694 lines
20 KiB
Python
694 lines
20 KiB
Python
|
import pytest
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
|
||
|
from sklearn.base import clone
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
from sklearn.utils._testing import assert_array_almost_equal
|
||
|
from sklearn.utils._testing import assert_almost_equal
|
||
|
from sklearn.utils._testing import ignore_warnings
|
||
|
from sklearn.utils.stats import _weighted_percentile
|
||
|
|
||
|
from sklearn.dummy import DummyClassifier, DummyRegressor
|
||
|
from sklearn.exceptions import NotFittedError
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def _check_predict_proba(clf, X, y):
|
||
|
proba = clf.predict_proba(X)
|
||
|
# We know that we can have division by zero
|
||
|
log_proba = clf.predict_log_proba(X)
|
||
|
|
||
|
y = np.atleast_1d(y)
|
||
|
if y.ndim == 1:
|
||
|
y = np.reshape(y, (-1, 1))
|
||
|
|
||
|
n_outputs = y.shape[1]
|
||
|
n_samples = len(X)
|
||
|
|
||
|
if n_outputs == 1:
|
||
|
proba = [proba]
|
||
|
log_proba = [log_proba]
|
||
|
|
||
|
for k in range(n_outputs):
|
||
|
assert proba[k].shape[0] == n_samples
|
||
|
assert proba[k].shape[1] == len(np.unique(y[:, k]))
|
||
|
assert_array_almost_equal(proba[k].sum(axis=1), np.ones(len(X)))
|
||
|
# We know that we can have division by zero
|
||
|
assert_array_almost_equal(np.log(proba[k]), log_proba[k])
|
||
|
|
||
|
|
||
|
def _check_behavior_2d(clf):
|
||
|
# 1d case
|
||
|
X = np.array([[0], [0], [0], [0]]) # ignored
|
||
|
y = np.array([1, 2, 1, 1])
|
||
|
est = clone(clf)
|
||
|
est.fit(X, y)
|
||
|
y_pred = est.predict(X)
|
||
|
assert y.shape == y_pred.shape
|
||
|
|
||
|
# 2d case
|
||
|
y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]])
|
||
|
est = clone(clf)
|
||
|
est.fit(X, y)
|
||
|
y_pred = est.predict(X)
|
||
|
assert y.shape == y_pred.shape
|
||
|
|
||
|
|
||
|
def _check_behavior_2d_for_constant(clf):
|
||
|
# 2d case only
|
||
|
X = np.array([[0], [0], [0], [0]]) # ignored
|
||
|
y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]])
|
||
|
est = clone(clf)
|
||
|
est.fit(X, y)
|
||
|
y_pred = est.predict(X)
|
||
|
assert y.shape == y_pred.shape
|
||
|
|
||
|
|
||
|
def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test):
|
||
|
assert_array_almost_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn)
|
||
|
assert_array_almost_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test)
|
||
|
|
||
|
|
||
|
def test_most_frequent_and_prior_strategy():
|
||
|
X = [[0], [0], [0], [0]] # ignored
|
||
|
y = [1, 2, 1, 1]
|
||
|
|
||
|
for strategy in ("most_frequent", "prior"):
|
||
|
clf = DummyClassifier(strategy=strategy, random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
assert_array_equal(clf.predict(X), np.ones(len(X)))
|
||
|
_check_predict_proba(clf, X, y)
|
||
|
|
||
|
if strategy == "prior":
|
||
|
assert_array_almost_equal(
|
||
|
clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1))
|
||
|
)
|
||
|
else:
|
||
|
assert_array_almost_equal(
|
||
|
clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) > 0.5
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_most_frequent_and_prior_strategy_with_2d_column_y():
|
||
|
# non-regression test added in
|
||
|
# https://github.com/scikit-learn/scikit-learn/pull/13545
|
||
|
X = [[0], [0], [0], [0]]
|
||
|
y_1d = [1, 2, 1, 1]
|
||
|
y_2d = [[1], [2], [1], [1]]
|
||
|
|
||
|
for strategy in ("most_frequent", "prior"):
|
||
|
clf_1d = DummyClassifier(strategy=strategy, random_state=0)
|
||
|
clf_2d = DummyClassifier(strategy=strategy, random_state=0)
|
||
|
|
||
|
clf_1d.fit(X, y_1d)
|
||
|
clf_2d.fit(X, y_2d)
|
||
|
assert_array_equal(clf_1d.predict(X), clf_2d.predict(X))
|
||
|
|
||
|
|
||
|
def test_most_frequent_and_prior_strategy_multioutput():
|
||
|
X = [[0], [0], [0], [0]] # ignored
|
||
|
y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]])
|
||
|
|
||
|
n_samples = len(X)
|
||
|
|
||
|
for strategy in ("prior", "most_frequent"):
|
||
|
clf = DummyClassifier(strategy=strategy, random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
assert_array_equal(
|
||
|
clf.predict(X),
|
||
|
np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]),
|
||
|
)
|
||
|
_check_predict_proba(clf, X, y)
|
||
|
_check_behavior_2d(clf)
|
||
|
|
||
|
|
||
|
def test_stratified_strategy():
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = [1, 2, 1, 1, 2]
|
||
|
clf = DummyClassifier(strategy="stratified", random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
X = [[0]] * 500
|
||
|
y_pred = clf.predict(X)
|
||
|
p = np.bincount(y_pred) / float(len(X))
|
||
|
assert_almost_equal(p[1], 3.0 / 5, decimal=1)
|
||
|
assert_almost_equal(p[2], 2.0 / 5, decimal=1)
|
||
|
_check_predict_proba(clf, X, y)
|
||
|
|
||
|
|
||
|
def test_stratified_strategy_multioutput():
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]])
|
||
|
|
||
|
clf = DummyClassifier(strategy="stratified", random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
X = [[0]] * 500
|
||
|
y_pred = clf.predict(X)
|
||
|
|
||
|
for k in range(y.shape[1]):
|
||
|
p = np.bincount(y_pred[:, k]) / float(len(X))
|
||
|
assert_almost_equal(p[1], 3.0 / 5, decimal=1)
|
||
|
assert_almost_equal(p[2], 2.0 / 5, decimal=1)
|
||
|
_check_predict_proba(clf, X, y)
|
||
|
|
||
|
_check_behavior_2d(clf)
|
||
|
|
||
|
|
||
|
def test_uniform_strategy():
|
||
|
X = [[0]] * 4 # ignored
|
||
|
y = [1, 2, 1, 1]
|
||
|
clf = DummyClassifier(strategy="uniform", random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
X = [[0]] * 500
|
||
|
y_pred = clf.predict(X)
|
||
|
p = np.bincount(y_pred) / float(len(X))
|
||
|
assert_almost_equal(p[1], 0.5, decimal=1)
|
||
|
assert_almost_equal(p[2], 0.5, decimal=1)
|
||
|
_check_predict_proba(clf, X, y)
|
||
|
|
||
|
|
||
|
def test_uniform_strategy_multioutput():
|
||
|
X = [[0]] * 4 # ignored
|
||
|
y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]])
|
||
|
clf = DummyClassifier(strategy="uniform", random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
X = [[0]] * 500
|
||
|
y_pred = clf.predict(X)
|
||
|
|
||
|
for k in range(y.shape[1]):
|
||
|
p = np.bincount(y_pred[:, k]) / float(len(X))
|
||
|
assert_almost_equal(p[1], 0.5, decimal=1)
|
||
|
assert_almost_equal(p[2], 0.5, decimal=1)
|
||
|
_check_predict_proba(clf, X, y)
|
||
|
|
||
|
_check_behavior_2d(clf)
|
||
|
|
||
|
|
||
|
def test_string_labels():
|
||
|
X = [[0]] * 5
|
||
|
y = ["paris", "paris", "tokyo", "amsterdam", "berlin"]
|
||
|
clf = DummyClassifier(strategy="most_frequent")
|
||
|
clf.fit(X, y)
|
||
|
assert_array_equal(clf.predict(X), ["paris"] * 5)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"y,y_test",
|
||
|
[
|
||
|
([2, 1, 1, 1], [2, 2, 1, 1]),
|
||
|
(
|
||
|
np.array([[2, 2], [1, 1], [1, 1], [1, 1]]),
|
||
|
np.array([[2, 2], [2, 2], [1, 1], [1, 1]]),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_classifier_score_with_None(y, y_test):
|
||
|
clf = DummyClassifier(strategy="most_frequent")
|
||
|
clf.fit(None, y)
|
||
|
assert clf.score(None, y_test) == 0.5
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"strategy", ["stratified", "most_frequent", "prior", "uniform", "constant"]
|
||
|
)
|
||
|
def test_classifier_prediction_independent_of_X(strategy):
|
||
|
y = [0, 2, 1, 1]
|
||
|
X1 = [[0]] * 4
|
||
|
clf1 = DummyClassifier(strategy=strategy, random_state=0, constant=0)
|
||
|
clf1.fit(X1, y)
|
||
|
predictions1 = clf1.predict(X1)
|
||
|
|
||
|
X2 = [[1]] * 4
|
||
|
clf2 = DummyClassifier(strategy=strategy, random_state=0, constant=0)
|
||
|
clf2.fit(X2, y)
|
||
|
predictions2 = clf2.predict(X2)
|
||
|
|
||
|
assert_array_equal(predictions1, predictions2)
|
||
|
|
||
|
|
||
|
def test_mean_strategy_regressor():
|
||
|
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
|
||
|
X = [[0]] * 4 # ignored
|
||
|
y = random_state.randn(4)
|
||
|
|
||
|
reg = DummyRegressor()
|
||
|
reg.fit(X, y)
|
||
|
assert_array_equal(reg.predict(X), [np.mean(y)] * len(X))
|
||
|
|
||
|
|
||
|
def test_mean_strategy_multioutput_regressor():
|
||
|
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
|
||
|
X_learn = random_state.randn(10, 10)
|
||
|
y_learn = random_state.randn(10, 5)
|
||
|
|
||
|
mean = np.mean(y_learn, axis=0).reshape((1, -1))
|
||
|
|
||
|
X_test = random_state.randn(20, 10)
|
||
|
y_test = random_state.randn(20, 5)
|
||
|
|
||
|
# Correctness oracle
|
||
|
est = DummyRegressor()
|
||
|
est.fit(X_learn, y_learn)
|
||
|
y_pred_learn = est.predict(X_learn)
|
||
|
y_pred_test = est.predict(X_test)
|
||
|
|
||
|
_check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test)
|
||
|
_check_behavior_2d(est)
|
||
|
|
||
|
|
||
|
def test_regressor_exceptions():
|
||
|
reg = DummyRegressor()
|
||
|
with pytest.raises(NotFittedError):
|
||
|
reg.predict([])
|
||
|
|
||
|
|
||
|
def test_median_strategy_regressor():
|
||
|
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = random_state.randn(5)
|
||
|
|
||
|
reg = DummyRegressor(strategy="median")
|
||
|
reg.fit(X, y)
|
||
|
assert_array_equal(reg.predict(X), [np.median(y)] * len(X))
|
||
|
|
||
|
|
||
|
def test_median_strategy_multioutput_regressor():
|
||
|
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
|
||
|
X_learn = random_state.randn(10, 10)
|
||
|
y_learn = random_state.randn(10, 5)
|
||
|
|
||
|
median = np.median(y_learn, axis=0).reshape((1, -1))
|
||
|
|
||
|
X_test = random_state.randn(20, 10)
|
||
|
y_test = random_state.randn(20, 5)
|
||
|
|
||
|
# Correctness oracle
|
||
|
est = DummyRegressor(strategy="median")
|
||
|
est.fit(X_learn, y_learn)
|
||
|
y_pred_learn = est.predict(X_learn)
|
||
|
y_pred_test = est.predict(X_test)
|
||
|
|
||
|
_check_equality_regressor(median, y_learn, y_pred_learn, y_test, y_pred_test)
|
||
|
_check_behavior_2d(est)
|
||
|
|
||
|
|
||
|
def test_quantile_strategy_regressor():
|
||
|
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = random_state.randn(5)
|
||
|
|
||
|
reg = DummyRegressor(strategy="quantile", quantile=0.5)
|
||
|
reg.fit(X, y)
|
||
|
assert_array_equal(reg.predict(X), [np.median(y)] * len(X))
|
||
|
|
||
|
reg = DummyRegressor(strategy="quantile", quantile=0)
|
||
|
reg.fit(X, y)
|
||
|
assert_array_equal(reg.predict(X), [np.min(y)] * len(X))
|
||
|
|
||
|
reg = DummyRegressor(strategy="quantile", quantile=1)
|
||
|
reg.fit(X, y)
|
||
|
assert_array_equal(reg.predict(X), [np.max(y)] * len(X))
|
||
|
|
||
|
reg = DummyRegressor(strategy="quantile", quantile=0.3)
|
||
|
reg.fit(X, y)
|
||
|
assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X))
|
||
|
|
||
|
|
||
|
def test_quantile_strategy_multioutput_regressor():
|
||
|
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
|
||
|
X_learn = random_state.randn(10, 10)
|
||
|
y_learn = random_state.randn(10, 5)
|
||
|
|
||
|
median = np.median(y_learn, axis=0).reshape((1, -1))
|
||
|
quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1))
|
||
|
|
||
|
X_test = random_state.randn(20, 10)
|
||
|
y_test = random_state.randn(20, 5)
|
||
|
|
||
|
# Correctness oracle
|
||
|
est = DummyRegressor(strategy="quantile", quantile=0.5)
|
||
|
est.fit(X_learn, y_learn)
|
||
|
y_pred_learn = est.predict(X_learn)
|
||
|
y_pred_test = est.predict(X_test)
|
||
|
|
||
|
_check_equality_regressor(median, y_learn, y_pred_learn, y_test, y_pred_test)
|
||
|
_check_behavior_2d(est)
|
||
|
|
||
|
# Correctness oracle
|
||
|
est = DummyRegressor(strategy="quantile", quantile=0.8)
|
||
|
est.fit(X_learn, y_learn)
|
||
|
y_pred_learn = est.predict(X_learn)
|
||
|
y_pred_test = est.predict(X_test)
|
||
|
|
||
|
_check_equality_regressor(
|
||
|
quantile_values, y_learn, y_pred_learn, y_test, y_pred_test
|
||
|
)
|
||
|
_check_behavior_2d(est)
|
||
|
|
||
|
|
||
|
def test_quantile_invalid():
|
||
|
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = [0] * 5 # ignored
|
||
|
|
||
|
est = DummyRegressor(strategy="quantile", quantile=None)
|
||
|
err_msg = (
|
||
|
"When using `strategy='quantile', you have to specify the desired quantile"
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_quantile_strategy_empty_train():
|
||
|
est = DummyRegressor(strategy="quantile", quantile=0.4)
|
||
|
with pytest.raises(ValueError):
|
||
|
est.fit([], [])
|
||
|
|
||
|
|
||
|
def test_constant_strategy_regressor():
|
||
|
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = random_state.randn(5)
|
||
|
|
||
|
reg = DummyRegressor(strategy="constant", constant=[43])
|
||
|
reg.fit(X, y)
|
||
|
assert_array_equal(reg.predict(X), [43] * len(X))
|
||
|
|
||
|
reg = DummyRegressor(strategy="constant", constant=43)
|
||
|
reg.fit(X, y)
|
||
|
assert_array_equal(reg.predict(X), [43] * len(X))
|
||
|
|
||
|
# non-regression test for #22478
|
||
|
assert not isinstance(reg.constant, np.ndarray)
|
||
|
|
||
|
|
||
|
def test_constant_strategy_multioutput_regressor():
|
||
|
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
|
||
|
X_learn = random_state.randn(10, 10)
|
||
|
y_learn = random_state.randn(10, 5)
|
||
|
|
||
|
# test with 2d array
|
||
|
constants = random_state.randn(5)
|
||
|
|
||
|
X_test = random_state.randn(20, 10)
|
||
|
y_test = random_state.randn(20, 5)
|
||
|
|
||
|
# Correctness oracle
|
||
|
est = DummyRegressor(strategy="constant", constant=constants)
|
||
|
est.fit(X_learn, y_learn)
|
||
|
y_pred_learn = est.predict(X_learn)
|
||
|
y_pred_test = est.predict(X_test)
|
||
|
|
||
|
_check_equality_regressor(constants, y_learn, y_pred_learn, y_test, y_pred_test)
|
||
|
_check_behavior_2d_for_constant(est)
|
||
|
|
||
|
|
||
|
def test_y_mean_attribute_regressor():
|
||
|
X = [[0]] * 5
|
||
|
y = [1, 2, 4, 6, 8]
|
||
|
# when strategy = 'mean'
|
||
|
est = DummyRegressor(strategy="mean")
|
||
|
est.fit(X, y)
|
||
|
|
||
|
assert est.constant_ == np.mean(y)
|
||
|
|
||
|
|
||
|
def test_constants_not_specified_regressor():
|
||
|
X = [[0]] * 5
|
||
|
y = [1, 2, 4, 6, 8]
|
||
|
|
||
|
est = DummyRegressor(strategy="constant")
|
||
|
err_msg = "Constant target value has to be specified"
|
||
|
with pytest.raises(TypeError, match=err_msg):
|
||
|
est.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_constant_size_multioutput_regressor():
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
X = random_state.randn(10, 10)
|
||
|
y = random_state.randn(10, 5)
|
||
|
|
||
|
est = DummyRegressor(strategy="constant", constant=[1, 2, 3, 4])
|
||
|
err_msg = r"Constant target value should have shape \(5, 1\)."
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_constant_strategy():
|
||
|
X = [[0], [0], [0], [0]] # ignored
|
||
|
y = [2, 1, 2, 2]
|
||
|
|
||
|
clf = DummyClassifier(strategy="constant", random_state=0, constant=1)
|
||
|
clf.fit(X, y)
|
||
|
assert_array_equal(clf.predict(X), np.ones(len(X)))
|
||
|
_check_predict_proba(clf, X, y)
|
||
|
|
||
|
X = [[0], [0], [0], [0]] # ignored
|
||
|
y = ["two", "one", "two", "two"]
|
||
|
clf = DummyClassifier(strategy="constant", random_state=0, constant="one")
|
||
|
clf.fit(X, y)
|
||
|
assert_array_equal(clf.predict(X), np.array(["one"] * 4))
|
||
|
_check_predict_proba(clf, X, y)
|
||
|
|
||
|
|
||
|
def test_constant_strategy_multioutput():
|
||
|
X = [[0], [0], [0], [0]] # ignored
|
||
|
y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]])
|
||
|
|
||
|
n_samples = len(X)
|
||
|
|
||
|
clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0])
|
||
|
clf.fit(X, y)
|
||
|
assert_array_equal(
|
||
|
clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])
|
||
|
)
|
||
|
_check_predict_proba(clf, X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"y, params, err_msg",
|
||
|
[
|
||
|
([2, 1, 2, 2], {"random_state": 0}, "Constant.*has to be specified"),
|
||
|
([2, 1, 2, 2], {"constant": [2, 0]}, "Constant.*should have shape"),
|
||
|
(
|
||
|
np.transpose([[2, 1, 2, 2], [2, 1, 2, 2]]),
|
||
|
{"constant": 2},
|
||
|
"Constant.*should have shape",
|
||
|
),
|
||
|
(
|
||
|
[2, 1, 2, 2],
|
||
|
{"constant": "my-constant"},
|
||
|
"constant=my-constant.*Possible values.*\\[1, 2]",
|
||
|
),
|
||
|
(
|
||
|
np.transpose([[2, 1, 2, 2], [2, 1, 2, 2]]),
|
||
|
{"constant": [2, "unknown"]},
|
||
|
"constant=\\[2, 'unknown'].*Possible values.*\\[1, 2]",
|
||
|
),
|
||
|
],
|
||
|
ids=[
|
||
|
"no-constant",
|
||
|
"too-many-constant",
|
||
|
"not-enough-output",
|
||
|
"single-output",
|
||
|
"multi-output",
|
||
|
],
|
||
|
)
|
||
|
def test_constant_strategy_exceptions(y, params, err_msg):
|
||
|
X = [[0], [0], [0], [0]]
|
||
|
|
||
|
clf = DummyClassifier(strategy="constant", **params)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_classification_sample_weight():
|
||
|
X = [[0], [0], [1]]
|
||
|
y = [0, 1, 0]
|
||
|
sample_weight = [0.1, 1.0, 0.1]
|
||
|
|
||
|
clf = DummyClassifier(strategy="stratified").fit(X, y, sample_weight)
|
||
|
assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1.0 / 1.2])
|
||
|
|
||
|
|
||
|
def test_constant_strategy_sparse_target():
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = sp.csc_matrix(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]]))
|
||
|
|
||
|
n_samples = len(X)
|
||
|
|
||
|
clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0])
|
||
|
clf.fit(X, y)
|
||
|
y_pred = clf.predict(X)
|
||
|
assert sp.issparse(y_pred)
|
||
|
assert_array_equal(
|
||
|
y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_uniform_strategy_sparse_target_warning():
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = sp.csc_matrix(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]]))
|
||
|
|
||
|
clf = DummyClassifier(strategy="uniform", random_state=0)
|
||
|
with pytest.warns(UserWarning, match="the uniform strategy would not save memory"):
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
X = [[0]] * 500
|
||
|
y_pred = clf.predict(X)
|
||
|
|
||
|
for k in range(y.shape[1]):
|
||
|
p = np.bincount(y_pred[:, k]) / float(len(X))
|
||
|
assert_almost_equal(p[1], 1 / 3, decimal=1)
|
||
|
assert_almost_equal(p[2], 1 / 3, decimal=1)
|
||
|
assert_almost_equal(p[4], 1 / 3, decimal=1)
|
||
|
|
||
|
|
||
|
def test_stratified_strategy_sparse_target():
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = sp.csc_matrix(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]]))
|
||
|
|
||
|
clf = DummyClassifier(strategy="stratified", random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
X = [[0]] * 500
|
||
|
y_pred = clf.predict(X)
|
||
|
assert sp.issparse(y_pred)
|
||
|
y_pred = y_pred.toarray()
|
||
|
|
||
|
for k in range(y.shape[1]):
|
||
|
p = np.bincount(y_pred[:, k]) / float(len(X))
|
||
|
assert_almost_equal(p[1], 3.0 / 5, decimal=1)
|
||
|
assert_almost_equal(p[0], 1.0 / 5, decimal=1)
|
||
|
assert_almost_equal(p[4], 1.0 / 5, decimal=1)
|
||
|
|
||
|
|
||
|
def test_most_frequent_and_prior_strategy_sparse_target():
|
||
|
X = [[0]] * 5 # ignored
|
||
|
y = sp.csc_matrix(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]]))
|
||
|
|
||
|
n_samples = len(X)
|
||
|
y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])
|
||
|
for strategy in ("most_frequent", "prior"):
|
||
|
clf = DummyClassifier(strategy=strategy, random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
y_pred = clf.predict(X)
|
||
|
assert sp.issparse(y_pred)
|
||
|
assert_array_equal(y_pred.toarray(), y_expected)
|
||
|
|
||
|
|
||
|
def test_dummy_regressor_sample_weight(n_samples=10):
|
||
|
random_state = np.random.RandomState(seed=1)
|
||
|
|
||
|
X = [[0]] * n_samples
|
||
|
y = random_state.rand(n_samples)
|
||
|
sample_weight = random_state.rand(n_samples)
|
||
|
|
||
|
est = DummyRegressor(strategy="mean").fit(X, y, sample_weight)
|
||
|
assert est.constant_ == np.average(y, weights=sample_weight)
|
||
|
|
||
|
est = DummyRegressor(strategy="median").fit(X, y, sample_weight)
|
||
|
assert est.constant_ == _weighted_percentile(y, sample_weight, 50.0)
|
||
|
|
||
|
est = DummyRegressor(strategy="quantile", quantile=0.95).fit(X, y, sample_weight)
|
||
|
assert est.constant_ == _weighted_percentile(y, sample_weight, 95.0)
|
||
|
|
||
|
|
||
|
def test_dummy_regressor_on_3D_array():
|
||
|
X = np.array([[["foo"]], [["bar"]], [["baz"]]])
|
||
|
y = np.array([2, 2, 2])
|
||
|
y_expected = np.array([2, 2, 2])
|
||
|
cls = DummyRegressor()
|
||
|
cls.fit(X, y)
|
||
|
y_pred = cls.predict(X)
|
||
|
assert_array_equal(y_pred, y_expected)
|
||
|
|
||
|
|
||
|
def test_dummy_classifier_on_3D_array():
|
||
|
X = np.array([[["foo"]], [["bar"]], [["baz"]]])
|
||
|
y = [2, 2, 2]
|
||
|
y_expected = [2, 2, 2]
|
||
|
y_proba_expected = [[1], [1], [1]]
|
||
|
cls = DummyClassifier(strategy="stratified")
|
||
|
cls.fit(X, y)
|
||
|
y_pred = cls.predict(X)
|
||
|
y_pred_proba = cls.predict_proba(X)
|
||
|
assert_array_equal(y_pred, y_expected)
|
||
|
assert_array_equal(y_pred_proba, y_proba_expected)
|
||
|
|
||
|
|
||
|
def test_dummy_regressor_return_std():
|
||
|
X = [[0]] * 3 # ignored
|
||
|
y = np.array([2, 2, 2])
|
||
|
y_std_expected = np.array([0, 0, 0])
|
||
|
cls = DummyRegressor()
|
||
|
cls.fit(X, y)
|
||
|
y_pred_list = cls.predict(X, return_std=True)
|
||
|
# there should be two elements when return_std is True
|
||
|
assert len(y_pred_list) == 2
|
||
|
# the second element should be all zeros
|
||
|
assert_array_equal(y_pred_list[1], y_std_expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"y,y_test",
|
||
|
[
|
||
|
([1, 1, 1, 2], [1.25] * 4),
|
||
|
(np.array([[2, 2], [1, 1], [1, 1], [1, 1]]), [[1.25, 1.25]] * 4),
|
||
|
],
|
||
|
)
|
||
|
def test_regressor_score_with_None(y, y_test):
|
||
|
reg = DummyRegressor()
|
||
|
reg.fit(None, y)
|
||
|
assert reg.score(None, y_test) == 1.0
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("strategy", ["mean", "median", "quantile", "constant"])
|
||
|
def test_regressor_prediction_independent_of_X(strategy):
|
||
|
y = [0, 2, 1, 1]
|
||
|
X1 = [[0]] * 4
|
||
|
reg1 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7)
|
||
|
reg1.fit(X1, y)
|
||
|
predictions1 = reg1.predict(X1)
|
||
|
|
||
|
X2 = [[1]] * 4
|
||
|
reg2 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7)
|
||
|
reg2.fit(X2, y)
|
||
|
predictions2 = reg2.predict(X2)
|
||
|
|
||
|
assert_array_equal(predictions1, predictions2)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"strategy", ["stratified", "most_frequent", "prior", "uniform", "constant"]
|
||
|
)
|
||
|
def test_dtype_of_classifier_probas(strategy):
|
||
|
y = [0, 2, 1, 1]
|
||
|
X = np.zeros(4)
|
||
|
model = DummyClassifier(strategy=strategy, random_state=0, constant=0)
|
||
|
probas = model.fit(X, y).predict_proba(X)
|
||
|
|
||
|
assert probas.dtype == np.float64
|