Inzynierka/Lib/site-packages/pandas/_libs/missing.pyx

514 lines
14 KiB
Cython
Raw Normal View History

2023-06-02 12:51:02 +02:00
from decimal import Decimal
import numbers
from sys import maxsize
cimport cython
from cpython.datetime cimport (
date,
time,
timedelta,
)
from cython cimport Py_ssize_t
import numpy as np
cimport numpy as cnp
from numpy cimport (
flatiter,
float64_t,
int64_t,
ndarray,
uint8_t,
)
cnp.import_array()
from pandas._libs cimport util
from pandas._libs.tslibs.nattype cimport (
c_NaT as NaT,
checknull_with_nat,
is_dt64nat,
is_td64nat,
)
from pandas._libs.tslibs.np_datetime cimport (
get_datetime64_unit,
get_datetime64_value,
get_timedelta64_value,
)
from pandas._libs.ops_dispatch import maybe_dispatch_ufunc_to_dunder_op
cdef:
float64_t INF = <float64_t>np.inf
float64_t NEGINF = -INF
int64_t NPY_NAT = util.get_nat()
bint is_32bit = maxsize <= 2 ** 32
type cDecimal = Decimal # for faster isinstance checks
cpdef bint check_na_tuples_nonequal(object left, object right):
"""
When we have NA in one of the tuples but not the other we have to check here,
because our regular checks fail before with ambigous boolean value.
Parameters
----------
left: Any
right: Any
Returns
-------
True if we are dealing with tuples that have NA on one side and non NA on
the other side.
"""
if not isinstance(left, tuple) or not isinstance(right, tuple):
return False
if len(left) != len(right):
return False
for left_element, right_element in zip(left, right):
if left_element is C_NA and right_element is not C_NA:
return True
elif right_element is C_NA and left_element is not C_NA:
return True
return False
cpdef bint is_matching_na(object left, object right, bint nan_matches_none=False):
"""
Check if two scalars are both NA of matching types.
Parameters
----------
left : Any
right : Any
nan_matches_none : bool, default False
For backwards compatibility, consider NaN as matching None.
Returns
-------
bool
"""
if left is None:
if nan_matches_none and util.is_nan(right):
return True
return right is None
elif left is C_NA:
return right is C_NA
elif left is NaT:
return right is NaT
elif util.is_float_object(left):
if nan_matches_none and right is None and util.is_nan(left):
return True
return (
util.is_nan(left)
and util.is_float_object(right)
and util.is_nan(right)
)
elif util.is_complex_object(left):
return (
util.is_nan(left)
and util.is_complex_object(right)
and util.is_nan(right)
)
elif util.is_datetime64_object(left):
return (
get_datetime64_value(left) == NPY_NAT
and util.is_datetime64_object(right)
and get_datetime64_value(right) == NPY_NAT
and get_datetime64_unit(left) == get_datetime64_unit(right)
)
elif util.is_timedelta64_object(left):
return (
get_timedelta64_value(left) == NPY_NAT
and util.is_timedelta64_object(right)
and get_timedelta64_value(right) == NPY_NAT
and get_datetime64_unit(left) == get_datetime64_unit(right)
)
elif is_decimal_na(left):
return is_decimal_na(right)
return False
cpdef bint checknull(object val, bint inf_as_na=False):
"""
Return boolean describing of the input is NA-like, defined here as any
of:
- None
- nan
- NaT
- np.datetime64 representation of NaT
- np.timedelta64 representation of NaT
- NA
- Decimal("NaN")
Parameters
----------
val : object
inf_as_na : bool, default False
Whether to treat INF and -INF as NA values.
Returns
-------
bool
"""
if val is None or val is NaT or val is C_NA:
return True
elif util.is_float_object(val) or util.is_complex_object(val):
if val != val:
return True
elif inf_as_na:
return val == INF or val == NEGINF
return False
elif util.is_timedelta64_object(val):
return get_timedelta64_value(val) == NPY_NAT
elif util.is_datetime64_object(val):
return get_datetime64_value(val) == NPY_NAT
else:
return is_decimal_na(val)
cdef bint is_decimal_na(object val):
"""
Is this a decimal.Decimal object Decimal("NAN").
"""
return isinstance(val, cDecimal) and val != val
@cython.wraparound(False)
@cython.boundscheck(False)
cpdef ndarray[uint8_t] isnaobj(ndarray arr, bint inf_as_na=False):
"""
Return boolean mask denoting which elements of a 1-D array are na-like,
according to the criteria defined in `checknull`:
- None
- nan
- NaT
- np.datetime64 representation of NaT
- np.timedelta64 representation of NaT
- NA
- Decimal("NaN")
Parameters
----------
arr : ndarray
Returns
-------
result : ndarray (dtype=np.bool_)
"""
cdef:
Py_ssize_t i, n = arr.size
object val
bint is_null
ndarray result = np.empty((<object>arr).shape, dtype=np.uint8)
flatiter it = cnp.PyArray_IterNew(arr)
flatiter it2 = cnp.PyArray_IterNew(result)
for i in range(n):
# The PyArray_GETITEM and PyArray_ITER_NEXT are faster
# equivalents to `val = values[i]`
val = cnp.PyArray_GETITEM(arr, cnp.PyArray_ITER_DATA(it))
cnp.PyArray_ITER_NEXT(it)
is_null = checknull(val, inf_as_na=inf_as_na)
# Dereference pointer (set value)
(<uint8_t *>(cnp.PyArray_ITER_DATA(it2)))[0] = <uint8_t>is_null
cnp.PyArray_ITER_NEXT(it2)
return result.view(np.bool_)
def isposinf_scalar(val: object) -> bool:
return util.is_float_object(val) and val == INF
def isneginf_scalar(val: object) -> bool:
return util.is_float_object(val) and val == NEGINF
cdef bint is_null_datetime64(v):
# determine if we have a null for a datetime (or integer versions),
# excluding np.timedelta64('nat')
if checknull_with_nat(v) or is_dt64nat(v):
return True
return False
cdef bint is_null_timedelta64(v):
# determine if we have a null for a timedelta (or integer versions),
# excluding np.datetime64('nat')
if checknull_with_nat(v) or is_td64nat(v):
return True
return False
cdef bint checknull_with_nat_and_na(object obj):
# See GH#32214
return checknull_with_nat(obj) or obj is C_NA
@cython.wraparound(False)
@cython.boundscheck(False)
def is_float_nan(values: ndarray) -> ndarray:
"""
True for elements which correspond to a float nan
Returns
-------
ndarray[bool]
"""
cdef:
ndarray[uint8_t] result
Py_ssize_t i, N
object val
N = len(values)
result = np.zeros(N, dtype=np.uint8)
for i in range(N):
val = values[i]
if util.is_nan(val):
result[i] = True
return result.view(bool)
@cython.wraparound(False)
@cython.boundscheck(False)
def is_numeric_na(values: ndarray) -> ndarray:
"""
Check for NA values consistent with IntegerArray/FloatingArray.
Similar to a vectorized is_valid_na_for_dtype restricted to numeric dtypes.
Returns
-------
ndarray[bool]
"""
cdef:
ndarray[uint8_t] result
Py_ssize_t i, N
object val
N = len(values)
result = np.zeros(N, dtype=np.uint8)
for i in range(N):
val = values[i]
if checknull(val):
if val is None or val is C_NA or util.is_nan(val) or is_decimal_na(val):
result[i] = True
else:
raise TypeError(f"'values' contains non-numeric NA {val}")
return result.view(bool)
# -----------------------------------------------------------------------------
# Implementation of NA singleton
def _create_binary_propagating_op(name, is_divmod=False):
is_cmp = name.strip("_") in ["eq", "ne", "le", "lt", "ge", "gt"]
def method(self, other):
if (other is C_NA or isinstance(other, (str, bytes))
or isinstance(other, (numbers.Number, np.bool_))
or util.is_array(other) and not other.shape):
# Need the other.shape clause to handle NumPy scalars,
# since we do a setitem on `out` below, which
# won't work for NumPy scalars.
if is_divmod:
return NA, NA
else:
return NA
elif util.is_array(other):
out = np.empty(other.shape, dtype=object)
out[:] = NA
if is_divmod:
return out, out.copy()
else:
return out
elif is_cmp and isinstance(other, (date, time, timedelta)):
return NA
return NotImplemented
method.__name__ = name
return method
def _create_unary_propagating_op(name: str):
def method(self):
return NA
method.__name__ = name
return method
cdef class C_NAType:
pass
class NAType(C_NAType):
"""
NA ("not available") missing value indicator.
.. warning::
Experimental: the behaviour of NA can still change without warning.
The NA singleton is a missing value indicator defined by pandas. It is
used in certain new extension dtypes (currently the "string" dtype).
"""
_instance = None
def __new__(cls, *args, **kwargs):
if NAType._instance is None:
NAType._instance = C_NAType.__new__(cls, *args, **kwargs)
return NAType._instance
def __repr__(self) -> str:
return "<NA>"
def __format__(self, format_spec) -> str:
try:
return self.__repr__().__format__(format_spec)
except ValueError:
return self.__repr__()
def __bool__(self):
raise TypeError("boolean value of NA is ambiguous")
def __hash__(self):
# GH 30013: Ensure hash is large enough to avoid hash collisions with integers
exponent = 31 if is_32bit else 61
return 2 ** exponent - 1
def __reduce__(self):
return "NA"
# Binary arithmetic and comparison ops -> propagate
__add__ = _create_binary_propagating_op("__add__")
__radd__ = _create_binary_propagating_op("__radd__")
__sub__ = _create_binary_propagating_op("__sub__")
__rsub__ = _create_binary_propagating_op("__rsub__")
__mul__ = _create_binary_propagating_op("__mul__")
__rmul__ = _create_binary_propagating_op("__rmul__")
__matmul__ = _create_binary_propagating_op("__matmul__")
__rmatmul__ = _create_binary_propagating_op("__rmatmul__")
__truediv__ = _create_binary_propagating_op("__truediv__")
__rtruediv__ = _create_binary_propagating_op("__rtruediv__")
__floordiv__ = _create_binary_propagating_op("__floordiv__")
__rfloordiv__ = _create_binary_propagating_op("__rfloordiv__")
__mod__ = _create_binary_propagating_op("__mod__")
__rmod__ = _create_binary_propagating_op("__rmod__")
__divmod__ = _create_binary_propagating_op("__divmod__", is_divmod=True)
__rdivmod__ = _create_binary_propagating_op("__rdivmod__", is_divmod=True)
# __lshift__ and __rshift__ are not implemented
__eq__ = _create_binary_propagating_op("__eq__")
__ne__ = _create_binary_propagating_op("__ne__")
__le__ = _create_binary_propagating_op("__le__")
__lt__ = _create_binary_propagating_op("__lt__")
__gt__ = _create_binary_propagating_op("__gt__")
__ge__ = _create_binary_propagating_op("__ge__")
# Unary ops
__neg__ = _create_unary_propagating_op("__neg__")
__pos__ = _create_unary_propagating_op("__pos__")
__abs__ = _create_unary_propagating_op("__abs__")
__invert__ = _create_unary_propagating_op("__invert__")
# pow has special
def __pow__(self, other):
if other is C_NA:
return NA
elif isinstance(other, (numbers.Number, np.bool_)):
if other == 0:
# returning positive is correct for +/- 0.
return type(other)(1)
else:
return NA
elif util.is_array(other):
return np.where(other == 0, other.dtype.type(1), NA)
return NotImplemented
def __rpow__(self, other):
if other is C_NA:
return NA
elif isinstance(other, (numbers.Number, np.bool_)):
if other == 1:
return other
else:
return NA
elif util.is_array(other):
return np.where(other == 1, other, NA)
return NotImplemented
# Logical ops using Kleene logic
def __and__(self, other):
if other is False:
return False
elif other is True or other is C_NA:
return NA
return NotImplemented
__rand__ = __and__
def __or__(self, other):
if other is True:
return True
elif other is False or other is C_NA:
return NA
return NotImplemented
__ror__ = __or__
def __xor__(self, other):
if other is False or other is True or other is C_NA:
return NA
return NotImplemented
__rxor__ = __xor__
__array_priority__ = 1000
_HANDLED_TYPES = (np.ndarray, numbers.Number, str, np.bool_)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
types = self._HANDLED_TYPES + (NAType,)
for x in inputs:
if not isinstance(x, types):
return NotImplemented
if method != "__call__":
raise ValueError(f"ufunc method '{method}' not supported for NA")
result = maybe_dispatch_ufunc_to_dunder_op(
self, ufunc, method, *inputs, **kwargs
)
if result is NotImplemented:
# For a NumPy ufunc that's not a binop, like np.logaddexp
index = [i for i, x in enumerate(inputs) if x is NA][0]
result = np.broadcast_arrays(*inputs)[index]
if result.ndim == 0:
result = result.item()
if ufunc.nout > 1:
result = (NA,) * ufunc.nout
return result
C_NA = NAType() # C-visible
NA = C_NA # Python-visible