|
||
|
for method in ("cd", "lars"):
|
||
|
cov, icov = graphical_lasso(
|
||
|
emp_cov, alpha=0.01, return_costs=False, mode=method
|
||
|
)
|
||
|
assert_array_almost_equal(cov, cov_R, decimal=5)
|
||
|
assert_array_almost_equal(icov, icov_R, decimal=5)
|
||
|
|
||
|
|
||
|
def test_graphical_lasso_cv(random_state=1):
|
||
|
# Sample data from a sparse multivariate normal
|
||
|
dim = 5
|
||
|
n_samples = 6
|
||
|
random_state = check_random_state(random_state)
|
||
|
prec = make_sparse_spd_matrix(dim, alpha=0.96, random_state=random_state)
|
||
|
cov = linalg.inv(prec)
|
||
|
X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples)
|
||
|
# Capture stdout, to smoke test the verbose mode
|
||
|
orig_stdout = sys.stdout
|
||
|
try:
|
||
|
sys.stdout = StringIO()
|
||
|
# We need verbose very high so that Parallel prints on stdout
|
||
|
GraphicalLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X)
|
||
|
finally:
|
||
|
sys.stdout = orig_stdout
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("alphas_container_type", ["list", "tuple", "array"])
|
||
|
def test_graphical_lasso_cv_alphas_iterable(alphas_container_type):
|
||
|
"""Check that we can pass an array-like to `alphas`.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/22489
|
||
|
"""
|
||
|
true_cov = np.array(
|
||
|
[
|
||
|
[0.8, 0.0, 0.2, 0.0],
|
||
|
[0.0, 0.4, 0.0, 0.0],
|
||
|
[0.2, 0.0, 0.3, 0.1],
|
||
|
[0.0, 0.0, 0.1, 0.7],
|
||
|
]
|
||
|
)
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.multivariate_normal(mean=[0, 0, 0, 0], cov=true_cov, size=200)
|
||
|
alphas = _convert_container([0.02, 0.03], alphas_container_type)
|
||
|
GraphicalLassoCV(alphas=alphas, tol=1e-1, n_jobs=1).fit(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"alphas,err_type,err_msg",
|
||
|
[
|
||
|
([-0.02, 0.03], ValueError, "must be > 0"),
|
||
|
([0, 0.03], ValueError, "must be > 0"),
|
||
|
(["not_number", 0.03], TypeError, "must be an instance of float"),
|
||
|
],
|
||
|
)
|
||
|
def test_graphical_lasso_cv_alphas_invalid_array(alphas, err_type, err_msg):
|
||
|
"""Check that if an array-like containing a value
|
||
|
outside of (0, inf] is passed to `alphas`, a ValueError is raised.
|
||
|
Check if a string is passed, a TypeError is raised.
|
||
|
"""
|
||
|
true_cov = np.array(
|
||
|
[
|
||
|
[0.8, 0.0, 0.2, 0.0],
|
||
|
[0.0, 0.4, 0.0, 0.0],
|
||
|
[0.2, 0.0, 0.3, 0.1],
|
||
|
[0.0, 0.0, 0.1, 0.7],
|
||
|
]
|
||
|
)
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.multivariate_normal(mean=[0, 0, 0, 0], cov=true_cov, size=200)
|
||
|
|
||
|
with pytest.raises(err_type, match=err_msg):
|
||
|
GraphicalLassoCV(alphas=alphas, tol=1e-1, n_jobs=1).fit(X)
|
||
|
|
||
|
|
||
|
def test_graphical_lasso_cv_scores():
|
||
|
splits = 4
|
||
|
n_alphas = 5
|
||
|
n_refinements = 3
|
||
|
true_cov = np.array(
|
||
|
[
|
||
|
[0.8, 0.0, 0.2, 0.0],
|
||
|
[0.0, 0.4, 0.0, 0.0],
|
||
|
[0.2, 0.0, 0.3, 0.1],
|
||
|
[0.0, 0.0, 0.1, 0.7],
|
||
|
]
|
||
|
)
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.multivariate_normal(mean=[0, 0, 0, 0], cov=true_cov, size=200)
|
||
|
cov = GraphicalLassoCV(cv=splits, alphas=n_alphas, n_refinements=n_refinements).fit(
|
||
|
X
|
||
|
)
|
||
|
|
||
|
cv_results = cov.cv_results_
|
||
|
# alpha and one for each split
|
||
|
|
||
|
total_alphas = n_refinements * n_alphas + 1
|
||
|
keys = ["alphas"]
|
||
|
split_keys = [f"split{i}_test_score" for i in range(splits)]
|
||
|
for key in keys + split_keys:
|
||
|
assert key in cv_results
|
||
|
assert len(cv_results[key]) == total_alphas
|
||
|
|
||
|
cv_scores = np.asarray([cov.cv_results_[key] for key in split_keys])
|
||
|
expected_mean = cv_scores.mean(axis=0)
|
||
|
expected_std = cv_scores.std(axis=0)
|
||
|
|
||
|
assert_allclose(cov.cv_results_["mean_test_score"], expected_mean)
|
||
|
assert_allclose(cov.cv_results_["std_test_score"], expected_std)
|