674 lines
22 KiB
Python
674 lines
22 KiB
Python
|
import numpy as np
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from scipy.sparse import issparse
|
||
|
from scipy.sparse import coo_matrix
|
||
|
from scipy.sparse import csc_matrix
|
||
|
from scipy.sparse import csr_matrix
|
||
|
from scipy.sparse import dok_matrix
|
||
|
from scipy.sparse import lil_matrix
|
||
|
|
||
|
from sklearn.utils.multiclass import type_of_target
|
||
|
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
from sklearn.utils._testing import ignore_warnings
|
||
|
from sklearn.utils import _to_object_array
|
||
|
|
||
|
from sklearn.preprocessing._label import LabelBinarizer
|
||
|
from sklearn.preprocessing._label import MultiLabelBinarizer
|
||
|
from sklearn.preprocessing._label import LabelEncoder
|
||
|
from sklearn.preprocessing._label import label_binarize
|
||
|
|
||
|
from sklearn.preprocessing._label import _inverse_binarize_thresholding
|
||
|
from sklearn.preprocessing._label import _inverse_binarize_multiclass
|
||
|
|
||
|
from sklearn import datasets
|
||
|
|
||
|
iris = datasets.load_iris()
|
||
|
|
||
|
|
||
|
def toarray(a):
|
||
|
if hasattr(a, "toarray"):
|
||
|
a = a.toarray()
|
||
|
return a
|
||
|
|
||
|
|
||
|
def test_label_binarizer():
|
||
|
# one-class case defaults to negative label
|
||
|
# For dense case:
|
||
|
inp = ["pos", "pos", "pos", "pos"]
|
||
|
lb = LabelBinarizer(sparse_output=False)
|
||
|
expected = np.array([[0, 0, 0, 0]]).T
|
||
|
got = lb.fit_transform(inp)
|
||
|
assert_array_equal(lb.classes_, ["pos"])
|
||
|
assert_array_equal(expected, got)
|
||
|
assert_array_equal(lb.inverse_transform(got), inp)
|
||
|
|
||
|
# For sparse case:
|
||
|
lb = LabelBinarizer(sparse_output=True)
|
||
|
got = lb.fit_transform(inp)
|
||
|
assert issparse(got)
|
||
|
assert_array_equal(lb.classes_, ["pos"])
|
||
|
assert_array_equal(expected, got.toarray())
|
||
|
assert_array_equal(lb.inverse_transform(got.toarray()), inp)
|
||
|
|
||
|
lb = LabelBinarizer(sparse_output=False)
|
||
|
# two-class case
|
||
|
inp = ["neg", "pos", "pos", "neg"]
|
||
|
expected = np.array([[0, 1, 1, 0]]).T
|
||
|
got = lb.fit_transform(inp)
|
||
|
assert_array_equal(lb.classes_, ["neg", "pos"])
|
||
|
assert_array_equal(expected, got)
|
||
|
|
||
|
to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]])
|
||
|
assert_array_equal(lb.inverse_transform(to_invert), inp)
|
||
|
|
||
|
# multi-class case
|
||
|
inp = ["spam", "ham", "eggs", "ham", "0"]
|
||
|
expected = np.array(
|
||
|
[[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]
|
||
|
)
|
||
|
got = lb.fit_transform(inp)
|
||
|
assert_array_equal(lb.classes_, ["0", "eggs", "ham", "spam"])
|
||
|
assert_array_equal(expected, got)
|
||
|
assert_array_equal(lb.inverse_transform(got), inp)
|
||
|
|
||
|
|
||
|
def test_label_binarizer_unseen_labels():
|
||
|
lb = LabelBinarizer()
|
||
|
|
||
|
expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
||
|
got = lb.fit_transform(["b", "d", "e"])
|
||
|
assert_array_equal(expected, got)
|
||
|
|
||
|
expected = np.array(
|
||
|
[[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]
|
||
|
)
|
||
|
got = lb.transform(["a", "b", "c", "d", "e", "f"])
|
||
|
assert_array_equal(expected, got)
|
||
|
|
||
|
|
||
|
def test_label_binarizer_set_label_encoding():
|
||
|
lb = LabelBinarizer(neg_label=-2, pos_label=0)
|
||
|
|
||
|
# two-class case with pos_label=0
|
||
|
inp = np.array([0, 1, 1, 0])
|
||
|
expected = np.array([[-2, 0, 0, -2]]).T
|
||
|
got = lb.fit_transform(inp)
|
||
|
assert_array_equal(expected, got)
|
||
|
assert_array_equal(lb.inverse_transform(got), inp)
|
||
|
|
||
|
lb = LabelBinarizer(neg_label=-2, pos_label=2)
|
||
|
|
||
|
# multi-class case
|
||
|
inp = np.array([3, 2, 1, 2, 0])
|
||
|
expected = np.array(
|
||
|
[
|
||
|
[-2, -2, -2, +2],
|
||
|
[-2, -2, +2, -2],
|
||
|
[-2, +2, -2, -2],
|
||
|
[-2, -2, +2, -2],
|
||
|
[+2, -2, -2, -2],
|
||
|
]
|
||
|
)
|
||
|
got = lb.fit_transform(inp)
|
||
|
assert_array_equal(expected, got)
|
||
|
assert_array_equal(lb.inverse_transform(got), inp)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
|
||
|
def test_label_binarizer_pandas_nullable(dtype):
|
||
|
"""Checks that LabelBinarizer works with pandas nullable dtypes.
|
||
|
|
||
|
Non-regression test for gh-25637.
|
||
|
"""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
from sklearn.preprocessing import LabelBinarizer
|
||
|
|
||
|
y_true = pd.Series([1, 0, 0, 1, 0, 1, 1, 0, 1], dtype=dtype)
|
||
|
lb = LabelBinarizer().fit(y_true)
|
||
|
y_out = lb.transform([1, 0])
|
||
|
|
||
|
assert_array_equal(y_out, [[1], [0]])
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_label_binarizer_errors():
|
||
|
# Check that invalid arguments yield ValueError
|
||
|
one_class = np.array([0, 0, 0, 0])
|
||
|
lb = LabelBinarizer().fit(one_class)
|
||
|
|
||
|
multi_label = [(2, 3), (0,), (0, 2)]
|
||
|
err_msg = "You appear to be using a legacy multi-label data representation."
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
lb.transform(multi_label)
|
||
|
|
||
|
lb = LabelBinarizer()
|
||
|
err_msg = "This LabelBinarizer instance is not fitted yet"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
lb.transform([])
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
lb.inverse_transform([])
|
||
|
|
||
|
input_labels = [0, 1, 0, 1]
|
||
|
err_msg = "neg_label=2 must be strictly less than pos_label=1."
|
||
|
lb = LabelBinarizer(neg_label=2, pos_label=1)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
lb.fit(input_labels)
|
||
|
err_msg = "neg_label=2 must be strictly less than pos_label=2."
|
||
|
lb = LabelBinarizer(neg_label=2, pos_label=2)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
lb.fit(input_labels)
|
||
|
err_msg = (
|
||
|
"Sparse binarization is only supported with non zero pos_label and zero "
|
||
|
"neg_label, got pos_label=2 and neg_label=1"
|
||
|
)
|
||
|
lb = LabelBinarizer(neg_label=1, pos_label=2, sparse_output=True)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
lb.fit(input_labels)
|
||
|
|
||
|
# Fail on y_type
|
||
|
err_msg = "foo format is not supported"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
_inverse_binarize_thresholding(
|
||
|
y=csr_matrix([[1, 2], [2, 1]]),
|
||
|
output_type="foo",
|
||
|
classes=[1, 2],
|
||
|
threshold=0,
|
||
|
)
|
||
|
|
||
|
# Sequence of seq type should raise ValueError
|
||
|
y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]]
|
||
|
err_msg = "You appear to be using a legacy multi-label data representation"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
LabelBinarizer().fit_transform(y_seq_of_seqs)
|
||
|
|
||
|
# Fail on the number of classes
|
||
|
err_msg = "The number of class is not equal to the number of dimension of y."
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
_inverse_binarize_thresholding(
|
||
|
y=csr_matrix([[1, 2], [2, 1]]),
|
||
|
output_type="foo",
|
||
|
classes=[1, 2, 3],
|
||
|
threshold=0,
|
||
|
)
|
||
|
|
||
|
# Fail on the dimension of 'binary'
|
||
|
err_msg = "output_type='binary', but y.shape"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
_inverse_binarize_thresholding(
|
||
|
y=np.array([[1, 2, 3], [2, 1, 3]]),
|
||
|
output_type="binary",
|
||
|
classes=[1, 2, 3],
|
||
|
threshold=0,
|
||
|
)
|
||
|
|
||
|
# Fail on multioutput data
|
||
|
err_msg = "Multioutput target data is not supported with label binarization"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
LabelBinarizer().fit(np.array([[1, 3], [2, 1]]))
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
label_binarize(np.array([[1, 3], [2, 1]]), classes=[1, 2, 3])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"values, classes, unknown",
|
||
|
[
|
||
|
(
|
||
|
np.array([2, 1, 3, 1, 3], dtype="int64"),
|
||
|
np.array([1, 2, 3], dtype="int64"),
|
||
|
np.array([4], dtype="int64"),
|
||
|
),
|
||
|
(
|
||
|
np.array(["b", "a", "c", "a", "c"], dtype=object),
|
||
|
np.array(["a", "b", "c"], dtype=object),
|
||
|
np.array(["d"], dtype=object),
|
||
|
),
|
||
|
(
|
||
|
np.array(["b", "a", "c", "a", "c"]),
|
||
|
np.array(["a", "b", "c"]),
|
||
|
np.array(["d"]),
|
||
|
),
|
||
|
],
|
||
|
ids=["int64", "object", "str"],
|
||
|
)
|
||
|
def test_label_encoder(values, classes, unknown):
|
||
|
# Test LabelEncoder's transform, fit_transform and
|
||
|
# inverse_transform methods
|
||
|
le = LabelEncoder()
|
||
|
le.fit(values)
|
||
|
assert_array_equal(le.classes_, classes)
|
||
|
assert_array_equal(le.transform(values), [1, 0, 2, 0, 2])
|
||
|
assert_array_equal(le.inverse_transform([1, 0, 2, 0, 2]), values)
|
||
|
le = LabelEncoder()
|
||
|
ret = le.fit_transform(values)
|
||
|
assert_array_equal(ret, [1, 0, 2, 0, 2])
|
||
|
|
||
|
with pytest.raises(ValueError, match="unseen labels"):
|
||
|
le.transform(unknown)
|
||
|
|
||
|
|
||
|
def test_label_encoder_negative_ints():
|
||
|
le = LabelEncoder()
|
||
|
le.fit([1, 1, 4, 5, -1, 0])
|
||
|
assert_array_equal(le.classes_, [-1, 0, 1, 4, 5])
|
||
|
assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0])
|
||
|
assert_array_equal(
|
||
|
le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]
|
||
|
)
|
||
|
with pytest.raises(ValueError):
|
||
|
le.transform([0, 6])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", ["str", "object"])
|
||
|
def test_label_encoder_str_bad_shape(dtype):
|
||
|
le = LabelEncoder()
|
||
|
le.fit(np.array(["apple", "orange"], dtype=dtype))
|
||
|
msg = "should be a 1d array"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
le.transform("apple")
|
||
|
|
||
|
|
||
|
def test_label_encoder_errors():
|
||
|
# Check that invalid arguments yield ValueError
|
||
|
le = LabelEncoder()
|
||
|
with pytest.raises(ValueError):
|
||
|
le.transform([])
|
||
|
with pytest.raises(ValueError):
|
||
|
le.inverse_transform([])
|
||
|
|
||
|
# Fail on unseen labels
|
||
|
le = LabelEncoder()
|
||
|
le.fit([1, 2, 3, -1, 1])
|
||
|
msg = "contains previously unseen labels"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
le.inverse_transform([-2])
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
le.inverse_transform([-2, -3, -4])
|
||
|
|
||
|
# Fail on inverse_transform("")
|
||
|
msg = r"should be a 1d array.+shape \(\)"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
le.inverse_transform("")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"values",
|
||
|
[
|
||
|
np.array([2, 1, 3, 1, 3], dtype="int64"),
|
||
|
np.array(["b", "a", "c", "a", "c"], dtype=object),
|
||
|
np.array(["b", "a", "c", "a", "c"]),
|
||
|
],
|
||
|
ids=["int64", "object", "str"],
|
||
|
)
|
||
|
def test_label_encoder_empty_array(values):
|
||
|
le = LabelEncoder()
|
||
|
le.fit(values)
|
||
|
# test empty transform
|
||
|
transformed = le.transform([])
|
||
|
assert_array_equal(np.array([]), transformed)
|
||
|
# test empty inverse transform
|
||
|
inverse_transformed = le.inverse_transform([])
|
||
|
assert_array_equal(np.array([]), inverse_transformed)
|
||
|
|
||
|
|
||
|
def test_sparse_output_multilabel_binarizer():
|
||
|
# test input as iterable of iterables
|
||
|
inputs = [
|
||
|
lambda: [(2, 3), (1,), (1, 2)],
|
||
|
lambda: ({2, 3}, {1}, {1, 2}),
|
||
|
lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]),
|
||
|
]
|
||
|
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]])
|
||
|
|
||
|
inverse = inputs[0]()
|
||
|
for sparse_output in [True, False]:
|
||
|
for inp in inputs:
|
||
|
# With fit_transform
|
||
|
mlb = MultiLabelBinarizer(sparse_output=sparse_output)
|
||
|
got = mlb.fit_transform(inp())
|
||
|
assert issparse(got) == sparse_output
|
||
|
if sparse_output:
|
||
|
# verify CSR assumption that indices and indptr have same dtype
|
||
|
assert got.indices.dtype == got.indptr.dtype
|
||
|
got = got.toarray()
|
||
|
assert_array_equal(indicator_mat, got)
|
||
|
assert_array_equal([1, 2, 3], mlb.classes_)
|
||
|
assert mlb.inverse_transform(got) == inverse
|
||
|
|
||
|
# With fit
|
||
|
mlb = MultiLabelBinarizer(sparse_output=sparse_output)
|
||
|
got = mlb.fit(inp()).transform(inp())
|
||
|
assert issparse(got) == sparse_output
|
||
|
if sparse_output:
|
||
|
# verify CSR assumption that indices and indptr have same dtype
|
||
|
assert got.indices.dtype == got.indptr.dtype
|
||
|
got = got.toarray()
|
||
|
assert_array_equal(indicator_mat, got)
|
||
|
assert_array_equal([1, 2, 3], mlb.classes_)
|
||
|
assert mlb.inverse_transform(got) == inverse
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
mlb.inverse_transform(csr_matrix(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]])))
|
||
|
|
||
|
|
||
|
def test_multilabel_binarizer():
|
||
|
# test input as iterable of iterables
|
||
|
inputs = [
|
||
|
lambda: [(2, 3), (1,), (1, 2)],
|
||
|
lambda: ({2, 3}, {1}, {1, 2}),
|
||
|
lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]),
|
||
|
]
|
||
|
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]])
|
||
|
inverse = inputs[0]()
|
||
|
for inp in inputs:
|
||
|
# With fit_transform
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
got = mlb.fit_transform(inp())
|
||
|
assert_array_equal(indicator_mat, got)
|
||
|
assert_array_equal([1, 2, 3], mlb.classes_)
|
||
|
assert mlb.inverse_transform(got) == inverse
|
||
|
|
||
|
# With fit
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
got = mlb.fit(inp()).transform(inp())
|
||
|
assert_array_equal(indicator_mat, got)
|
||
|
assert_array_equal([1, 2, 3], mlb.classes_)
|
||
|
assert mlb.inverse_transform(got) == inverse
|
||
|
|
||
|
|
||
|
def test_multilabel_binarizer_empty_sample():
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
y = [[1, 2], [1], []]
|
||
|
Y = np.array([[1, 1], [1, 0], [0, 0]])
|
||
|
assert_array_equal(mlb.fit_transform(y), Y)
|
||
|
|
||
|
|
||
|
def test_multilabel_binarizer_unknown_class():
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
y = [[1, 2]]
|
||
|
Y = np.array([[1, 0], [0, 1]])
|
||
|
warning_message = "unknown class.* will be ignored"
|
||
|
with pytest.warns(UserWarning, match=warning_message):
|
||
|
matrix = mlb.fit(y).transform([[4, 1], [2, 0]])
|
||
|
|
||
|
Y = np.array([[1, 0, 0], [0, 1, 0]])
|
||
|
mlb = MultiLabelBinarizer(classes=[1, 2, 3])
|
||
|
with pytest.warns(UserWarning, match=warning_message):
|
||
|
matrix = mlb.fit(y).transform([[4, 1], [2, 0]])
|
||
|
assert_array_equal(matrix, Y)
|
||
|
|
||
|
|
||
|
def test_multilabel_binarizer_given_classes():
|
||
|
inp = [(2, 3), (1,), (1, 2)]
|
||
|
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]])
|
||
|
# fit_transform()
|
||
|
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
|
||
|
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
|
||
|
assert_array_equal(mlb.classes_, [1, 3, 2])
|
||
|
|
||
|
# fit().transform()
|
||
|
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
|
||
|
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
|
||
|
assert_array_equal(mlb.classes_, [1, 3, 2])
|
||
|
|
||
|
# ensure works with extra class
|
||
|
mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2])
|
||
|
assert_array_equal(
|
||
|
mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))
|
||
|
)
|
||
|
assert_array_equal(mlb.classes_, [4, 1, 3, 2])
|
||
|
|
||
|
# ensure fit is no-op as iterable is not consumed
|
||
|
inp = iter(inp)
|
||
|
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
|
||
|
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
|
||
|
|
||
|
# ensure a ValueError is thrown if given duplicate classes
|
||
|
err_msg = (
|
||
|
"The classes argument contains duplicate classes. Remove "
|
||
|
"these duplicates before passing them to MultiLabelBinarizer."
|
||
|
)
|
||
|
mlb = MultiLabelBinarizer(classes=[1, 3, 2, 3])
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
mlb.fit(inp)
|
||
|
|
||
|
|
||
|
def test_multilabel_binarizer_multiple_calls():
|
||
|
inp = [(2, 3), (1,), (1, 2)]
|
||
|
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]])
|
||
|
|
||
|
indicator_mat2 = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]])
|
||
|
|
||
|
# first call
|
||
|
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
|
||
|
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
|
||
|
# second call change class
|
||
|
mlb.classes = [1, 2, 3]
|
||
|
assert_array_equal(mlb.fit_transform(inp), indicator_mat2)
|
||
|
|
||
|
|
||
|
def test_multilabel_binarizer_same_length_sequence():
|
||
|
# Ensure sequences of the same length are not interpreted as a 2-d array
|
||
|
inp = [[1], [0], [2]]
|
||
|
indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
|
||
|
# fit_transform()
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
|
||
|
assert_array_equal(mlb.inverse_transform(indicator_mat), inp)
|
||
|
|
||
|
# fit().transform()
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
|
||
|
assert_array_equal(mlb.inverse_transform(indicator_mat), inp)
|
||
|
|
||
|
|
||
|
def test_multilabel_binarizer_non_integer_labels():
|
||
|
tuple_classes = _to_object_array([(1,), (2,), (3,)])
|
||
|
inputs = [
|
||
|
([("2", "3"), ("1",), ("1", "2")], ["1", "2", "3"]),
|
||
|
([("b", "c"), ("a",), ("a", "b")], ["a", "b", "c"]),
|
||
|
([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes),
|
||
|
]
|
||
|
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]])
|
||
|
for inp, classes in inputs:
|
||
|
# fit_transform()
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
inp = np.array(inp, dtype=object)
|
||
|
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
|
||
|
assert_array_equal(mlb.classes_, classes)
|
||
|
indicator_mat_inv = np.array(mlb.inverse_transform(indicator_mat), dtype=object)
|
||
|
assert_array_equal(indicator_mat_inv, inp)
|
||
|
|
||
|
# fit().transform()
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
|
||
|
assert_array_equal(mlb.classes_, classes)
|
||
|
indicator_mat_inv = np.array(mlb.inverse_transform(indicator_mat), dtype=object)
|
||
|
assert_array_equal(indicator_mat_inv, inp)
|
||
|
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
with pytest.raises(TypeError):
|
||
|
mlb.fit_transform([({}), ({}, {"a": "b"})])
|
||
|
|
||
|
|
||
|
def test_multilabel_binarizer_non_unique():
|
||
|
inp = [(1, 1, 1, 0)]
|
||
|
indicator_mat = np.array([[1, 1]])
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
|
||
|
|
||
|
|
||
|
def test_multilabel_binarizer_inverse_validation():
|
||
|
inp = [(1, 1, 1, 0)]
|
||
|
mlb = MultiLabelBinarizer()
|
||
|
mlb.fit_transform(inp)
|
||
|
# Not binary
|
||
|
with pytest.raises(ValueError):
|
||
|
mlb.inverse_transform(np.array([[1, 3]]))
|
||
|
# The following binary cases are fine, however
|
||
|
mlb.inverse_transform(np.array([[0, 0]]))
|
||
|
mlb.inverse_transform(np.array([[1, 1]]))
|
||
|
mlb.inverse_transform(np.array([[1, 0]]))
|
||
|
|
||
|
# Wrong shape
|
||
|
with pytest.raises(ValueError):
|
||
|
mlb.inverse_transform(np.array([[1]]))
|
||
|
with pytest.raises(ValueError):
|
||
|
mlb.inverse_transform(np.array([[1, 1, 1]]))
|
||
|
|
||
|
|
||
|
def test_label_binarize_with_class_order():
|
||
|
out = label_binarize([1, 6], classes=[1, 2, 4, 6])
|
||
|
expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]])
|
||
|
assert_array_equal(out, expected)
|
||
|
|
||
|
# Modified class order
|
||
|
out = label_binarize([1, 6], classes=[1, 6, 4, 2])
|
||
|
expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])
|
||
|
assert_array_equal(out, expected)
|
||
|
|
||
|
out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1])
|
||
|
expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]])
|
||
|
assert_array_equal(out, expected)
|
||
|
|
||
|
|
||
|
def check_binarized_results(y, classes, pos_label, neg_label, expected):
|
||
|
for sparse_output in [True, False]:
|
||
|
if (pos_label == 0 or neg_label != 0) and sparse_output:
|
||
|
with pytest.raises(ValueError):
|
||
|
label_binarize(
|
||
|
y,
|
||
|
classes=classes,
|
||
|
neg_label=neg_label,
|
||
|
pos_label=pos_label,
|
||
|
sparse_output=sparse_output,
|
||
|
)
|
||
|
continue
|
||
|
|
||
|
# check label_binarize
|
||
|
binarized = label_binarize(
|
||
|
y,
|
||
|
classes=classes,
|
||
|
neg_label=neg_label,
|
||
|
pos_label=pos_label,
|
||
|
sparse_output=sparse_output,
|
||
|
)
|
||
|
assert_array_equal(toarray(binarized), expected)
|
||
|
assert issparse(binarized) == sparse_output
|
||
|
|
||
|
# check inverse
|
||
|
y_type = type_of_target(y)
|
||
|
if y_type == "multiclass":
|
||
|
inversed = _inverse_binarize_multiclass(binarized, classes=classes)
|
||
|
|
||
|
else:
|
||
|
inversed = _inverse_binarize_thresholding(
|
||
|
binarized,
|
||
|
output_type=y_type,
|
||
|
classes=classes,
|
||
|
threshold=((neg_label + pos_label) / 2.0),
|
||
|
)
|
||
|
|
||
|
assert_array_equal(toarray(inversed), toarray(y))
|
||
|
|
||
|
# Check label binarizer
|
||
|
lb = LabelBinarizer(
|
||
|
neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output
|
||
|
)
|
||
|
binarized = lb.fit_transform(y)
|
||
|
assert_array_equal(toarray(binarized), expected)
|
||
|
assert issparse(binarized) == sparse_output
|
||
|
inverse_output = lb.inverse_transform(binarized)
|
||
|
assert_array_equal(toarray(inverse_output), toarray(y))
|
||
|
assert issparse(inverse_output) == issparse(y)
|
||
|
|
||
|
|
||
|
def test_label_binarize_binary():
|
||
|
y = [0, 1, 0]
|
||
|
classes = [0, 1]
|
||
|
pos_label = 2
|
||
|
neg_label = -1
|
||
|
expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1))
|
||
|
|
||
|
check_binarized_results(y, classes, pos_label, neg_label, expected)
|
||
|
|
||
|
# Binary case where sparse_output = True will not result in a ValueError
|
||
|
y = [0, 1, 0]
|
||
|
classes = [0, 1]
|
||
|
pos_label = 3
|
||
|
neg_label = 0
|
||
|
expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1))
|
||
|
|
||
|
check_binarized_results(y, classes, pos_label, neg_label, expected)
|
||
|
|
||
|
|
||
|
def test_label_binarize_multiclass():
|
||
|
y = [0, 1, 2]
|
||
|
classes = [0, 1, 2]
|
||
|
pos_label = 2
|
||
|
neg_label = 0
|
||
|
expected = 2 * np.eye(3)
|
||
|
|
||
|
check_binarized_results(y, classes, pos_label, neg_label, expected)
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
label_binarize(
|
||
|
y, classes=classes, neg_label=-1, pos_label=pos_label, sparse_output=True
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_label_binarize_multilabel():
|
||
|
y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]])
|
||
|
classes = [0, 1, 2]
|
||
|
pos_label = 2
|
||
|
neg_label = 0
|
||
|
expected = pos_label * y_ind
|
||
|
y_sparse = [
|
||
|
sparse_matrix(y_ind)
|
||
|
for sparse_matrix in [
|
||
|
coo_matrix,
|
||
|
csc_matrix,
|
||
|
csr_matrix,
|
||
|
dok_matrix,
|
||
|
lil_matrix,
|
||
|
]
|
||
|
]
|
||
|
|
||
|
for y in [y_ind] + y_sparse:
|
||
|
check_binarized_results(y, classes, pos_label, neg_label, expected)
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
label_binarize(
|
||
|
y, classes=classes, neg_label=-1, pos_label=pos_label, sparse_output=True
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_invalid_input_label_binarize():
|
||
|
with pytest.raises(ValueError):
|
||
|
label_binarize([0, 2], classes=[0, 2], pos_label=0, neg_label=1)
|
||
|
with pytest.raises(ValueError, match="continuous target data is not "):
|
||
|
label_binarize([1.2, 2.7], classes=[0, 1])
|
||
|
with pytest.raises(ValueError, match="mismatch with the labels"):
|
||
|
label_binarize([[1, 3]], classes=[1, 2, 3])
|
||
|
|
||
|
|
||
|
def test_inverse_binarize_multiclass():
|
||
|
got = _inverse_binarize_multiclass(
|
||
|
csr_matrix([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)
|
||
|
)
|
||
|
assert_array_equal(got, np.array([1, 1, 0]))
|
||
|
|
||
|
|
||
|
def test_nan_label_encoder():
|
||
|
"""Check that label encoder encodes nans in transform.
|
||
|
|
||
|
Non-regression test for #22628.
|
||
|
"""
|
||
|
le = LabelEncoder()
|
||
|
le.fit(["a", "a", "b", np.nan])
|
||
|
|
||
|
y_trans = le.transform([np.nan])
|
||
|
assert_array_equal(y_trans, [2])
|