149 lines
4.9 KiB
Python
149 lines
4.9 KiB
Python
|
"""Modified Olivetti faces dataset.
|
||
|
|
||
|
The original database was available from (now defunct)
|
||
|
|
||
|
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
|
||
|
|
||
|
The version retrieved here comes in MATLAB format from the personal
|
||
|
web page of Sam Roweis:
|
||
|
|
||
|
https://cs.nyu.edu/~roweis/
|
||
|
"""
|
||
|
|
||
|
# Copyright (c) 2011 David Warde-Farley <wardefar at iro dot umontreal dot ca>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
from os.path import exists
|
||
|
from os import makedirs, remove
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.io import loadmat
|
||
|
import joblib
|
||
|
|
||
|
from . import get_data_home
|
||
|
from ._base import _fetch_remote
|
||
|
from ._base import RemoteFileMetadata
|
||
|
from ._base import _pkl_filepath
|
||
|
from ._base import load_descr
|
||
|
from ..utils import check_random_state, Bunch
|
||
|
|
||
|
# The original data can be found at:
|
||
|
# https://cs.nyu.edu/~roweis/data/olivettifaces.mat
|
||
|
FACES = RemoteFileMetadata(
|
||
|
filename="olivettifaces.mat",
|
||
|
url="https://ndownloader.figshare.com/files/5976027",
|
||
|
checksum="b612fb967f2dc77c9c62d3e1266e0c73d5fca46a4b8906c18e454d41af987794",
|
||
|
)
|
||
|
|
||
|
|
||
|
def fetch_olivetti_faces(
|
||
|
*,
|
||
|
data_home=None,
|
||
|
shuffle=False,
|
||
|
random_state=0,
|
||
|
download_if_missing=True,
|
||
|
return_X_y=False,
|
||
|
):
|
||
|
"""Load the Olivetti faces data-set from AT&T (classification).
|
||
|
|
||
|
Download it if necessary.
|
||
|
|
||
|
================= =====================
|
||
|
Classes 40
|
||
|
Samples total 400
|
||
|
Dimensionality 4096
|
||
|
Features real, between 0 and 1
|
||
|
================= =====================
|
||
|
|
||
|
Read more in the :ref:`User Guide <olivetti_faces_dataset>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data_home : str, default=None
|
||
|
Specify another download and cache folder for the datasets. By default
|
||
|
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
|
||
|
|
||
|
shuffle : bool, default=False
|
||
|
If True the order of the dataset is shuffled to avoid having
|
||
|
images of the same person grouped.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=0
|
||
|
Determines random number generation for dataset shuffling. Pass an int
|
||
|
for reproducible output across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
download_if_missing : bool, default=True
|
||
|
If False, raise a IOError if the data is not locally available
|
||
|
instead of trying to download the data from the source site.
|
||
|
|
||
|
return_X_y : bool, default=False
|
||
|
If True, returns `(data, target)` instead of a `Bunch` object. See
|
||
|
below for more information about the `data` and `target` object.
|
||
|
|
||
|
.. versionadded:: 0.22
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data : :class:`~sklearn.utils.Bunch`
|
||
|
Dictionary-like object, with the following attributes.
|
||
|
|
||
|
data: ndarray, shape (400, 4096)
|
||
|
Each row corresponds to a ravelled
|
||
|
face image of original size 64 x 64 pixels.
|
||
|
images : ndarray, shape (400, 64, 64)
|
||
|
Each row is a face image
|
||
|
corresponding to one of the 40 subjects of the dataset.
|
||
|
target : ndarray, shape (400,)
|
||
|
Labels associated to each face image.
|
||
|
Those labels are ranging from 0-39 and correspond to the
|
||
|
Subject IDs.
|
||
|
DESCR : str
|
||
|
Description of the modified Olivetti Faces Dataset.
|
||
|
|
||
|
(data, target) : tuple if `return_X_y=True`
|
||
|
Tuple with the `data` and `target` objects described above.
|
||
|
|
||
|
.. versionadded:: 0.22
|
||
|
"""
|
||
|
data_home = get_data_home(data_home=data_home)
|
||
|
if not exists(data_home):
|
||
|
makedirs(data_home)
|
||
|
filepath = _pkl_filepath(data_home, "olivetti.pkz")
|
||
|
if not exists(filepath):
|
||
|
if not download_if_missing:
|
||
|
raise IOError("Data not found and `download_if_missing` is False")
|
||
|
|
||
|
print("downloading Olivetti faces from %s to %s" % (FACES.url, data_home))
|
||
|
mat_path = _fetch_remote(FACES, dirname=data_home)
|
||
|
mfile = loadmat(file_name=mat_path)
|
||
|
# delete raw .mat data
|
||
|
remove(mat_path)
|
||
|
|
||
|
faces = mfile["faces"].T.copy()
|
||
|
joblib.dump(faces, filepath, compress=6)
|
||
|
del mfile
|
||
|
else:
|
||
|
faces = joblib.load(filepath)
|
||
|
|
||
|
# We want floating point data, but float32 is enough (there is only
|
||
|
# one byte of precision in the original uint8s anyway)
|
||
|
faces = np.float32(faces)
|
||
|
faces = faces - faces.min()
|
||
|
faces /= faces.max()
|
||
|
faces = faces.reshape((400, 64, 64)).transpose(0, 2, 1)
|
||
|
# 10 images per class, 400 images total, each class is contiguous.
|
||
|
target = np.array([i // 10 for i in range(400)])
|
||
|
if shuffle:
|
||
|
random_state = check_random_state(random_state)
|
||
|
order = random_state.permutation(len(faces))
|
||
|
faces = faces[order]
|
||
|
target = target[order]
|
||
|
faces_vectorized = faces.reshape(len(faces), -1)
|
||
|
|
||
|
fdescr = load_descr("olivetti_faces.rst")
|
||
|
|
||
|
if return_X_y:
|
||
|
return faces_vectorized, target
|
||
|
|
||
|
return Bunch(data=faces_vectorized, images=faces, target=target, DESCR=fdescr)
|