801 lines
27 KiB
Python
801 lines
27 KiB
Python
|
"""Testing for Gaussian process regression """
|
||
|
|
||
|
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||
|
# Modified by: Pete Green <p.l.green@liverpool.ac.uk>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import warnings
|
||
|
import sys
|
||
|
import re
|
||
|
import numpy as np
|
||
|
|
||
|
from scipy.optimize import approx_fprime
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from sklearn.gaussian_process import GaussianProcessRegressor
|
||
|
from sklearn.gaussian_process.kernels import (
|
||
|
RBF,
|
||
|
ConstantKernel as C,
|
||
|
WhiteKernel,
|
||
|
)
|
||
|
from sklearn.gaussian_process.kernels import DotProduct, ExpSineSquared
|
||
|
from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
|
||
|
from sklearn.exceptions import ConvergenceWarning
|
||
|
from sklearn.utils._testing import (
|
||
|
assert_array_less,
|
||
|
assert_almost_equal,
|
||
|
assert_array_almost_equal,
|
||
|
assert_allclose,
|
||
|
)
|
||
|
|
||
|
|
||
|
def f(x):
|
||
|
return x * np.sin(x)
|
||
|
|
||
|
|
||
|
X = np.atleast_2d([1.0, 3.0, 5.0, 6.0, 7.0, 8.0]).T
|
||
|
X2 = np.atleast_2d([2.0, 4.0, 5.5, 6.5, 7.5]).T
|
||
|
y = f(X).ravel()
|
||
|
|
||
|
fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
|
||
|
kernels = [
|
||
|
RBF(length_scale=1.0),
|
||
|
fixed_kernel,
|
||
|
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
||
|
C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
||
|
C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))
|
||
|
+ C(1e-5, (1e-5, 1e2)),
|
||
|
C(0.1, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))
|
||
|
+ C(1e-5, (1e-5, 1e2)),
|
||
|
]
|
||
|
non_fixed_kernels = [kernel for kernel in kernels if kernel != fixed_kernel]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
def test_gpr_interpolation(kernel):
|
||
|
if sys.maxsize <= 2**32:
|
||
|
pytest.xfail("This test may fail on 32 bit Python")
|
||
|
|
||
|
# Test the interpolating property for different kernels.
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
||
|
|
||
|
assert_almost_equal(y_pred, y)
|
||
|
assert_almost_equal(np.diag(y_cov), 0.0)
|
||
|
|
||
|
|
||
|
def test_gpr_interpolation_structured():
|
||
|
# Test the interpolating property for different kernels.
|
||
|
kernel = MiniSeqKernel(baseline_similarity_bounds="fixed")
|
||
|
X = ["A", "B", "C"]
|
||
|
y = np.array([1, 2, 3])
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
||
|
|
||
|
assert_almost_equal(
|
||
|
kernel(X, eval_gradient=True)[1].ravel(), (1 - np.eye(len(X))).ravel()
|
||
|
)
|
||
|
assert_almost_equal(y_pred, y)
|
||
|
assert_almost_equal(np.diag(y_cov), 0.0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
||
|
def test_lml_improving(kernel):
|
||
|
if sys.maxsize <= 2**32:
|
||
|
pytest.xfail("This test may fail on 32 bit Python")
|
||
|
|
||
|
# Test that hyperparameter-tuning improves log-marginal likelihood.
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
assert gpr.log_marginal_likelihood(gpr.kernel_.theta) > gpr.log_marginal_likelihood(
|
||
|
kernel.theta
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
def test_lml_precomputed(kernel):
|
||
|
# Test that lml of optimized kernel is stored correctly.
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
assert gpr.log_marginal_likelihood(gpr.kernel_.theta) == pytest.approx(
|
||
|
gpr.log_marginal_likelihood()
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
def test_lml_without_cloning_kernel(kernel):
|
||
|
# Test that lml of optimized kernel is stored correctly.
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
input_theta = np.ones(gpr.kernel_.theta.shape, dtype=np.float64)
|
||
|
|
||
|
gpr.log_marginal_likelihood(input_theta, clone_kernel=False)
|
||
|
assert_almost_equal(gpr.kernel_.theta, input_theta, 7)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
||
|
def test_converged_to_local_maximum(kernel):
|
||
|
# Test that we are in local maximum after hyperparameter-optimization.
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
|
||
|
lml, lml_gradient = gpr.log_marginal_likelihood(gpr.kernel_.theta, True)
|
||
|
|
||
|
assert np.all(
|
||
|
(np.abs(lml_gradient) < 1e-4)
|
||
|
| (gpr.kernel_.theta == gpr.kernel_.bounds[:, 0])
|
||
|
| (gpr.kernel_.theta == gpr.kernel_.bounds[:, 1])
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
||
|
def test_solution_inside_bounds(kernel):
|
||
|
# Test that hyperparameter-optimization remains in bounds#
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
|
||
|
bounds = gpr.kernel_.bounds
|
||
|
max_ = np.finfo(gpr.kernel_.theta.dtype).max
|
||
|
tiny = 1e-10
|
||
|
bounds[~np.isfinite(bounds[:, 1]), 1] = max_
|
||
|
|
||
|
assert_array_less(bounds[:, 0], gpr.kernel_.theta + tiny)
|
||
|
assert_array_less(gpr.kernel_.theta, bounds[:, 1] + tiny)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
def test_lml_gradient(kernel):
|
||
|
# Compare analytic and numeric gradient of log marginal likelihood.
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
|
||
|
lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True)
|
||
|
lml_gradient_approx = approx_fprime(
|
||
|
kernel.theta, lambda theta: gpr.log_marginal_likelihood(theta, False), 1e-10
|
||
|
)
|
||
|
|
||
|
assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
def test_prior(kernel):
|
||
|
# Test that GP prior has mean 0 and identical variances.
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel)
|
||
|
|
||
|
y_mean, y_cov = gpr.predict(X, return_cov=True)
|
||
|
|
||
|
assert_almost_equal(y_mean, 0, 5)
|
||
|
if len(gpr.kernel.theta) > 1:
|
||
|
# XXX: quite hacky, works only for current kernels
|
||
|
assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5)
|
||
|
else:
|
||
|
assert_almost_equal(np.diag(y_cov), 1, 5)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
def test_sample_statistics(kernel):
|
||
|
# Test that statistics of samples drawn from GP are correct.
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
|
||
|
y_mean, y_cov = gpr.predict(X2, return_cov=True)
|
||
|
|
||
|
samples = gpr.sample_y(X2, 300000)
|
||
|
|
||
|
# More digits accuracy would require many more samples
|
||
|
assert_almost_equal(y_mean, np.mean(samples, 1), 1)
|
||
|
assert_almost_equal(
|
||
|
np.diag(y_cov) / np.diag(y_cov).max(),
|
||
|
np.var(samples, 1) / np.diag(y_cov).max(),
|
||
|
1,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_no_optimizer():
|
||
|
# Test that kernel parameters are unmodified when optimizer is None.
|
||
|
kernel = RBF(1.0)
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y)
|
||
|
assert np.exp(gpr.kernel_.theta) == 1.0
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
@pytest.mark.parametrize("target", [y, np.ones(X.shape[0], dtype=np.float64)])
|
||
|
def test_predict_cov_vs_std(kernel, target):
|
||
|
if sys.maxsize <= 2**32:
|
||
|
pytest.xfail("This test may fail on 32 bit Python")
|
||
|
|
||
|
# Test that predicted std.-dev. is consistent with cov's diagonal.
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
y_mean, y_cov = gpr.predict(X2, return_cov=True)
|
||
|
y_mean, y_std = gpr.predict(X2, return_std=True)
|
||
|
assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std)
|
||
|
|
||
|
|
||
|
def test_anisotropic_kernel():
|
||
|
# Test that GPR can identify meaningful anisotropic length-scales.
|
||
|
# We learn a function which varies in one dimension ten-times slower
|
||
|
# than in the other. The corresponding length-scales should differ by at
|
||
|
# least a factor 5
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.uniform(-1, 1, (50, 2))
|
||
|
y = X[:, 0] + 0.1 * X[:, 1]
|
||
|
|
||
|
kernel = RBF([1.0, 1.0])
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
assert np.exp(gpr.kernel_.theta[1]) > np.exp(gpr.kernel_.theta[0]) * 5
|
||
|
|
||
|
|
||
|
def test_random_starts():
|
||
|
# Test that an increasing number of random-starts of GP fitting only
|
||
|
# increases the log marginal likelihood of the chosen theta.
|
||
|
n_samples, n_features = 25, 2
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.randn(n_samples, n_features) * 2 - 1
|
||
|
y = (
|
||
|
np.sin(X).sum(axis=1)
|
||
|
+ np.sin(3 * X).sum(axis=1)
|
||
|
+ rng.normal(scale=0.1, size=n_samples)
|
||
|
)
|
||
|
|
||
|
kernel = C(1.0, (1e-2, 1e2)) * RBF(
|
||
|
length_scale=[1.0] * n_features, length_scale_bounds=[(1e-4, 1e2)] * n_features
|
||
|
) + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1))
|
||
|
last_lml = -np.inf
|
||
|
for n_restarts_optimizer in range(5):
|
||
|
gp = GaussianProcessRegressor(
|
||
|
kernel=kernel,
|
||
|
n_restarts_optimizer=n_restarts_optimizer,
|
||
|
random_state=0,
|
||
|
).fit(X, y)
|
||
|
lml = gp.log_marginal_likelihood(gp.kernel_.theta)
|
||
|
assert lml > last_lml - np.finfo(np.float32).eps
|
||
|
last_lml = lml
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
def test_y_normalization(kernel):
|
||
|
"""
|
||
|
Test normalization of the target values in GP
|
||
|
|
||
|
Fitting non-normalizing GP on normalized y and fitting normalizing GP
|
||
|
on unnormalized y should yield identical results. Note that, here,
|
||
|
'normalized y' refers to y that has been made zero mean and unit
|
||
|
variance.
|
||
|
|
||
|
"""
|
||
|
|
||
|
y_mean = np.mean(y)
|
||
|
y_std = np.std(y)
|
||
|
y_norm = (y - y_mean) / y_std
|
||
|
|
||
|
# Fit non-normalizing GP on normalized y
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel)
|
||
|
gpr.fit(X, y_norm)
|
||
|
|
||
|
# Fit normalizing GP on unnormalized y
|
||
|
gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||
|
gpr_norm.fit(X, y)
|
||
|
|
||
|
# Compare predicted mean, std-devs and covariances
|
||
|
y_pred, y_pred_std = gpr.predict(X2, return_std=True)
|
||
|
y_pred = y_pred * y_std + y_mean
|
||
|
y_pred_std = y_pred_std * y_std
|
||
|
y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True)
|
||
|
|
||
|
assert_almost_equal(y_pred, y_pred_norm)
|
||
|
assert_almost_equal(y_pred_std, y_pred_std_norm)
|
||
|
|
||
|
_, y_cov = gpr.predict(X2, return_cov=True)
|
||
|
y_cov = y_cov * y_std**2
|
||
|
_, y_cov_norm = gpr_norm.predict(X2, return_cov=True)
|
||
|
|
||
|
assert_almost_equal(y_cov, y_cov_norm)
|
||
|
|
||
|
|
||
|
def test_large_variance_y():
|
||
|
"""
|
||
|
Here we test that, when noramlize_y=True, our GP can produce a
|
||
|
sensible fit to training data whose variance is significantly
|
||
|
larger than unity. This test was made in response to issue #15612.
|
||
|
|
||
|
GP predictions are verified against predictions that were made
|
||
|
using GPy which, here, is treated as the 'gold standard'. Note that we
|
||
|
only investigate the RBF kernel here, as that is what was used in the
|
||
|
GPy implementation.
|
||
|
|
||
|
The following code can be used to recreate the GPy data:
|
||
|
|
||
|
--------------------------------------------------------------------------
|
||
|
import GPy
|
||
|
|
||
|
kernel_gpy = GPy.kern.RBF(input_dim=1, lengthscale=1.)
|
||
|
gpy = GPy.models.GPRegression(X, np.vstack(y_large), kernel_gpy)
|
||
|
gpy.optimize()
|
||
|
y_pred_gpy, y_var_gpy = gpy.predict(X2)
|
||
|
y_pred_std_gpy = np.sqrt(y_var_gpy)
|
||
|
--------------------------------------------------------------------------
|
||
|
"""
|
||
|
|
||
|
# Here we utilise a larger variance version of the training data
|
||
|
y_large = 10 * y
|
||
|
|
||
|
# Standard GP with normalize_y=True
|
||
|
RBF_params = {"length_scale": 1.0}
|
||
|
kernel = RBF(**RBF_params)
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||
|
gpr.fit(X, y_large)
|
||
|
y_pred, y_pred_std = gpr.predict(X2, return_std=True)
|
||
|
|
||
|
# 'Gold standard' mean predictions from GPy
|
||
|
y_pred_gpy = np.array(
|
||
|
[15.16918303, -27.98707845, -39.31636019, 14.52605515, 69.18503589]
|
||
|
)
|
||
|
|
||
|
# 'Gold standard' std predictions from GPy
|
||
|
y_pred_std_gpy = np.array(
|
||
|
[7.78860962, 3.83179178, 0.63149951, 0.52745188, 0.86170042]
|
||
|
)
|
||
|
|
||
|
# Based on numerical experiments, it's reasonable to expect our
|
||
|
# GP's mean predictions to get within 7% of predictions of those
|
||
|
# made by GPy.
|
||
|
assert_allclose(y_pred, y_pred_gpy, rtol=0.07, atol=0)
|
||
|
|
||
|
# Based on numerical experiments, it's reasonable to expect our
|
||
|
# GP's std predictions to get within 15% of predictions of those
|
||
|
# made by GPy.
|
||
|
assert_allclose(y_pred_std, y_pred_std_gpy, rtol=0.15, atol=0)
|
||
|
|
||
|
|
||
|
def test_y_multioutput():
|
||
|
# Test that GPR can deal with multi-dimensional target values
|
||
|
y_2d = np.vstack((y, y * 2)).T
|
||
|
|
||
|
# Test for fixed kernel that first dimension of 2d GP equals the output
|
||
|
# of 1d GP and that second dimension is twice as large
|
||
|
kernel = RBF(length_scale=1.0)
|
||
|
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False)
|
||
|
gpr.fit(X, y)
|
||
|
|
||
|
gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False)
|
||
|
gpr_2d.fit(X, y_2d)
|
||
|
|
||
|
y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True)
|
||
|
y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True)
|
||
|
_, y_cov_1d = gpr.predict(X2, return_cov=True)
|
||
|
_, y_cov_2d = gpr_2d.predict(X2, return_cov=True)
|
||
|
|
||
|
assert_almost_equal(y_pred_1d, y_pred_2d[:, 0])
|
||
|
assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2)
|
||
|
|
||
|
# Standard deviation and covariance do not depend on output
|
||
|
for target in range(y_2d.shape[1]):
|
||
|
assert_almost_equal(y_std_1d, y_std_2d[..., target])
|
||
|
assert_almost_equal(y_cov_1d, y_cov_2d[..., target])
|
||
|
|
||
|
y_sample_1d = gpr.sample_y(X2, n_samples=10)
|
||
|
y_sample_2d = gpr_2d.sample_y(X2, n_samples=10)
|
||
|
|
||
|
assert y_sample_1d.shape == (5, 10)
|
||
|
assert y_sample_2d.shape == (5, 2, 10)
|
||
|
# Only the first target will be equal
|
||
|
assert_almost_equal(y_sample_1d, y_sample_2d[:, 0, :])
|
||
|
|
||
|
# Test hyperparameter optimization
|
||
|
for kernel in kernels:
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||
|
gpr.fit(X, y)
|
||
|
|
||
|
gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||
|
gpr_2d.fit(X, np.vstack((y, y)).T)
|
||
|
|
||
|
assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
||
|
def test_custom_optimizer(kernel):
|
||
|
# Test that GPR can use externally defined optimizers.
|
||
|
# Define a dummy optimizer that simply tests 50 random hyperparameters
|
||
|
def optimizer(obj_func, initial_theta, bounds):
|
||
|
rng = np.random.RandomState(0)
|
||
|
theta_opt, func_min = initial_theta, obj_func(
|
||
|
initial_theta, eval_gradient=False
|
||
|
)
|
||
|
for _ in range(50):
|
||
|
theta = np.atleast_1d(
|
||
|
rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))
|
||
|
)
|
||
|
f = obj_func(theta, eval_gradient=False)
|
||
|
if f < func_min:
|
||
|
theta_opt, func_min = theta, f
|
||
|
return theta_opt, func_min
|
||
|
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer)
|
||
|
gpr.fit(X, y)
|
||
|
# Checks that optimizer improved marginal likelihood
|
||
|
assert gpr.log_marginal_likelihood(gpr.kernel_.theta) > gpr.log_marginal_likelihood(
|
||
|
gpr.kernel.theta
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_gpr_correct_error_message():
|
||
|
X = np.arange(12).reshape(6, -1)
|
||
|
y = np.ones(6)
|
||
|
kernel = DotProduct()
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.0)
|
||
|
message = (
|
||
|
"The kernel, %s, is not returning a "
|
||
|
"positive definite matrix. Try gradually increasing "
|
||
|
"the 'alpha' parameter of your "
|
||
|
"GaussianProcessRegressor estimator." % kernel
|
||
|
)
|
||
|
with pytest.raises(np.linalg.LinAlgError, match=re.escape(message)):
|
||
|
gpr.fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
def test_duplicate_input(kernel):
|
||
|
# Test GPR can handle two different output-values for the same input.
|
||
|
gpr_equal_inputs = GaussianProcessRegressor(kernel=kernel, alpha=1e-2)
|
||
|
gpr_similar_inputs = GaussianProcessRegressor(kernel=kernel, alpha=1e-2)
|
||
|
|
||
|
X_ = np.vstack((X, X[0]))
|
||
|
y_ = np.hstack((y, y[0] + 1))
|
||
|
gpr_equal_inputs.fit(X_, y_)
|
||
|
|
||
|
X_ = np.vstack((X, X[0] + 1e-15))
|
||
|
y_ = np.hstack((y, y[0] + 1))
|
||
|
gpr_similar_inputs.fit(X_, y_)
|
||
|
|
||
|
X_test = np.linspace(0, 10, 100)[:, None]
|
||
|
y_pred_equal, y_std_equal = gpr_equal_inputs.predict(X_test, return_std=True)
|
||
|
y_pred_similar, y_std_similar = gpr_similar_inputs.predict(X_test, return_std=True)
|
||
|
|
||
|
assert_almost_equal(y_pred_equal, y_pred_similar)
|
||
|
assert_almost_equal(y_std_equal, y_std_similar)
|
||
|
|
||
|
|
||
|
def test_no_fit_default_predict():
|
||
|
# Test that GPR predictions without fit does not break by default.
|
||
|
default_kernel = C(1.0, constant_value_bounds="fixed") * RBF(
|
||
|
1.0, length_scale_bounds="fixed"
|
||
|
)
|
||
|
gpr1 = GaussianProcessRegressor()
|
||
|
_, y_std1 = gpr1.predict(X, return_std=True)
|
||
|
_, y_cov1 = gpr1.predict(X, return_cov=True)
|
||
|
|
||
|
gpr2 = GaussianProcessRegressor(kernel=default_kernel)
|
||
|
_, y_std2 = gpr2.predict(X, return_std=True)
|
||
|
_, y_cov2 = gpr2.predict(X, return_cov=True)
|
||
|
|
||
|
assert_array_almost_equal(y_std1, y_std2)
|
||
|
assert_array_almost_equal(y_cov1, y_cov2)
|
||
|
|
||
|
|
||
|
def test_warning_bounds():
|
||
|
kernel = RBF(length_scale_bounds=[1e-5, 1e-3])
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel)
|
||
|
warning_message = (
|
||
|
"The optimal value found for dimension 0 of parameter "
|
||
|
"length_scale is close to the specified upper bound "
|
||
|
"0.001. Increasing the bound and calling fit again may "
|
||
|
"find a better value."
|
||
|
)
|
||
|
with pytest.warns(ConvergenceWarning, match=warning_message):
|
||
|
gpr.fit(X, y)
|
||
|
|
||
|
kernel_sum = WhiteKernel(noise_level_bounds=[1e-5, 1e-3]) + RBF(
|
||
|
length_scale_bounds=[1e3, 1e5]
|
||
|
)
|
||
|
gpr_sum = GaussianProcessRegressor(kernel=kernel_sum)
|
||
|
with warnings.catch_warnings(record=True) as record:
|
||
|
warnings.simplefilter("always")
|
||
|
gpr_sum.fit(X, y)
|
||
|
|
||
|
assert len(record) == 2
|
||
|
|
||
|
assert issubclass(record[0].category, ConvergenceWarning)
|
||
|
assert (
|
||
|
record[0].message.args[0]
|
||
|
== "The optimal value found for "
|
||
|
"dimension 0 of parameter "
|
||
|
"k1__noise_level is close to the "
|
||
|
"specified upper bound 0.001. "
|
||
|
"Increasing the bound and calling "
|
||
|
"fit again may find a better value."
|
||
|
)
|
||
|
|
||
|
assert issubclass(record[1].category, ConvergenceWarning)
|
||
|
assert (
|
||
|
record[1].message.args[0]
|
||
|
== "The optimal value found for "
|
||
|
"dimension 0 of parameter "
|
||
|
"k2__length_scale is close to the "
|
||
|
"specified lower bound 1000.0. "
|
||
|
"Decreasing the bound and calling "
|
||
|
"fit again may find a better value."
|
||
|
)
|
||
|
|
||
|
X_tile = np.tile(X, 2)
|
||
|
kernel_dims = RBF(length_scale=[1.0, 2.0], length_scale_bounds=[1e1, 1e2])
|
||
|
gpr_dims = GaussianProcessRegressor(kernel=kernel_dims)
|
||
|
|
||
|
with warnings.catch_warnings(record=True) as record:
|
||
|
warnings.simplefilter("always")
|
||
|
gpr_dims.fit(X_tile, y)
|
||
|
|
||
|
assert len(record) == 2
|
||
|
|
||
|
assert issubclass(record[0].category, ConvergenceWarning)
|
||
|
assert (
|
||
|
record[0].message.args[0]
|
||
|
== "The optimal value found for "
|
||
|
"dimension 0 of parameter "
|
||
|
"length_scale is close to the "
|
||
|
"specified lower bound 10.0. "
|
||
|
"Decreasing the bound and calling "
|
||
|
"fit again may find a better value."
|
||
|
)
|
||
|
|
||
|
assert issubclass(record[1].category, ConvergenceWarning)
|
||
|
assert (
|
||
|
record[1].message.args[0]
|
||
|
== "The optimal value found for "
|
||
|
"dimension 1 of parameter "
|
||
|
"length_scale is close to the "
|
||
|
"specified lower bound 10.0. "
|
||
|
"Decreasing the bound and calling "
|
||
|
"fit again may find a better value."
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_bound_check_fixed_hyperparameter():
|
||
|
# Regression test for issue #17943
|
||
|
# Check that having a hyperparameter with fixed bounds doesn't cause an
|
||
|
# error
|
||
|
k1 = 50.0**2 * RBF(length_scale=50.0) # long term smooth rising trend
|
||
|
k2 = ExpSineSquared(
|
||
|
length_scale=1.0, periodicity=1.0, periodicity_bounds="fixed"
|
||
|
) # seasonal component
|
||
|
kernel = k1 + k2
|
||
|
GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kernel", kernels)
|
||
|
def test_constant_target(kernel):
|
||
|
"""Check that the std. dev. is affected to 1 when normalizing a constant
|
||
|
feature.
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/18318
|
||
|
NaN where affected to the target when scaling due to null std. dev. with
|
||
|
constant target.
|
||
|
"""
|
||
|
y_constant = np.ones(X.shape[0], dtype=np.float64)
|
||
|
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||
|
gpr.fit(X, y_constant)
|
||
|
assert gpr._y_train_std == pytest.approx(1.0)
|
||
|
|
||
|
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
||
|
assert_allclose(y_pred, y_constant)
|
||
|
# set atol because we compare to zero
|
||
|
assert_allclose(np.diag(y_cov), 0.0, atol=1e-9)
|
||
|
|
||
|
# Test multi-target data
|
||
|
n_samples, n_targets = X.shape[0], 2
|
||
|
rng = np.random.RandomState(0)
|
||
|
y = np.concatenate(
|
||
|
[
|
||
|
rng.normal(size=(n_samples, 1)), # non-constant target
|
||
|
np.full(shape=(n_samples, 1), fill_value=2), # constant target
|
||
|
],
|
||
|
axis=1,
|
||
|
)
|
||
|
|
||
|
gpr.fit(X, y)
|
||
|
Y_pred, Y_cov = gpr.predict(X, return_cov=True)
|
||
|
|
||
|
assert_allclose(Y_pred[:, 1], 2)
|
||
|
assert_allclose(np.diag(Y_cov[..., 1]), 0.0, atol=1e-9)
|
||
|
|
||
|
assert Y_pred.shape == (n_samples, n_targets)
|
||
|
assert Y_cov.shape == (n_samples, n_samples, n_targets)
|
||
|
|
||
|
|
||
|
def test_gpr_consistency_std_cov_non_invertible_kernel():
|
||
|
"""Check the consistency between the returned std. dev. and the covariance.
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/19936
|
||
|
Inconsistencies were observed when the kernel cannot be inverted (or
|
||
|
numerically stable).
|
||
|
"""
|
||
|
kernel = C(8.98576054e05, (1e-12, 1e12)) * RBF(
|
||
|
[5.91326520e02, 1.32584051e03], (1e-12, 1e12)
|
||
|
) + WhiteKernel(noise_level=1e-5)
|
||
|
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0, optimizer=None)
|
||
|
X_train = np.array(
|
||
|
[
|
||
|
[0.0, 0.0],
|
||
|
[1.54919334, -0.77459667],
|
||
|
[-1.54919334, 0.0],
|
||
|
[0.0, -1.54919334],
|
||
|
[0.77459667, 0.77459667],
|
||
|
[-0.77459667, 1.54919334],
|
||
|
]
|
||
|
)
|
||
|
y_train = np.array(
|
||
|
[
|
||
|
[-2.14882017e-10],
|
||
|
[-4.66975823e00],
|
||
|
[4.01823986e00],
|
||
|
[-1.30303674e00],
|
||
|
[-1.35760156e00],
|
||
|
[3.31215668e00],
|
||
|
]
|
||
|
)
|
||
|
gpr.fit(X_train, y_train)
|
||
|
X_test = np.array(
|
||
|
[
|
||
|
[-1.93649167, -1.93649167],
|
||
|
[1.93649167, -1.93649167],
|
||
|
[-1.93649167, 1.93649167],
|
||
|
[1.93649167, 1.93649167],
|
||
|
]
|
||
|
)
|
||
|
pred1, std = gpr.predict(X_test, return_std=True)
|
||
|
pred2, cov = gpr.predict(X_test, return_cov=True)
|
||
|
assert_allclose(std, np.sqrt(np.diagonal(cov)), rtol=1e-5)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"params, TypeError, err_msg",
|
||
|
[
|
||
|
(
|
||
|
{"alpha": np.zeros(100)},
|
||
|
ValueError,
|
||
|
"alpha must be a scalar or an array with same number of entries as y",
|
||
|
),
|
||
|
(
|
||
|
{
|
||
|
"kernel": WhiteKernel(noise_level_bounds=(-np.inf, np.inf)),
|
||
|
"n_restarts_optimizer": 2,
|
||
|
},
|
||
|
ValueError,
|
||
|
"requires that all bounds are finite",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_gpr_fit_error(params, TypeError, err_msg):
|
||
|
"""Check that expected error are raised during fit."""
|
||
|
gpr = GaussianProcessRegressor(**params)
|
||
|
with pytest.raises(TypeError, match=err_msg):
|
||
|
gpr.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_gpr_lml_error():
|
||
|
"""Check that we raise the proper error in the LML method."""
|
||
|
gpr = GaussianProcessRegressor(kernel=RBF()).fit(X, y)
|
||
|
|
||
|
err_msg = "Gradient can only be evaluated for theta!=None"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
gpr.log_marginal_likelihood(eval_gradient=True)
|
||
|
|
||
|
|
||
|
def test_gpr_predict_error():
|
||
|
"""Check that we raise the proper error during predict."""
|
||
|
gpr = GaussianProcessRegressor(kernel=RBF()).fit(X, y)
|
||
|
|
||
|
err_msg = "At most one of return_std or return_cov can be requested."
|
||
|
with pytest.raises(RuntimeError, match=err_msg):
|
||
|
gpr.predict(X, return_cov=True, return_std=True)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("normalize_y", [True, False])
|
||
|
@pytest.mark.parametrize("n_targets", [None, 1, 10])
|
||
|
def test_predict_shapes(normalize_y, n_targets):
|
||
|
"""Check the shapes of y_mean, y_std, and y_cov in single-output
|
||
|
(n_targets=None) and multi-output settings, including the edge case when
|
||
|
n_targets=1, where the sklearn convention is to squeeze the predictions.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/17394
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/18065
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/22174
|
||
|
"""
|
||
|
rng = np.random.RandomState(1234)
|
||
|
|
||
|
n_features, n_samples_train, n_samples_test = 6, 9, 7
|
||
|
|
||
|
y_train_shape = (n_samples_train,)
|
||
|
if n_targets is not None:
|
||
|
y_train_shape = y_train_shape + (n_targets,)
|
||
|
|
||
|
# By convention single-output data is squeezed upon prediction
|
||
|
y_test_shape = (n_samples_test,)
|
||
|
if n_targets is not None and n_targets > 1:
|
||
|
y_test_shape = y_test_shape + (n_targets,)
|
||
|
|
||
|
X_train = rng.randn(n_samples_train, n_features)
|
||
|
X_test = rng.randn(n_samples_test, n_features)
|
||
|
y_train = rng.randn(*y_train_shape)
|
||
|
|
||
|
model = GaussianProcessRegressor(normalize_y=normalize_y)
|
||
|
model.fit(X_train, y_train)
|
||
|
|
||
|
y_pred, y_std = model.predict(X_test, return_std=True)
|
||
|
_, y_cov = model.predict(X_test, return_cov=True)
|
||
|
|
||
|
assert y_pred.shape == y_test_shape
|
||
|
assert y_std.shape == y_test_shape
|
||
|
assert y_cov.shape == (n_samples_test,) + y_test_shape
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("normalize_y", [True, False])
|
||
|
@pytest.mark.parametrize("n_targets", [None, 1, 10])
|
||
|
def test_sample_y_shapes(normalize_y, n_targets):
|
||
|
"""Check the shapes of y_samples in single-output (n_targets=0) and
|
||
|
multi-output settings, including the edge case when n_targets=1, where the
|
||
|
sklearn convention is to squeeze the predictions.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/22175
|
||
|
"""
|
||
|
rng = np.random.RandomState(1234)
|
||
|
|
||
|
n_features, n_samples_train = 6, 9
|
||
|
# Number of spatial locations to predict at
|
||
|
n_samples_X_test = 7
|
||
|
# Number of sample predictions per test point
|
||
|
n_samples_y_test = 5
|
||
|
|
||
|
y_train_shape = (n_samples_train,)
|
||
|
if n_targets is not None:
|
||
|
y_train_shape = y_train_shape + (n_targets,)
|
||
|
|
||
|
# By convention single-output data is squeezed upon prediction
|
||
|
if n_targets is not None and n_targets > 1:
|
||
|
y_test_shape = (n_samples_X_test, n_targets, n_samples_y_test)
|
||
|
else:
|
||
|
y_test_shape = (n_samples_X_test, n_samples_y_test)
|
||
|
|
||
|
X_train = rng.randn(n_samples_train, n_features)
|
||
|
X_test = rng.randn(n_samples_X_test, n_features)
|
||
|
y_train = rng.randn(*y_train_shape)
|
||
|
|
||
|
model = GaussianProcessRegressor(normalize_y=normalize_y)
|
||
|
|
||
|
# FIXME: before fitting, the estimator does not have information regarding
|
||
|
# the number of targets and default to 1. This is inconsistent with the shape
|
||
|
# provided after `fit`. This assert should be made once the following issue
|
||
|
# is fixed:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/22430
|
||
|
# y_samples = model.sample_y(X_test, n_samples=n_samples_y_test)
|
||
|
# assert y_samples.shape == y_test_shape
|
||
|
|
||
|
model.fit(X_train, y_train)
|
||
|
|
||
|
y_samples = model.sample_y(X_test, n_samples=n_samples_y_test)
|
||
|
assert y_samples.shape == y_test_shape
|
||
|
|
||
|
|
||
|
class CustomKernel(C):
|
||
|
"""
|
||
|
A custom kernel that has a diag method that returns the first column of the
|
||
|
input matrix X. This is a helper for the test to check that the input
|
||
|
matrix X is not mutated.
|
||
|
"""
|
||
|
|
||
|
def diag(self, X):
|
||
|
return X[:, 0]
|
||
|
|
||
|
|
||
|
def test_gpr_predict_input_not_modified():
|
||
|
"""
|
||
|
Check that the input X is not modified by the predict method of the
|
||
|
GaussianProcessRegressor when setting return_std=True.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/24340
|
||
|
"""
|
||
|
gpr = GaussianProcessRegressor(kernel=CustomKernel()).fit(X, y)
|
||
|
|
||
|
X2_copy = np.copy(X2)
|
||
|
_, _ = gpr.predict(X2, return_std=True)
|
||
|
|
||
|
assert_allclose(X2, X2_copy)
|