39 lines
1.1 KiB
Python
39 lines
1.1 KiB
Python
|
from datetime import datetime
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._typing import npt
|
||
|
|
||
|
class DateParseError(ValueError): ...
|
||
|
|
||
|
def py_parse_datetime_string(
|
||
|
date_string: str,
|
||
|
dayfirst: bool = ...,
|
||
|
yearfirst: bool = ...,
|
||
|
) -> datetime: ...
|
||
|
def parse_datetime_string_with_reso(
|
||
|
date_string: str,
|
||
|
freq: str | None = ...,
|
||
|
dayfirst: bool | None = ...,
|
||
|
yearfirst: bool | None = ...,
|
||
|
) -> tuple[datetime, str]: ...
|
||
|
def _does_string_look_like_datetime(py_string: str) -> bool: ...
|
||
|
def quarter_to_myear(year: int, quarter: int, freq: str) -> tuple[int, int]: ...
|
||
|
def try_parse_dates(
|
||
|
values: npt.NDArray[np.object_], # object[:]
|
||
|
parser,
|
||
|
) -> npt.NDArray[np.object_]: ...
|
||
|
def try_parse_year_month_day(
|
||
|
years: npt.NDArray[np.object_], # object[:]
|
||
|
months: npt.NDArray[np.object_], # object[:]
|
||
|
days: npt.NDArray[np.object_], # object[:]
|
||
|
) -> npt.NDArray[np.object_]: ...
|
||
|
def guess_datetime_format(
|
||
|
dt_str,
|
||
|
dayfirst: bool | None = ...,
|
||
|
) -> str | None: ...
|
||
|
def concat_date_cols(
|
||
|
date_cols: tuple,
|
||
|
) -> npt.NDArray[np.object_]: ...
|
||
|
def get_rule_month(source: str) -> str: ...
|