622 lines
22 KiB
Python
622 lines
22 KiB
Python
|
# Author: Johannes Schönberger
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
from numbers import Integral, Real
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone
|
||
|
from ..base import MultiOutputMixin
|
||
|
from ..utils import check_random_state, check_consistent_length
|
||
|
from ..utils.random import sample_without_replacement
|
||
|
from ..utils.validation import check_is_fitted, _check_sample_weight
|
||
|
from ._base import LinearRegression
|
||
|
from ..utils.validation import has_fit_parameter
|
||
|
from ..utils._param_validation import Interval, Options, StrOptions, HasMethods, Hidden
|
||
|
from ..exceptions import ConvergenceWarning
|
||
|
|
||
|
_EPSILON = np.spacing(1)
|
||
|
|
||
|
|
||
|
def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability):
|
||
|
"""Determine number trials such that at least one outlier-free subset is
|
||
|
sampled for the given inlier/outlier ratio.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_inliers : int
|
||
|
Number of inliers in the data.
|
||
|
|
||
|
n_samples : int
|
||
|
Total number of samples in the data.
|
||
|
|
||
|
min_samples : int
|
||
|
Minimum number of samples chosen randomly from original data.
|
||
|
|
||
|
probability : float
|
||
|
Probability (confidence) that one outlier-free sample is generated.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
trials : int
|
||
|
Number of trials.
|
||
|
|
||
|
"""
|
||
|
inlier_ratio = n_inliers / float(n_samples)
|
||
|
nom = max(_EPSILON, 1 - probability)
|
||
|
denom = max(_EPSILON, 1 - inlier_ratio**min_samples)
|
||
|
if nom == 1:
|
||
|
return 0
|
||
|
if denom == 1:
|
||
|
return float("inf")
|
||
|
return abs(float(np.ceil(np.log(nom) / np.log(denom))))
|
||
|
|
||
|
|
||
|
class RANSACRegressor(
|
||
|
MetaEstimatorMixin, RegressorMixin, MultiOutputMixin, BaseEstimator
|
||
|
):
|
||
|
"""RANSAC (RANdom SAmple Consensus) algorithm.
|
||
|
|
||
|
RANSAC is an iterative algorithm for the robust estimation of parameters
|
||
|
from a subset of inliers from the complete data set.
|
||
|
|
||
|
Read more in the :ref:`User Guide <ransac_regression>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : object, default=None
|
||
|
Base estimator object which implements the following methods:
|
||
|
|
||
|
* `fit(X, y)`: Fit model to given training data and target values.
|
||
|
* `score(X, y)`: Returns the mean accuracy on the given test data,
|
||
|
which is used for the stop criterion defined by `stop_score`.
|
||
|
Additionally, the score is used to decide which of two equally
|
||
|
large consensus sets is chosen as the better one.
|
||
|
* `predict(X)`: Returns predicted values using the linear model,
|
||
|
which is used to compute residual error using loss function.
|
||
|
|
||
|
If `estimator` is None, then
|
||
|
:class:`~sklearn.linear_model.LinearRegression` is used for
|
||
|
target values of dtype float.
|
||
|
|
||
|
Note that the current implementation only supports regression
|
||
|
estimators.
|
||
|
|
||
|
min_samples : int (>= 1) or float ([0, 1]), default=None
|
||
|
Minimum number of samples chosen randomly from original data. Treated
|
||
|
as an absolute number of samples for `min_samples >= 1`, treated as a
|
||
|
relative number `ceil(min_samples * X.shape[0])` for
|
||
|
`min_samples < 1`. This is typically chosen as the minimal number of
|
||
|
samples necessary to estimate the given `estimator`. By default a
|
||
|
``sklearn.linear_model.LinearRegression()`` estimator is assumed and
|
||
|
`min_samples` is chosen as ``X.shape[1] + 1``. This parameter is highly
|
||
|
dependent upon the model, so if a `estimator` other than
|
||
|
:class:`linear_model.LinearRegression` is used, the user must provide a value.
|
||
|
|
||
|
residual_threshold : float, default=None
|
||
|
Maximum residual for a data sample to be classified as an inlier.
|
||
|
By default the threshold is chosen as the MAD (median absolute
|
||
|
deviation) of the target values `y`. Points whose residuals are
|
||
|
strictly equal to the threshold are considered as inliers.
|
||
|
|
||
|
is_data_valid : callable, default=None
|
||
|
This function is called with the randomly selected data before the
|
||
|
model is fitted to it: `is_data_valid(X, y)`. If its return value is
|
||
|
False the current randomly chosen sub-sample is skipped.
|
||
|
|
||
|
is_model_valid : callable, default=None
|
||
|
This function is called with the estimated model and the randomly
|
||
|
selected data: `is_model_valid(model, X, y)`. If its return value is
|
||
|
False the current randomly chosen sub-sample is skipped.
|
||
|
Rejecting samples with this function is computationally costlier than
|
||
|
with `is_data_valid`. `is_model_valid` should therefore only be used if
|
||
|
the estimated model is needed for making the rejection decision.
|
||
|
|
||
|
max_trials : int, default=100
|
||
|
Maximum number of iterations for random sample selection.
|
||
|
|
||
|
max_skips : int, default=np.inf
|
||
|
Maximum number of iterations that can be skipped due to finding zero
|
||
|
inliers or invalid data defined by ``is_data_valid`` or invalid models
|
||
|
defined by ``is_model_valid``.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
stop_n_inliers : int, default=np.inf
|
||
|
Stop iteration if at least this number of inliers are found.
|
||
|
|
||
|
stop_score : float, default=np.inf
|
||
|
Stop iteration if score is greater equal than this threshold.
|
||
|
|
||
|
stop_probability : float in range [0, 1], default=0.99
|
||
|
RANSAC iteration stops if at least one outlier-free set of the training
|
||
|
data is sampled in RANSAC. This requires to generate at least N
|
||
|
samples (iterations)::
|
||
|
|
||
|
N >= log(1 - probability) / log(1 - e**m)
|
||
|
|
||
|
where the probability (confidence) is typically set to high value such
|
||
|
as 0.99 (the default) and e is the current fraction of inliers w.r.t.
|
||
|
the total number of samples.
|
||
|
|
||
|
loss : str, callable, default='absolute_error'
|
||
|
String inputs, 'absolute_error' and 'squared_error' are supported which
|
||
|
find the absolute error and squared error per sample respectively.
|
||
|
|
||
|
If ``loss`` is a callable, then it should be a function that takes
|
||
|
two arrays as inputs, the true and predicted value and returns a 1-D
|
||
|
array with the i-th value of the array corresponding to the loss
|
||
|
on ``X[i]``.
|
||
|
|
||
|
If the loss on a sample is greater than the ``residual_threshold``,
|
||
|
then this sample is classified as an outlier.
|
||
|
|
||
|
.. versionadded:: 0.18
|
||
|
|
||
|
random_state : int, RandomState instance, default=None
|
||
|
The generator used to initialize the centers.
|
||
|
Pass an int for reproducible output across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
base_estimator : object, default="deprecated"
|
||
|
Use `estimator` instead.
|
||
|
|
||
|
.. deprecated:: 1.1
|
||
|
`base_estimator` is deprecated and will be removed in 1.3.
|
||
|
Use `estimator` instead.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
estimator_ : object
|
||
|
Best fitted model (copy of the `estimator` object).
|
||
|
|
||
|
n_trials_ : int
|
||
|
Number of random selection trials until one of the stop criteria is
|
||
|
met. It is always ``<= max_trials``.
|
||
|
|
||
|
inlier_mask_ : bool array of shape [n_samples]
|
||
|
Boolean mask of inliers classified as ``True``.
|
||
|
|
||
|
n_skips_no_inliers_ : int
|
||
|
Number of iterations skipped due to finding zero inliers.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
n_skips_invalid_data_ : int
|
||
|
Number of iterations skipped due to invalid data defined by
|
||
|
``is_data_valid``.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
n_skips_invalid_model_ : int
|
||
|
Number of iterations skipped due to an invalid model defined by
|
||
|
``is_model_valid``.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
n_features_in_ : int
|
||
|
Number of features seen during :term:`fit`.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
||
|
has feature names that are all strings.
|
||
|
|
||
|
.. versionadded:: 1.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
HuberRegressor : Linear regression model that is robust to outliers.
|
||
|
TheilSenRegressor : Theil-Sen Estimator robust multivariate regression model.
|
||
|
SGDRegressor : Fitted by minimizing a regularized empirical loss with SGD.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/RANSAC
|
||
|
.. [2] https://www.sri.com/wp-content/uploads/2021/12/ransac-publication.pdf
|
||
|
.. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.linear_model import RANSACRegressor
|
||
|
>>> from sklearn.datasets import make_regression
|
||
|
>>> X, y = make_regression(
|
||
|
... n_samples=200, n_features=2, noise=4.0, random_state=0)
|
||
|
>>> reg = RANSACRegressor(random_state=0).fit(X, y)
|
||
|
>>> reg.score(X, y)
|
||
|
0.9885...
|
||
|
>>> reg.predict(X[:1,])
|
||
|
array([-31.9417...])
|
||
|
""" # noqa: E501
|
||
|
|
||
|
_parameter_constraints: dict = {
|
||
|
"estimator": [HasMethods(["fit", "score", "predict"]), None],
|
||
|
"min_samples": [
|
||
|
Interval(Integral, 1, None, closed="left"),
|
||
|
Interval(Real, 0, 1, closed="both"),
|
||
|
None,
|
||
|
],
|
||
|
"residual_threshold": [Interval(Real, 0, None, closed="left"), None],
|
||
|
"is_data_valid": [callable, None],
|
||
|
"is_model_valid": [callable, None],
|
||
|
"max_trials": [
|
||
|
Interval(Integral, 0, None, closed="left"),
|
||
|
Options(Real, {np.inf}),
|
||
|
],
|
||
|
"max_skips": [
|
||
|
Interval(Integral, 0, None, closed="left"),
|
||
|
Options(Real, {np.inf}),
|
||
|
],
|
||
|
"stop_n_inliers": [
|
||
|
Interval(Integral, 0, None, closed="left"),
|
||
|
Options(Real, {np.inf}),
|
||
|
],
|
||
|
"stop_score": [Interval(Real, None, None, closed="both")],
|
||
|
"stop_probability": [Interval(Real, 0, 1, closed="both")],
|
||
|
"loss": [StrOptions({"absolute_error", "squared_error"}), callable],
|
||
|
"random_state": ["random_state"],
|
||
|
"base_estimator": [
|
||
|
HasMethods(["fit", "score", "predict"]),
|
||
|
Hidden(StrOptions({"deprecated"})),
|
||
|
None,
|
||
|
],
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
estimator=None,
|
||
|
*,
|
||
|
min_samples=None,
|
||
|
residual_threshold=None,
|
||
|
is_data_valid=None,
|
||
|
is_model_valid=None,
|
||
|
max_trials=100,
|
||
|
max_skips=np.inf,
|
||
|
stop_n_inliers=np.inf,
|
||
|
stop_score=np.inf,
|
||
|
stop_probability=0.99,
|
||
|
loss="absolute_error",
|
||
|
random_state=None,
|
||
|
base_estimator="deprecated",
|
||
|
):
|
||
|
|
||
|
self.estimator = estimator
|
||
|
self.min_samples = min_samples
|
||
|
self.residual_threshold = residual_threshold
|
||
|
self.is_data_valid = is_data_valid
|
||
|
self.is_model_valid = is_model_valid
|
||
|
self.max_trials = max_trials
|
||
|
self.max_skips = max_skips
|
||
|
self.stop_n_inliers = stop_n_inliers
|
||
|
self.stop_score = stop_score
|
||
|
self.stop_probability = stop_probability
|
||
|
self.random_state = random_state
|
||
|
self.loss = loss
|
||
|
self.base_estimator = base_estimator
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit estimator using RANSAC algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
||
|
Target values.
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,), default=None
|
||
|
Individual weights for each sample
|
||
|
raises error if sample_weight is passed and estimator
|
||
|
fit method does not support it.
|
||
|
|
||
|
.. versionadded:: 0.18
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Fitted `RANSACRegressor` estimator.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If no valid consensus set could be found. This occurs if
|
||
|
`is_data_valid` and `is_model_valid` return False for all
|
||
|
`max_trials` randomly chosen sub-samples.
|
||
|
"""
|
||
|
self._validate_params()
|
||
|
|
||
|
# Need to validate separately here. We can't pass multi_output=True
|
||
|
# because that would allow y to be csr. Delay expensive finiteness
|
||
|
# check to the estimator's own input validation.
|
||
|
check_X_params = dict(accept_sparse="csr", force_all_finite=False)
|
||
|
check_y_params = dict(ensure_2d=False)
|
||
|
X, y = self._validate_data(
|
||
|
X, y, validate_separately=(check_X_params, check_y_params)
|
||
|
)
|
||
|
check_consistent_length(X, y)
|
||
|
|
||
|
if self.base_estimator != "deprecated":
|
||
|
warnings.warn(
|
||
|
"`base_estimator` was renamed to `estimator` in version 1.1 and "
|
||
|
"will be removed in 1.3.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
self.estimator = self.base_estimator
|
||
|
|
||
|
if self.estimator is not None:
|
||
|
estimator = clone(self.estimator)
|
||
|
else:
|
||
|
estimator = LinearRegression()
|
||
|
|
||
|
if self.min_samples is None:
|
||
|
if not isinstance(estimator, LinearRegression):
|
||
|
raise ValueError(
|
||
|
"`min_samples` needs to be explicitly set when estimator "
|
||
|
"is not a LinearRegression."
|
||
|
)
|
||
|
min_samples = X.shape[1] + 1
|
||
|
elif 0 < self.min_samples < 1:
|
||
|
min_samples = np.ceil(self.min_samples * X.shape[0])
|
||
|
elif self.min_samples >= 1:
|
||
|
min_samples = self.min_samples
|
||
|
if min_samples > X.shape[0]:
|
||
|
raise ValueError(
|
||
|
"`min_samples` may not be larger than number "
|
||
|
"of samples: n_samples = %d." % (X.shape[0])
|
||
|
)
|
||
|
|
||
|
if self.residual_threshold is None:
|
||
|
# MAD (median absolute deviation)
|
||
|
residual_threshold = np.median(np.abs(y - np.median(y)))
|
||
|
else:
|
||
|
residual_threshold = self.residual_threshold
|
||
|
|
||
|
if self.loss == "absolute_error":
|
||
|
if y.ndim == 1:
|
||
|
loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred)
|
||
|
else:
|
||
|
loss_function = lambda y_true, y_pred: np.sum(
|
||
|
np.abs(y_true - y_pred), axis=1
|
||
|
)
|
||
|
elif self.loss == "squared_error":
|
||
|
if y.ndim == 1:
|
||
|
loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2
|
||
|
else:
|
||
|
loss_function = lambda y_true, y_pred: np.sum(
|
||
|
(y_true - y_pred) ** 2, axis=1
|
||
|
)
|
||
|
|
||
|
elif callable(self.loss):
|
||
|
loss_function = self.loss
|
||
|
|
||
|
random_state = check_random_state(self.random_state)
|
||
|
|
||
|
try: # Not all estimator accept a random_state
|
||
|
estimator.set_params(random_state=random_state)
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
estimator_fit_has_sample_weight = has_fit_parameter(estimator, "sample_weight")
|
||
|
estimator_name = type(estimator).__name__
|
||
|
if sample_weight is not None and not estimator_fit_has_sample_weight:
|
||
|
raise ValueError(
|
||
|
"%s does not support sample_weight. Samples"
|
||
|
" weights are only used for the calibration"
|
||
|
" itself." % estimator_name
|
||
|
)
|
||
|
if sample_weight is not None:
|
||
|
sample_weight = _check_sample_weight(sample_weight, X)
|
||
|
|
||
|
n_inliers_best = 1
|
||
|
score_best = -np.inf
|
||
|
inlier_mask_best = None
|
||
|
X_inlier_best = None
|
||
|
y_inlier_best = None
|
||
|
inlier_best_idxs_subset = None
|
||
|
self.n_skips_no_inliers_ = 0
|
||
|
self.n_skips_invalid_data_ = 0
|
||
|
self.n_skips_invalid_model_ = 0
|
||
|
|
||
|
# number of data samples
|
||
|
n_samples = X.shape[0]
|
||
|
sample_idxs = np.arange(n_samples)
|
||
|
|
||
|
self.n_trials_ = 0
|
||
|
max_trials = self.max_trials
|
||
|
while self.n_trials_ < max_trials:
|
||
|
self.n_trials_ += 1
|
||
|
|
||
|
if (
|
||
|
self.n_skips_no_inliers_
|
||
|
+ self.n_skips_invalid_data_
|
||
|
+ self.n_skips_invalid_model_
|
||
|
) > self.max_skips:
|
||
|
break
|
||
|
|
||
|
# choose random sample set
|
||
|
subset_idxs = sample_without_replacement(
|
||
|
n_samples, min_samples, random_state=random_state
|
||
|
)
|
||
|
X_subset = X[subset_idxs]
|
||
|
y_subset = y[subset_idxs]
|
||
|
|
||
|
# check if random sample set is valid
|
||
|
if self.is_data_valid is not None and not self.is_data_valid(
|
||
|
X_subset, y_subset
|
||
|
):
|
||
|
self.n_skips_invalid_data_ += 1
|
||
|
continue
|
||
|
|
||
|
# fit model for current random sample set
|
||
|
if sample_weight is None:
|
||
|
estimator.fit(X_subset, y_subset)
|
||
|
else:
|
||
|
estimator.fit(
|
||
|
X_subset, y_subset, sample_weight=sample_weight[subset_idxs]
|
||
|
)
|
||
|
|
||
|
# check if estimated model is valid
|
||
|
if self.is_model_valid is not None and not self.is_model_valid(
|
||
|
estimator, X_subset, y_subset
|
||
|
):
|
||
|
self.n_skips_invalid_model_ += 1
|
||
|
continue
|
||
|
|
||
|
# residuals of all data for current random sample model
|
||
|
y_pred = estimator.predict(X)
|
||
|
residuals_subset = loss_function(y, y_pred)
|
||
|
|
||
|
# classify data into inliers and outliers
|
||
|
inlier_mask_subset = residuals_subset <= residual_threshold
|
||
|
n_inliers_subset = np.sum(inlier_mask_subset)
|
||
|
|
||
|
# less inliers -> skip current random sample
|
||
|
if n_inliers_subset < n_inliers_best:
|
||
|
self.n_skips_no_inliers_ += 1
|
||
|
continue
|
||
|
|
||
|
# extract inlier data set
|
||
|
inlier_idxs_subset = sample_idxs[inlier_mask_subset]
|
||
|
X_inlier_subset = X[inlier_idxs_subset]
|
||
|
y_inlier_subset = y[inlier_idxs_subset]
|
||
|
|
||
|
# score of inlier data set
|
||
|
score_subset = estimator.score(X_inlier_subset, y_inlier_subset)
|
||
|
|
||
|
# same number of inliers but worse score -> skip current random
|
||
|
# sample
|
||
|
if n_inliers_subset == n_inliers_best and score_subset < score_best:
|
||
|
continue
|
||
|
|
||
|
# save current random sample as best sample
|
||
|
n_inliers_best = n_inliers_subset
|
||
|
score_best = score_subset
|
||
|
inlier_mask_best = inlier_mask_subset
|
||
|
X_inlier_best = X_inlier_subset
|
||
|
y_inlier_best = y_inlier_subset
|
||
|
inlier_best_idxs_subset = inlier_idxs_subset
|
||
|
|
||
|
max_trials = min(
|
||
|
max_trials,
|
||
|
_dynamic_max_trials(
|
||
|
n_inliers_best, n_samples, min_samples, self.stop_probability
|
||
|
),
|
||
|
)
|
||
|
|
||
|
# break if sufficient number of inliers or score is reached
|
||
|
if n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score:
|
||
|
break
|
||
|
|
||
|
# if none of the iterations met the required criteria
|
||
|
if inlier_mask_best is None:
|
||
|
if (
|
||
|
self.n_skips_no_inliers_
|
||
|
+ self.n_skips_invalid_data_
|
||
|
+ self.n_skips_invalid_model_
|
||
|
) > self.max_skips:
|
||
|
raise ValueError(
|
||
|
"RANSAC skipped more iterations than `max_skips` without"
|
||
|
" finding a valid consensus set. Iterations were skipped"
|
||
|
" because each randomly chosen sub-sample failed the"
|
||
|
" passing criteria. See estimator attributes for"
|
||
|
" diagnostics (n_skips*)."
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"RANSAC could not find a valid consensus set. All"
|
||
|
" `max_trials` iterations were skipped because each"
|
||
|
" randomly chosen sub-sample failed the passing criteria."
|
||
|
" See estimator attributes for diagnostics (n_skips*)."
|
||
|
)
|
||
|
else:
|
||
|
if (
|
||
|
self.n_skips_no_inliers_
|
||
|
+ self.n_skips_invalid_data_
|
||
|
+ self.n_skips_invalid_model_
|
||
|
) > self.max_skips:
|
||
|
warnings.warn(
|
||
|
"RANSAC found a valid consensus set but exited"
|
||
|
" early due to skipping more iterations than"
|
||
|
" `max_skips`. See estimator attributes for"
|
||
|
" diagnostics (n_skips*).",
|
||
|
ConvergenceWarning,
|
||
|
)
|
||
|
|
||
|
# estimate final model using all inliers
|
||
|
if sample_weight is None:
|
||
|
estimator.fit(X_inlier_best, y_inlier_best)
|
||
|
else:
|
||
|
estimator.fit(
|
||
|
X_inlier_best,
|
||
|
y_inlier_best,
|
||
|
sample_weight=sample_weight[inlier_best_idxs_subset],
|
||
|
)
|
||
|
|
||
|
self.estimator_ = estimator
|
||
|
self.inlier_mask_ = inlier_mask_best
|
||
|
return self
|
||
|
|
||
|
def predict(self, X):
|
||
|
"""Predict using the estimated model.
|
||
|
|
||
|
This is a wrapper for `estimator_.predict(X)`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like or sparse matrix} of shape (n_samples, n_features)
|
||
|
Input data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : array, shape = [n_samples] or [n_samples, n_targets]
|
||
|
Returns predicted values.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
X = self._validate_data(
|
||
|
X,
|
||
|
force_all_finite=False,
|
||
|
accept_sparse=True,
|
||
|
reset=False,
|
||
|
)
|
||
|
return self.estimator_.predict(X)
|
||
|
|
||
|
def score(self, X, y):
|
||
|
"""Return the score of the prediction.
|
||
|
|
||
|
This is a wrapper for `estimator_.score(X, y)`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : (array-like or sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
||
|
Target values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
z : float
|
||
|
Score of the prediction.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
X = self._validate_data(
|
||
|
X,
|
||
|
force_all_finite=False,
|
||
|
accept_sparse=True,
|
||
|
reset=False,
|
||
|
)
|
||
|
return self.estimator_.score(X, y)
|
||
|
|
||
|
def _more_tags(self):
|
||
|
return {
|
||
|
"_xfail_checks": {
|
||
|
"check_sample_weights_invariance": (
|
||
|
"zero sample_weight is not equivalent to removing samples"
|
||
|
),
|
||
|
}
|
||
|
}
|