Inzynierka/Lib/site-packages/pandas/core/reshape/pivot.py

886 lines
28 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Callable,
Hashable,
Sequence,
cast,
)
import numpy as np
from pandas._libs import lib
from pandas._typing import (
AggFuncType,
AggFuncTypeBase,
AggFuncTypeDict,
IndexLabel,
)
from pandas.util._decorators import (
Appender,
Substitution,
)
from pandas.core.dtypes.cast import maybe_downcast_to_dtype
from pandas.core.dtypes.common import (
is_extension_array_dtype,
is_integer_dtype,
is_list_like,
is_nested_list_like,
is_scalar,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCSeries,
)
import pandas.core.common as com
from pandas.core.frame import _shared_docs
from pandas.core.groupby import Grouper
from pandas.core.indexes.api import (
Index,
MultiIndex,
get_objs_combined_axis,
)
from pandas.core.reshape.concat import concat
from pandas.core.reshape.util import cartesian_product
from pandas.core.series import Series
if TYPE_CHECKING:
from pandas import DataFrame
# Note: We need to make sure `frame` is imported before `pivot`, otherwise
# _shared_docs['pivot_table'] will not yet exist. TODO: Fix this dependency
@Substitution("\ndata : DataFrame")
@Appender(_shared_docs["pivot_table"], indents=1)
def pivot_table(
data: DataFrame,
values=None,
index=None,
columns=None,
aggfunc: AggFuncType = "mean",
fill_value=None,
margins: bool = False,
dropna: bool = True,
margins_name: Hashable = "All",
observed: bool = False,
sort: bool = True,
) -> DataFrame:
index = _convert_by(index)
columns = _convert_by(columns)
if isinstance(aggfunc, list):
pieces: list[DataFrame] = []
keys = []
for func in aggfunc:
_table = __internal_pivot_table(
data,
values=values,
index=index,
columns=columns,
fill_value=fill_value,
aggfunc=func,
margins=margins,
dropna=dropna,
margins_name=margins_name,
observed=observed,
sort=sort,
)
pieces.append(_table)
keys.append(getattr(func, "__name__", func))
table = concat(pieces, keys=keys, axis=1)
return table.__finalize__(data, method="pivot_table")
table = __internal_pivot_table(
data,
values,
index,
columns,
aggfunc,
fill_value,
margins,
dropna,
margins_name,
observed,
sort,
)
return table.__finalize__(data, method="pivot_table")
def __internal_pivot_table(
data: DataFrame,
values,
index,
columns,
aggfunc: AggFuncTypeBase | AggFuncTypeDict,
fill_value,
margins: bool,
dropna: bool,
margins_name: Hashable,
observed: bool,
sort: bool,
) -> DataFrame:
"""
Helper of :func:`pandas.pivot_table` for any non-list ``aggfunc``.
"""
keys = index + columns
values_passed = values is not None
if values_passed:
if is_list_like(values):
values_multi = True
values = list(values)
else:
values_multi = False
values = [values]
# GH14938 Make sure value labels are in data
for i in values:
if i not in data:
raise KeyError(i)
to_filter = []
for x in keys + values:
if isinstance(x, Grouper):
x = x.key
try:
if x in data:
to_filter.append(x)
except TypeError:
pass
if len(to_filter) < len(data.columns):
data = data[to_filter]
else:
values = data.columns
for key in keys:
try:
values = values.drop(key)
except (TypeError, ValueError, KeyError):
pass
values = list(values)
grouped = data.groupby(keys, observed=observed, sort=sort)
agged = grouped.agg(aggfunc)
if dropna and isinstance(agged, ABCDataFrame) and len(agged.columns):
agged = agged.dropna(how="all")
# gh-21133
# we want to down cast if
# the original values are ints
# as we grouped with a NaN value
# and then dropped, coercing to floats
for v in values:
if (
v in data
and is_integer_dtype(data[v])
and v in agged
and not is_integer_dtype(agged[v])
):
if not isinstance(agged[v], ABCDataFrame) and isinstance(
data[v].dtype, np.dtype
):
# exclude DataFrame case bc maybe_downcast_to_dtype expects
# ArrayLike
# e.g. test_pivot_table_multiindex_columns_doctest_case
# agged.columns is a MultiIndex and 'v' is indexing only
# on its first level.
agged[v] = maybe_downcast_to_dtype(agged[v], data[v].dtype)
table = agged
# GH17038, this check should only happen if index is defined (not None)
if table.index.nlevels > 1 and index:
# Related GH #17123
# If index_names are integers, determine whether the integers refer
# to the level position or name.
index_names = agged.index.names[: len(index)]
to_unstack = []
for i in range(len(index), len(keys)):
name = agged.index.names[i]
if name is None or name in index_names:
to_unstack.append(i)
else:
to_unstack.append(name)
table = agged.unstack(to_unstack)
if not dropna:
if isinstance(table.index, MultiIndex):
m = MultiIndex.from_arrays(
cartesian_product(table.index.levels), names=table.index.names
)
table = table.reindex(m, axis=0)
if isinstance(table.columns, MultiIndex):
m = MultiIndex.from_arrays(
cartesian_product(table.columns.levels), names=table.columns.names
)
table = table.reindex(m, axis=1)
if sort is True and isinstance(table, ABCDataFrame):
table = table.sort_index(axis=1)
if fill_value is not None:
table = table.fillna(fill_value, downcast="infer")
if margins:
if dropna:
data = data[data.notna().all(axis=1)]
table = _add_margins(
table,
data,
values,
rows=index,
cols=columns,
aggfunc=aggfunc,
observed=dropna,
margins_name=margins_name,
fill_value=fill_value,
)
# discard the top level
if values_passed and not values_multi and table.columns.nlevels > 1:
table = table.droplevel(0, axis=1)
if len(index) == 0 and len(columns) > 0:
table = table.T
# GH 15193 Make sure empty columns are removed if dropna=True
if isinstance(table, ABCDataFrame) and dropna:
table = table.dropna(how="all", axis=1)
return table
def _add_margins(
table: DataFrame | Series,
data: DataFrame,
values,
rows,
cols,
aggfunc,
observed=None,
margins_name: Hashable = "All",
fill_value=None,
):
if not isinstance(margins_name, str):
raise ValueError("margins_name argument must be a string")
msg = f'Conflicting name "{margins_name}" in margins'
for level in table.index.names:
if margins_name in table.index.get_level_values(level):
raise ValueError(msg)
grand_margin = _compute_grand_margin(data, values, aggfunc, margins_name)
if table.ndim == 2:
# i.e. DataFrame
for level in table.columns.names[1:]:
if margins_name in table.columns.get_level_values(level):
raise ValueError(msg)
key: str | tuple[str, ...]
if len(rows) > 1:
key = (margins_name,) + ("",) * (len(rows) - 1)
else:
key = margins_name
if not values and isinstance(table, ABCSeries):
# If there are no values and the table is a series, then there is only
# one column in the data. Compute grand margin and return it.
return table._append(Series({key: grand_margin[margins_name]}))
elif values:
marginal_result_set = _generate_marginal_results(
table, data, values, rows, cols, aggfunc, observed, margins_name
)
if not isinstance(marginal_result_set, tuple):
return marginal_result_set
result, margin_keys, row_margin = marginal_result_set
else:
# no values, and table is a DataFrame
assert isinstance(table, ABCDataFrame)
marginal_result_set = _generate_marginal_results_without_values(
table, data, rows, cols, aggfunc, observed, margins_name
)
if not isinstance(marginal_result_set, tuple):
return marginal_result_set
result, margin_keys, row_margin = marginal_result_set
row_margin = row_margin.reindex(result.columns, fill_value=fill_value)
# populate grand margin
for k in margin_keys:
if isinstance(k, str):
row_margin[k] = grand_margin[k]
else:
row_margin[k] = grand_margin[k[0]]
from pandas import DataFrame
margin_dummy = DataFrame(row_margin, columns=Index([key])).T
row_names = result.index.names
# check the result column and leave floats
for dtype in set(result.dtypes):
if is_extension_array_dtype(dtype):
# Can hold NA already
continue
cols = result.select_dtypes([dtype]).columns
margin_dummy[cols] = margin_dummy[cols].apply(
maybe_downcast_to_dtype, args=(dtype,)
)
result = result._append(margin_dummy)
result.index.names = row_names
return result
def _compute_grand_margin(
data: DataFrame, values, aggfunc, margins_name: Hashable = "All"
):
if values:
grand_margin = {}
for k, v in data[values].items():
try:
if isinstance(aggfunc, str):
grand_margin[k] = getattr(v, aggfunc)()
elif isinstance(aggfunc, dict):
if isinstance(aggfunc[k], str):
grand_margin[k] = getattr(v, aggfunc[k])()
else:
grand_margin[k] = aggfunc[k](v)
else:
grand_margin[k] = aggfunc(v)
except TypeError:
pass
return grand_margin
else:
return {margins_name: aggfunc(data.index)}
def _generate_marginal_results(
table, data, values, rows, cols, aggfunc, observed, margins_name: Hashable = "All"
):
if len(cols) > 0:
# need to "interleave" the margins
table_pieces = []
margin_keys = []
def _all_key(key):
return (key, margins_name) + ("",) * (len(cols) - 1)
if len(rows) > 0:
margin = data[rows + values].groupby(rows, observed=observed).agg(aggfunc)
cat_axis = 1
for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed):
all_key = _all_key(key)
# we are going to mutate this, so need to copy!
piece = piece.copy()
piece[all_key] = margin[key]
table_pieces.append(piece)
margin_keys.append(all_key)
else:
from pandas import DataFrame
cat_axis = 0
for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed):
if len(cols) > 1:
all_key = _all_key(key)
else:
all_key = margins_name
table_pieces.append(piece)
# GH31016 this is to calculate margin for each group, and assign
# corresponded key as index
transformed_piece = DataFrame(piece.apply(aggfunc)).T
if isinstance(piece.index, MultiIndex):
# We are adding an empty level
transformed_piece.index = MultiIndex.from_tuples(
[all_key], names=piece.index.names + [None]
)
else:
transformed_piece.index = Index([all_key], name=piece.index.name)
# append piece for margin into table_piece
table_pieces.append(transformed_piece)
margin_keys.append(all_key)
if not table_pieces:
# GH 49240
return table
else:
result = concat(table_pieces, axis=cat_axis)
if len(rows) == 0:
return result
else:
result = table
margin_keys = table.columns
if len(cols) > 0:
row_margin = data[cols + values].groupby(cols, observed=observed).agg(aggfunc)
row_margin = row_margin.stack()
# slight hack
new_order = [len(cols)] + list(range(len(cols)))
row_margin.index = row_margin.index.reorder_levels(new_order)
else:
row_margin = Series(np.nan, index=result.columns)
return result, margin_keys, row_margin
def _generate_marginal_results_without_values(
table: DataFrame,
data,
rows,
cols,
aggfunc,
observed,
margins_name: Hashable = "All",
):
if len(cols) > 0:
# need to "interleave" the margins
margin_keys: list | Index = []
def _all_key():
if len(cols) == 1:
return margins_name
return (margins_name,) + ("",) * (len(cols) - 1)
if len(rows) > 0:
margin = data[rows].groupby(rows, observed=observed).apply(aggfunc)
all_key = _all_key()
table[all_key] = margin
result = table
margin_keys.append(all_key)
else:
margin = data.groupby(level=0, axis=0, observed=observed).apply(aggfunc)
all_key = _all_key()
table[all_key] = margin
result = table
margin_keys.append(all_key)
return result
else:
result = table
margin_keys = table.columns
if len(cols):
row_margin = data[cols].groupby(cols, observed=observed).apply(aggfunc)
else:
row_margin = Series(np.nan, index=result.columns)
return result, margin_keys, row_margin
def _convert_by(by):
if by is None:
by = []
elif (
is_scalar(by)
or isinstance(by, (np.ndarray, Index, ABCSeries, Grouper))
or callable(by)
):
by = [by]
else:
by = list(by)
return by
@Substitution("\ndata : DataFrame")
@Appender(_shared_docs["pivot"], indents=1)
def pivot(
data: DataFrame,
*,
columns: IndexLabel,
index: IndexLabel | lib.NoDefault = lib.NoDefault,
values: IndexLabel | lib.NoDefault = lib.NoDefault,
) -> DataFrame:
columns_listlike = com.convert_to_list_like(columns)
# If columns is None we will create a MultiIndex level with None as name
# which might cause duplicated names because None is the default for
# level names
data = data.copy(deep=False)
data.index = data.index.copy()
data.index.names = [
name if name is not None else lib.NoDefault for name in data.index.names
]
indexed: DataFrame | Series
if values is lib.NoDefault:
if index is not lib.NoDefault:
cols = com.convert_to_list_like(index)
else:
cols = []
append = index is lib.NoDefault
# error: Unsupported operand types for + ("List[Any]" and "ExtensionArray")
# error: Unsupported left operand type for + ("ExtensionArray")
indexed = data.set_index(
cols + columns_listlike, append=append # type: ignore[operator]
)
else:
if index is lib.NoDefault:
if isinstance(data.index, MultiIndex):
# GH 23955
index_list = [
data.index.get_level_values(i) for i in range(data.index.nlevels)
]
else:
index_list = [Series(data.index, name=data.index.name)]
else:
index_list = [data[idx] for idx in com.convert_to_list_like(index)]
data_columns = [data[col] for col in columns_listlike]
index_list.extend(data_columns)
multiindex = MultiIndex.from_arrays(index_list)
if is_list_like(values) and not isinstance(values, tuple):
# Exclude tuple because it is seen as a single column name
values = cast(Sequence[Hashable], values)
indexed = data._constructor(
data[values]._values, index=multiindex, columns=values
)
else:
indexed = data._constructor_sliced(data[values]._values, index=multiindex)
# error: Argument 1 to "unstack" of "DataFrame" has incompatible type "Union
# [List[Any], ExtensionArray, ndarray[Any, Any], Index, Series]"; expected
# "Hashable"
result = indexed.unstack(columns_listlike) # type: ignore[arg-type]
result.index.names = [
name if name is not lib.NoDefault else None for name in result.index.names
]
return result
def crosstab(
index,
columns,
values=None,
rownames=None,
colnames=None,
aggfunc=None,
margins: bool = False,
margins_name: Hashable = "All",
dropna: bool = True,
normalize: bool = False,
) -> DataFrame:
"""
Compute a simple cross tabulation of two (or more) factors.
By default, computes a frequency table of the factors unless an
array of values and an aggregation function are passed.
Parameters
----------
index : array-like, Series, or list of arrays/Series
Values to group by in the rows.
columns : array-like, Series, or list of arrays/Series
Values to group by in the columns.
values : array-like, optional
Array of values to aggregate according to the factors.
Requires `aggfunc` be specified.
rownames : sequence, default None
If passed, must match number of row arrays passed.
colnames : sequence, default None
If passed, must match number of column arrays passed.
aggfunc : function, optional
If specified, requires `values` be specified as well.
margins : bool, default False
Add row/column margins (subtotals).
margins_name : str, default 'All'
Name of the row/column that will contain the totals
when margins is True.
dropna : bool, default True
Do not include columns whose entries are all NaN.
normalize : bool, {'all', 'index', 'columns'}, or {0,1}, default False
Normalize by dividing all values by the sum of values.
- If passed 'all' or `True`, will normalize over all values.
- If passed 'index' will normalize over each row.
- If passed 'columns' will normalize over each column.
- If margins is `True`, will also normalize margin values.
Returns
-------
DataFrame
Cross tabulation of the data.
See Also
--------
DataFrame.pivot : Reshape data based on column values.
pivot_table : Create a pivot table as a DataFrame.
Notes
-----
Any Series passed will have their name attributes used unless row or column
names for the cross-tabulation are specified.
Any input passed containing Categorical data will have **all** of its
categories included in the cross-tabulation, even if the actual data does
not contain any instances of a particular category.
In the event that there aren't overlapping indexes an empty DataFrame will
be returned.
Reference :ref:`the user guide <reshaping.crosstabulations>` for more examples.
Examples
--------
>>> a = np.array(["foo", "foo", "foo", "foo", "bar", "bar",
... "bar", "bar", "foo", "foo", "foo"], dtype=object)
>>> b = np.array(["one", "one", "one", "two", "one", "one",
... "one", "two", "two", "two", "one"], dtype=object)
>>> c = np.array(["dull", "dull", "shiny", "dull", "dull", "shiny",
... "shiny", "dull", "shiny", "shiny", "shiny"],
... dtype=object)
>>> pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
b one two
c dull shiny dull shiny
a
bar 1 2 1 0
foo 2 2 1 2
Here 'c' and 'f' are not represented in the data and will not be
shown in the output because dropna is True by default. Set
dropna=False to preserve categories with no data.
>>> foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
>>> bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])
>>> pd.crosstab(foo, bar)
col_0 d e
row_0
a 1 0
b 0 1
>>> pd.crosstab(foo, bar, dropna=False)
col_0 d e f
row_0
a 1 0 0
b 0 1 0
c 0 0 0
"""
if values is None and aggfunc is not None:
raise ValueError("aggfunc cannot be used without values.")
if values is not None and aggfunc is None:
raise ValueError("values cannot be used without an aggfunc.")
if not is_nested_list_like(index):
index = [index]
if not is_nested_list_like(columns):
columns = [columns]
common_idx = None
pass_objs = [x for x in index + columns if isinstance(x, (ABCSeries, ABCDataFrame))]
if pass_objs:
common_idx = get_objs_combined_axis(pass_objs, intersect=True, sort=False)
rownames = _get_names(index, rownames, prefix="row")
colnames = _get_names(columns, colnames, prefix="col")
# duplicate names mapped to unique names for pivot op
(
rownames_mapper,
unique_rownames,
colnames_mapper,
unique_colnames,
) = _build_names_mapper(rownames, colnames)
from pandas import DataFrame
data = {
**dict(zip(unique_rownames, index)),
**dict(zip(unique_colnames, columns)),
}
df = DataFrame(data, index=common_idx)
if values is None:
df["__dummy__"] = 0
kwargs = {"aggfunc": len, "fill_value": 0}
else:
df["__dummy__"] = values
kwargs = {"aggfunc": aggfunc}
# error: Argument 7 to "pivot_table" of "DataFrame" has incompatible type
# "**Dict[str, object]"; expected "Union[...]"
table = df.pivot_table(
"__dummy__",
index=unique_rownames,
columns=unique_colnames,
margins=margins,
margins_name=margins_name,
dropna=dropna,
**kwargs, # type: ignore[arg-type]
)
# Post-process
if normalize is not False:
table = _normalize(
table, normalize=normalize, margins=margins, margins_name=margins_name
)
table = table.rename_axis(index=rownames_mapper, axis=0)
table = table.rename_axis(columns=colnames_mapper, axis=1)
return table
def _normalize(
table: DataFrame, normalize, margins: bool, margins_name: Hashable = "All"
) -> DataFrame:
if not isinstance(normalize, (bool, str)):
axis_subs = {0: "index", 1: "columns"}
try:
normalize = axis_subs[normalize]
except KeyError as err:
raise ValueError("Not a valid normalize argument") from err
if margins is False:
# Actual Normalizations
normalizers: dict[bool | str, Callable] = {
"all": lambda x: x / x.sum(axis=1).sum(axis=0),
"columns": lambda x: x / x.sum(),
"index": lambda x: x.div(x.sum(axis=1), axis=0),
}
normalizers[True] = normalizers["all"]
try:
f = normalizers[normalize]
except KeyError as err:
raise ValueError("Not a valid normalize argument") from err
table = f(table)
table = table.fillna(0)
elif margins is True:
# keep index and column of pivoted table
table_index = table.index
table_columns = table.columns
last_ind_or_col = table.iloc[-1, :].name
# check if margin name is not in (for MI cases) and not equal to last
# index/column and save the column and index margin
if (margins_name not in last_ind_or_col) & (margins_name != last_ind_or_col):
raise ValueError(f"{margins_name} not in pivoted DataFrame")
column_margin = table.iloc[:-1, -1]
index_margin = table.iloc[-1, :-1]
# keep the core table
table = table.iloc[:-1, :-1]
# Normalize core
table = _normalize(table, normalize=normalize, margins=False)
# Fix Margins
if normalize == "columns":
column_margin = column_margin / column_margin.sum()
table = concat([table, column_margin], axis=1)
table = table.fillna(0)
table.columns = table_columns
elif normalize == "index":
index_margin = index_margin / index_margin.sum()
table = table._append(index_margin)
table = table.fillna(0)
table.index = table_index
elif normalize == "all" or normalize is True:
column_margin = column_margin / column_margin.sum()
index_margin = index_margin / index_margin.sum()
index_margin.loc[margins_name] = 1
table = concat([table, column_margin], axis=1)
table = table._append(index_margin)
table = table.fillna(0)
table.index = table_index
table.columns = table_columns
else:
raise ValueError("Not a valid normalize argument")
else:
raise ValueError("Not a valid margins argument")
return table
def _get_names(arrs, names, prefix: str = "row"):
if names is None:
names = []
for i, arr in enumerate(arrs):
if isinstance(arr, ABCSeries) and arr.name is not None:
names.append(arr.name)
else:
names.append(f"{prefix}_{i}")
else:
if len(names) != len(arrs):
raise AssertionError("arrays and names must have the same length")
if not isinstance(names, list):
names = list(names)
return names
def _build_names_mapper(
rownames: list[str], colnames: list[str]
) -> tuple[dict[str, str], list[str], dict[str, str], list[str]]:
"""
Given the names of a DataFrame's rows and columns, returns a set of unique row
and column names and mappers that convert to original names.
A row or column name is replaced if it is duplicate among the rows of the inputs,
among the columns of the inputs or between the rows and the columns.
Parameters
----------
rownames: list[str]
colnames: list[str]
Returns
-------
Tuple(Dict[str, str], List[str], Dict[str, str], List[str])
rownames_mapper: dict[str, str]
a dictionary with new row names as keys and original rownames as values
unique_rownames: list[str]
a list of rownames with duplicate names replaced by dummy names
colnames_mapper: dict[str, str]
a dictionary with new column names as keys and original column names as values
unique_colnames: list[str]
a list of column names with duplicate names replaced by dummy names
"""
def get_duplicates(names):
seen: set = set()
return {name for name in names if name not in seen}
shared_names = set(rownames).intersection(set(colnames))
dup_names = get_duplicates(rownames) | get_duplicates(colnames) | shared_names
rownames_mapper = {
f"row_{i}": name for i, name in enumerate(rownames) if name in dup_names
}
unique_rownames = [
f"row_{i}" if name in dup_names else name for i, name in enumerate(rownames)
]
colnames_mapper = {
f"col_{i}": name for i, name in enumerate(colnames) if name in dup_names
}
unique_colnames = [
f"col_{i}" if name in dup_names else name for i, name in enumerate(colnames)
]
return rownames_mapper, unique_rownames, colnames_mapper, unique_colnames