Inzynierka/Lib/site-packages/pandas/core/indexes/range.py

1038 lines
35 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from __future__ import annotations
from datetime import timedelta
import operator
from sys import getsizeof
from typing import (
Any,
Callable,
Hashable,
Iterator,
List,
cast,
)
import numpy as np
from pandas._libs import (
index as libindex,
lib,
)
from pandas._libs.algos import unique_deltas
from pandas._libs.lib import no_default
from pandas._typing import (
Dtype,
npt,
)
from pandas.compat.numpy import function as nv
from pandas.util._decorators import (
cache_readonly,
doc,
)
from pandas.core.dtypes.common import (
ensure_platform_int,
ensure_python_int,
is_float,
is_integer,
is_scalar,
is_signed_integer_dtype,
is_timedelta64_dtype,
)
from pandas.core.dtypes.generic import ABCTimedeltaIndex
from pandas.core import ops
import pandas.core.common as com
from pandas.core.construction import extract_array
import pandas.core.indexes.base as ibase
from pandas.core.indexes.base import (
Index,
maybe_extract_name,
)
from pandas.core.ops.common import unpack_zerodim_and_defer
_empty_range = range(0)
class RangeIndex(Index):
"""
Immutable Index implementing a monotonic integer range.
RangeIndex is a memory-saving special case of an Index limited to representing
monotonic ranges with a 64-bit dtype. Using RangeIndex may in some instances
improve computing speed.
This is the default index type used
by DataFrame and Series when no explicit index is provided by the user.
Parameters
----------
start : int (default: 0), range, or other RangeIndex instance
If int and "stop" is not given, interpreted as "stop" instead.
stop : int (default: 0)
step : int (default: 1)
dtype : np.int64
Unused, accepted for homogeneity with other index types.
copy : bool, default False
Unused, accepted for homogeneity with other index types.
name : object, optional
Name to be stored in the index.
Attributes
----------
start
stop
step
Methods
-------
from_range
See Also
--------
Index : The base pandas Index type.
"""
_typ = "rangeindex"
_dtype_validation_metadata = (is_signed_integer_dtype, "signed integer")
_range: range
_values: np.ndarray
@property
def _engine_type(self) -> type[libindex.Int64Engine]:
return libindex.Int64Engine
# --------------------------------------------------------------------
# Constructors
def __new__(
cls,
start=None,
stop=None,
step=None,
dtype: Dtype | None = None,
copy: bool = False,
name: Hashable = None,
) -> RangeIndex:
cls._validate_dtype(dtype)
name = maybe_extract_name(name, start, cls)
# RangeIndex
if isinstance(start, RangeIndex):
return start.copy(name=name)
elif isinstance(start, range):
return cls._simple_new(start, name=name)
# validate the arguments
if com.all_none(start, stop, step):
raise TypeError("RangeIndex(...) must be called with integers")
start = ensure_python_int(start) if start is not None else 0
if stop is None:
start, stop = 0, start
else:
stop = ensure_python_int(stop)
step = ensure_python_int(step) if step is not None else 1
if step == 0:
raise ValueError("Step must not be zero")
rng = range(start, stop, step)
return cls._simple_new(rng, name=name)
@classmethod
def from_range(
cls, data: range, name=None, dtype: Dtype | None = None
) -> RangeIndex:
"""
Create RangeIndex from a range object.
Returns
-------
RangeIndex
"""
if not isinstance(data, range):
raise TypeError(
f"{cls.__name__}(...) must be called with object coercible to a "
f"range, {repr(data)} was passed"
)
cls._validate_dtype(dtype)
return cls._simple_new(data, name=name)
# error: Argument 1 of "_simple_new" is incompatible with supertype "Index";
# supertype defines the argument type as
# "Union[ExtensionArray, ndarray[Any, Any]]" [override]
@classmethod
def _simple_new( # type: ignore[override]
cls, values: range, name: Hashable = None
) -> RangeIndex:
result = object.__new__(cls)
assert isinstance(values, range)
result._range = values
result._name = name
result._cache = {}
result._reset_identity()
result._references = None
return result
@classmethod
def _validate_dtype(cls, dtype: Dtype | None) -> None:
if dtype is None:
return
validation_func, expected = cls._dtype_validation_metadata
if not validation_func(dtype):
raise ValueError(
f"Incorrect `dtype` passed: expected {expected}, received {dtype}"
)
# --------------------------------------------------------------------
# error: Return type "Type[Index]" of "_constructor" incompatible with return
# type "Type[RangeIndex]" in supertype "Index"
@cache_readonly
def _constructor(self) -> type[Index]: # type: ignore[override]
"""return the class to use for construction"""
return Index
# error: Signature of "_data" incompatible with supertype "Index"
@cache_readonly
def _data(self) -> np.ndarray: # type: ignore[override]
"""
An int array that for performance reasons is created only when needed.
The constructed array is saved in ``_cache``.
"""
return np.arange(self.start, self.stop, self.step, dtype=np.int64)
def _get_data_as_items(self):
"""return a list of tuples of start, stop, step"""
rng = self._range
return [("start", rng.start), ("stop", rng.stop), ("step", rng.step)]
def __reduce__(self):
d = {"name": self.name}
d.update(dict(self._get_data_as_items()))
return ibase._new_Index, (type(self), d), None
# --------------------------------------------------------------------
# Rendering Methods
def _format_attrs(self):
"""
Return a list of tuples of the (attr, formatted_value)
"""
attrs = self._get_data_as_items()
if self.name is not None:
attrs.append(("name", ibase.default_pprint(self.name)))
return attrs
def _format_data(self, name=None):
# we are formatting thru the attributes
return None
def _format_with_header(self, header: list[str], na_rep: str) -> list[str]:
# Equivalent to Index implementation, but faster
if not len(self._range):
return header
first_val_str = str(self._range[0])
last_val_str = str(self._range[-1])
max_length = max(len(first_val_str), len(last_val_str))
return header + [f"{x:<{max_length}}" for x in self._range]
# --------------------------------------------------------------------
@property
def start(self) -> int:
"""
The value of the `start` parameter (``0`` if this was not supplied).
"""
# GH 25710
return self._range.start
@property
def stop(self) -> int:
"""
The value of the `stop` parameter.
"""
return self._range.stop
@property
def step(self) -> int:
"""
The value of the `step` parameter (``1`` if this was not supplied).
"""
# GH 25710
return self._range.step
@cache_readonly
def nbytes(self) -> int:
"""
Return the number of bytes in the underlying data.
"""
rng = self._range
return getsizeof(rng) + sum(
getsizeof(getattr(rng, attr_name))
for attr_name in ["start", "stop", "step"]
)
def memory_usage(self, deep: bool = False) -> int:
"""
Memory usage of my values
Parameters
----------
deep : bool
Introspect the data deeply, interrogate
`object` dtypes for system-level memory consumption
Returns
-------
bytes used
Notes
-----
Memory usage does not include memory consumed by elements that
are not components of the array if deep=False
See Also
--------
numpy.ndarray.nbytes
"""
return self.nbytes
@property
def dtype(self) -> np.dtype:
return np.dtype(np.int64)
@property
def is_unique(self) -> bool:
"""return if the index has unique values"""
return True
@cache_readonly
def is_monotonic_increasing(self) -> bool:
return self._range.step > 0 or len(self) <= 1
@cache_readonly
def is_monotonic_decreasing(self) -> bool:
return self._range.step < 0 or len(self) <= 1
def __contains__(self, key: Any) -> bool:
hash(key)
try:
key = ensure_python_int(key)
except TypeError:
return False
return key in self._range
@property
def inferred_type(self) -> str:
return "integer"
# --------------------------------------------------------------------
# Indexing Methods
@doc(Index.get_loc)
def get_loc(self, key):
if is_integer(key) or (is_float(key) and key.is_integer()):
new_key = int(key)
try:
return self._range.index(new_key)
except ValueError as err:
raise KeyError(key) from err
if isinstance(key, Hashable):
raise KeyError(key)
self._check_indexing_error(key)
raise KeyError(key)
def _get_indexer(
self,
target: Index,
method: str | None = None,
limit: int | None = None,
tolerance=None,
) -> npt.NDArray[np.intp]:
if com.any_not_none(method, tolerance, limit):
return super()._get_indexer(
target, method=method, tolerance=tolerance, limit=limit
)
if self.step > 0:
start, stop, step = self.start, self.stop, self.step
else:
# GH 28678: work on reversed range for simplicity
reverse = self._range[::-1]
start, stop, step = reverse.start, reverse.stop, reverse.step
target_array = np.asarray(target)
locs = target_array - start
valid = (locs % step == 0) & (locs >= 0) & (target_array < stop)
locs[~valid] = -1
locs[valid] = locs[valid] / step
if step != self.step:
# We reversed this range: transform to original locs
locs[valid] = len(self) - 1 - locs[valid]
return ensure_platform_int(locs)
@cache_readonly
def _should_fallback_to_positional(self) -> bool:
"""
Should an integer key be treated as positional?
"""
return False
# --------------------------------------------------------------------
def tolist(self) -> list[int]:
return list(self._range)
@doc(Index.__iter__)
def __iter__(self) -> Iterator[int]:
yield from self._range
@doc(Index._shallow_copy)
def _shallow_copy(self, values, name: Hashable = no_default):
name = self.name if name is no_default else name
if values.dtype.kind == "f":
return Index(values, name=name, dtype=np.float64)
# GH 46675 & 43885: If values is equally spaced, return a
# more memory-compact RangeIndex instead of Index with 64-bit dtype
unique_diffs = unique_deltas(values)
if len(unique_diffs) == 1 and unique_diffs[0] != 0:
diff = unique_diffs[0]
new_range = range(values[0], values[-1] + diff, diff)
return type(self)._simple_new(new_range, name=name)
else:
return self._constructor._simple_new(values, name=name)
def _view(self: RangeIndex) -> RangeIndex:
result = type(self)._simple_new(self._range, name=self._name)
result._cache = self._cache
return result
@doc(Index.copy)
def copy(self, name: Hashable = None, deep: bool = False):
name = self._validate_names(name=name, deep=deep)[0]
new_index = self._rename(name=name)
return new_index
def _minmax(self, meth: str):
no_steps = len(self) - 1
if no_steps == -1:
return np.nan
elif (meth == "min" and self.step > 0) or (meth == "max" and self.step < 0):
return self.start
return self.start + self.step * no_steps
def min(self, axis=None, skipna: bool = True, *args, **kwargs) -> int:
"""The minimum value of the RangeIndex"""
nv.validate_minmax_axis(axis)
nv.validate_min(args, kwargs)
return self._minmax("min")
def max(self, axis=None, skipna: bool = True, *args, **kwargs) -> int:
"""The maximum value of the RangeIndex"""
nv.validate_minmax_axis(axis)
nv.validate_max(args, kwargs)
return self._minmax("max")
def argsort(self, *args, **kwargs) -> npt.NDArray[np.intp]:
"""
Returns the indices that would sort the index and its
underlying data.
Returns
-------
np.ndarray[np.intp]
See Also
--------
numpy.ndarray.argsort
"""
ascending = kwargs.pop("ascending", True) # EA compat
kwargs.pop("kind", None) # e.g. "mergesort" is irrelevant
nv.validate_argsort(args, kwargs)
if self._range.step > 0:
result = np.arange(len(self), dtype=np.intp)
else:
result = np.arange(len(self) - 1, -1, -1, dtype=np.intp)
if not ascending:
result = result[::-1]
return result
def factorize(
self,
sort: bool = False,
use_na_sentinel: bool = True,
) -> tuple[npt.NDArray[np.intp], RangeIndex]:
codes = np.arange(len(self), dtype=np.intp)
uniques = self
if sort and self.step < 0:
codes = codes[::-1]
uniques = uniques[::-1]
return codes, uniques
def equals(self, other: object) -> bool:
"""
Determines if two Index objects contain the same elements.
"""
if isinstance(other, RangeIndex):
return self._range == other._range
return super().equals(other)
def sort_values(
self,
return_indexer: bool = False,
ascending: bool = True,
na_position: str = "last",
key: Callable | None = None,
):
if key is not None:
return super().sort_values(
return_indexer=return_indexer,
ascending=ascending,
na_position=na_position,
key=key,
)
else:
sorted_index = self
inverse_indexer = False
if ascending:
if self.step < 0:
sorted_index = self[::-1]
inverse_indexer = True
else:
if self.step > 0:
sorted_index = self[::-1]
inverse_indexer = True
if return_indexer:
if inverse_indexer:
rng = range(len(self) - 1, -1, -1)
else:
rng = range(len(self))
return sorted_index, RangeIndex(rng)
else:
return sorted_index
# --------------------------------------------------------------------
# Set Operations
def _intersection(self, other: Index, sort: bool = False):
# caller is responsible for checking self and other are both non-empty
if not isinstance(other, RangeIndex):
return super()._intersection(other, sort=sort)
first = self._range[::-1] if self.step < 0 else self._range
second = other._range[::-1] if other.step < 0 else other._range
# check whether intervals intersect
# deals with in- and decreasing ranges
int_low = max(first.start, second.start)
int_high = min(first.stop, second.stop)
if int_high <= int_low:
return self._simple_new(_empty_range)
# Method hint: linear Diophantine equation
# solve intersection problem
# performance hint: for identical step sizes, could use
# cheaper alternative
gcd, s, _ = self._extended_gcd(first.step, second.step)
# check whether element sets intersect
if (first.start - second.start) % gcd:
return self._simple_new(_empty_range)
# calculate parameters for the RangeIndex describing the
# intersection disregarding the lower bounds
tmp_start = first.start + (second.start - first.start) * first.step // gcd * s
new_step = first.step * second.step // gcd
new_range = range(tmp_start, int_high, new_step)
new_index = self._simple_new(new_range)
# adjust index to limiting interval
new_start = new_index._min_fitting_element(int_low)
new_range = range(new_start, new_index.stop, new_index.step)
new_index = self._simple_new(new_range)
if (self.step < 0 and other.step < 0) is not (new_index.step < 0):
new_index = new_index[::-1]
if sort is None:
new_index = new_index.sort_values()
return new_index
def _min_fitting_element(self, lower_limit: int) -> int:
"""Returns the smallest element greater than or equal to the limit"""
no_steps = -(-(lower_limit - self.start) // abs(self.step))
return self.start + abs(self.step) * no_steps
def _extended_gcd(self, a: int, b: int) -> tuple[int, int, int]:
"""
Extended Euclidean algorithms to solve Bezout's identity:
a*x + b*y = gcd(x, y)
Finds one particular solution for x, y: s, t
Returns: gcd, s, t
"""
s, old_s = 0, 1
t, old_t = 1, 0
r, old_r = b, a
while r:
quotient = old_r // r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
old_t, t = t, old_t - quotient * t
return old_r, old_s, old_t
def _range_in_self(self, other: range) -> bool:
"""Check if other range is contained in self"""
# https://stackoverflow.com/a/32481015
if not other:
return True
if not self._range:
return False
if len(other) > 1 and other.step % self._range.step:
return False
return other.start in self._range and other[-1] in self._range
def _union(self, other: Index, sort):
"""
Form the union of two Index objects and sorts if possible
Parameters
----------
other : Index or array-like
sort : False or None, default None
Whether to sort (monotonically increasing) the resulting index.
``sort=None`` returns a ``RangeIndex`` if possible or a sorted
``Index`` with a int64 dtype if not.
``sort=False`` can return a ``RangeIndex`` if self is monotonically
increasing and other is fully contained in self. Otherwise, returns
an unsorted ``Index`` with an int64 dtype.
Returns
-------
union : Index
"""
if isinstance(other, RangeIndex):
if sort is None or (
sort is False and self.step > 0 and self._range_in_self(other._range)
):
# GH 47557: Can still return a RangeIndex
# if other range in self and sort=False
start_s, step_s = self.start, self.step
end_s = self.start + self.step * (len(self) - 1)
start_o, step_o = other.start, other.step
end_o = other.start + other.step * (len(other) - 1)
if self.step < 0:
start_s, step_s, end_s = end_s, -step_s, start_s
if other.step < 0:
start_o, step_o, end_o = end_o, -step_o, start_o
if len(self) == 1 and len(other) == 1:
step_s = step_o = abs(self.start - other.start)
elif len(self) == 1:
step_s = step_o
elif len(other) == 1:
step_o = step_s
start_r = min(start_s, start_o)
end_r = max(end_s, end_o)
if step_o == step_s:
if (
(start_s - start_o) % step_s == 0
and (start_s - end_o) <= step_s
and (start_o - end_s) <= step_s
):
return type(self)(start_r, end_r + step_s, step_s)
if (
(step_s % 2 == 0)
and (abs(start_s - start_o) == step_s / 2)
and (abs(end_s - end_o) == step_s / 2)
):
# e.g. range(0, 10, 2) and range(1, 11, 2)
# but not range(0, 20, 4) and range(1, 21, 4) GH#44019
return type(self)(start_r, end_r + step_s / 2, step_s / 2)
elif step_o % step_s == 0:
if (
(start_o - start_s) % step_s == 0
and (start_o + step_s >= start_s)
and (end_o - step_s <= end_s)
):
return type(self)(start_r, end_r + step_s, step_s)
elif step_s % step_o == 0:
if (
(start_s - start_o) % step_o == 0
and (start_s + step_o >= start_o)
and (end_s - step_o <= end_o)
):
return type(self)(start_r, end_r + step_o, step_o)
return super()._union(other, sort=sort)
def _difference(self, other, sort=None):
# optimized set operation if we have another RangeIndex
self._validate_sort_keyword(sort)
self._assert_can_do_setop(other)
other, result_name = self._convert_can_do_setop(other)
if not isinstance(other, RangeIndex):
return super()._difference(other, sort=sort)
if sort is not False and self.step < 0:
return self[::-1]._difference(other)
res_name = ops.get_op_result_name(self, other)
first = self._range[::-1] if self.step < 0 else self._range
overlap = self.intersection(other)
if overlap.step < 0:
overlap = overlap[::-1]
if len(overlap) == 0:
return self.rename(name=res_name)
if len(overlap) == len(self):
return self[:0].rename(res_name)
# overlap.step will always be a multiple of self.step (see _intersection)
if len(overlap) == 1:
if overlap[0] == self[0]:
return self[1:]
elif overlap[0] == self[-1]:
return self[:-1]
elif len(self) == 3 and overlap[0] == self[1]:
return self[::2]
else:
return super()._difference(other, sort=sort)
elif len(overlap) == 2 and overlap[0] == first[0] and overlap[-1] == first[-1]:
# e.g. range(-8, 20, 7) and range(13, -9, -3)
return self[1:-1]
if overlap.step == first.step:
if overlap[0] == first.start:
# The difference is everything after the intersection
new_rng = range(overlap[-1] + first.step, first.stop, first.step)
elif overlap[-1] == first[-1]:
# The difference is everything before the intersection
new_rng = range(first.start, overlap[0], first.step)
elif overlap._range == first[1:-1]:
# e.g. range(4) and range(1, 3)
step = len(first) - 1
new_rng = first[::step]
else:
# The difference is not range-like
# e.g. range(1, 10, 1) and range(3, 7, 1)
return super()._difference(other, sort=sort)
else:
# We must have len(self) > 1, bc we ruled out above
# len(overlap) == 0 and len(overlap) == len(self)
assert len(self) > 1
if overlap.step == first.step * 2:
if overlap[0] == first[0] and overlap[-1] in (first[-1], first[-2]):
# e.g. range(1, 10, 1) and range(1, 10, 2)
new_rng = first[1::2]
elif overlap[0] == first[1] and overlap[-1] in (first[-1], first[-2]):
# e.g. range(1, 10, 1) and range(2, 10, 2)
new_rng = first[::2]
else:
# We can get here with e.g. range(20) and range(0, 10, 2)
return super()._difference(other, sort=sort)
else:
# e.g. range(10) and range(0, 10, 3)
return super()._difference(other, sort=sort)
new_index = type(self)._simple_new(new_rng, name=res_name)
if first is not self._range:
new_index = new_index[::-1]
return new_index
def symmetric_difference(self, other, result_name: Hashable = None, sort=None):
if not isinstance(other, RangeIndex) or sort is not None:
return super().symmetric_difference(other, result_name, sort)
left = self.difference(other)
right = other.difference(self)
result = left.union(right)
if result_name is not None:
result = result.rename(result_name)
return result
# --------------------------------------------------------------------
# error: Return type "Index" of "delete" incompatible with return type
# "RangeIndex" in supertype "Index"
def delete(self, loc) -> Index: # type: ignore[override]
# In some cases we can retain RangeIndex, see also
# DatetimeTimedeltaMixin._get_delete_Freq
if is_integer(loc):
if loc in (0, -len(self)):
return self[1:]
if loc in (-1, len(self) - 1):
return self[:-1]
if len(self) == 3 and loc in (1, -2):
return self[::2]
elif lib.is_list_like(loc):
slc = lib.maybe_indices_to_slice(np.asarray(loc, dtype=np.intp), len(self))
if isinstance(slc, slice):
# defer to RangeIndex._difference, which is optimized to return
# a RangeIndex whenever possible
other = self[slc]
return self.difference(other, sort=False)
return super().delete(loc)
def insert(self, loc: int, item) -> Index:
if len(self) and (is_integer(item) or is_float(item)):
# We can retain RangeIndex is inserting at the beginning or end,
# or right in the middle.
rng = self._range
if loc == 0 and item == self[0] - self.step:
new_rng = range(rng.start - rng.step, rng.stop, rng.step)
return type(self)._simple_new(new_rng, name=self.name)
elif loc == len(self) and item == self[-1] + self.step:
new_rng = range(rng.start, rng.stop + rng.step, rng.step)
return type(self)._simple_new(new_rng, name=self.name)
elif len(self) == 2 and item == self[0] + self.step / 2:
# e.g. inserting 1 into [0, 2]
step = int(self.step / 2)
new_rng = range(self.start, self.stop, step)
return type(self)._simple_new(new_rng, name=self.name)
return super().insert(loc, item)
def _concat(self, indexes: list[Index], name: Hashable) -> Index:
"""
Overriding parent method for the case of all RangeIndex instances.
When all members of "indexes" are of type RangeIndex: result will be
RangeIndex if possible, Index with a int64 dtype otherwise. E.g.:
indexes = [RangeIndex(3), RangeIndex(3, 6)] -> RangeIndex(6)
indexes = [RangeIndex(3), RangeIndex(4, 6)] -> Index([0,1,2,4,5], dtype='int64')
"""
if not all(isinstance(x, RangeIndex) for x in indexes):
return super()._concat(indexes, name)
elif len(indexes) == 1:
return indexes[0]
rng_indexes = cast(List[RangeIndex], indexes)
start = step = next_ = None
# Filter the empty indexes
non_empty_indexes = [obj for obj in rng_indexes if len(obj)]
for obj in non_empty_indexes:
rng = obj._range
if start is None:
# This is set by the first non-empty index
start = rng.start
if step is None and len(rng) > 1:
step = rng.step
elif step is None:
# First non-empty index had only one element
if rng.start == start:
values = np.concatenate([x._values for x in rng_indexes])
result = self._constructor(values)
return result.rename(name)
step = rng.start - start
non_consecutive = (step != rng.step and len(rng) > 1) or (
next_ is not None and rng.start != next_
)
if non_consecutive:
result = self._constructor(
np.concatenate([x._values for x in rng_indexes])
)
return result.rename(name)
if step is not None:
next_ = rng[-1] + step
if non_empty_indexes:
# Get the stop value from "next" or alternatively
# from the last non-empty index
stop = non_empty_indexes[-1].stop if next_ is None else next_
return RangeIndex(start, stop, step).rename(name)
# Here all "indexes" had 0 length, i.e. were empty.
# In this case return an empty range index.
return RangeIndex(0, 0).rename(name)
def __len__(self) -> int:
"""
return the length of the RangeIndex
"""
return len(self._range)
@property
def size(self) -> int:
return len(self)
def __getitem__(self, key):
"""
Conserve RangeIndex type for scalar and slice keys.
"""
if isinstance(key, slice):
new_range = self._range[key]
return self._simple_new(new_range, name=self._name)
elif is_integer(key):
new_key = int(key)
try:
return self._range[new_key]
except IndexError as err:
raise IndexError(
f"index {key} is out of bounds for axis 0 with size {len(self)}"
) from err
elif is_scalar(key):
raise IndexError(
"only integers, slices (`:`), "
"ellipsis (`...`), numpy.newaxis (`None`) "
"and integer or boolean "
"arrays are valid indices"
)
return super().__getitem__(key)
def _getitem_slice(self: RangeIndex, slobj: slice) -> RangeIndex:
"""
Fastpath for __getitem__ when we know we have a slice.
"""
res = self._range[slobj]
return type(self)._simple_new(res, name=self._name)
@unpack_zerodim_and_defer("__floordiv__")
def __floordiv__(self, other):
if is_integer(other) and other != 0:
if len(self) == 0 or self.start % other == 0 and self.step % other == 0:
start = self.start // other
step = self.step // other
stop = start + len(self) * step
new_range = range(start, stop, step or 1)
return self._simple_new(new_range, name=self.name)
if len(self) == 1:
start = self.start // other
new_range = range(start, start + 1, 1)
return self._simple_new(new_range, name=self.name)
return super().__floordiv__(other)
# --------------------------------------------------------------------
# Reductions
def all(self, *args, **kwargs) -> bool:
return 0 not in self._range
def any(self, *args, **kwargs) -> bool:
return any(self._range)
# --------------------------------------------------------------------
def _cmp_method(self, other, op):
if isinstance(other, RangeIndex) and self._range == other._range:
# Both are immutable so if ._range attr. are equal, shortcut is possible
return super()._cmp_method(self, op)
return super()._cmp_method(other, op)
def _arith_method(self, other, op):
"""
Parameters
----------
other : Any
op : callable that accepts 2 params
perform the binary op
"""
if isinstance(other, ABCTimedeltaIndex):
# Defer to TimedeltaIndex implementation
return NotImplemented
elif isinstance(other, (timedelta, np.timedelta64)):
# GH#19333 is_integer evaluated True on timedelta64,
# so we need to catch these explicitly
return super()._arith_method(other, op)
elif is_timedelta64_dtype(other):
# Must be an np.ndarray; GH#22390
return super()._arith_method(other, op)
if op in [
operator.pow,
ops.rpow,
operator.mod,
ops.rmod,
operator.floordiv,
ops.rfloordiv,
divmod,
ops.rdivmod,
]:
return super()._arith_method(other, op)
step: Callable | None = None
if op in [operator.mul, ops.rmul, operator.truediv, ops.rtruediv]:
step = op
# TODO: if other is a RangeIndex we may have more efficient options
right = extract_array(other, extract_numpy=True, extract_range=True)
left = self
try:
# apply if we have an override
if step:
with np.errstate(all="ignore"):
rstep = step(left.step, right)
# we don't have a representable op
# so return a base index
if not is_integer(rstep) or not rstep:
raise ValueError
else:
rstep = left.step
with np.errstate(all="ignore"):
rstart = op(left.start, right)
rstop = op(left.stop, right)
res_name = ops.get_op_result_name(self, other)
result = type(self)(rstart, rstop, rstep, name=res_name)
# for compat with numpy / Index with int64 dtype
# even if we can represent as a RangeIndex, return
# as a float64 Index if we have float-like descriptors
if not all(is_integer(x) for x in [rstart, rstop, rstep]):
result = result.astype("float64")
return result
except (ValueError, TypeError, ZeroDivisionError):
# test_arithmetic_explicit_conversions
return super()._arith_method(other, op)