Inzynierka/Lib/site-packages/pandas/core/tools/numeric.py

311 lines
10 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from __future__ import annotations
from typing import Literal
import numpy as np
from pandas._libs import lib
from pandas._typing import (
DateTimeErrorChoices,
DtypeBackend,
npt,
)
from pandas.util._validators import check_dtype_backend
from pandas.core.dtypes.cast import maybe_downcast_numeric
from pandas.core.dtypes.common import (
ensure_object,
is_bool_dtype,
is_datetime_or_timedelta_dtype,
is_decimal,
is_integer_dtype,
is_number,
is_numeric_dtype,
is_scalar,
is_string_dtype,
needs_i8_conversion,
)
from pandas.core.dtypes.generic import (
ABCIndex,
ABCSeries,
)
import pandas as pd
from pandas.core.arrays import BaseMaskedArray
from pandas.core.arrays.string_ import StringDtype
def to_numeric(
arg,
errors: DateTimeErrorChoices = "raise",
downcast: Literal["integer", "signed", "unsigned", "float"] | None = None,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
):
"""
Convert argument to a numeric type.
The default return dtype is `float64` or `int64`
depending on the data supplied. Use the `downcast` parameter
to obtain other dtypes.
Please note that precision loss may occur if really large numbers
are passed in. Due to the internal limitations of `ndarray`, if
numbers smaller than `-9223372036854775808` (np.iinfo(np.int64).min)
or larger than `18446744073709551615` (np.iinfo(np.uint64).max) are
passed in, it is very likely they will be converted to float so that
they can be stored in an `ndarray`. These warnings apply similarly to
`Series` since it internally leverages `ndarray`.
Parameters
----------
arg : scalar, list, tuple, 1-d array, or Series
Argument to be converted.
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If 'raise', then invalid parsing will raise an exception.
- If 'coerce', then invalid parsing will be set as NaN.
- If 'ignore', then invalid parsing will return the input.
downcast : str, default None
Can be 'integer', 'signed', 'unsigned', or 'float'.
If not None, and if the data has been successfully cast to a
numerical dtype (or if the data was numeric to begin with),
downcast that resulting data to the smallest numerical dtype
possible according to the following rules:
- 'integer' or 'signed': smallest signed int dtype (min.: np.int8)
- 'unsigned': smallest unsigned int dtype (min.: np.uint8)
- 'float': smallest float dtype (min.: np.float32)
As this behaviour is separate from the core conversion to
numeric values, any errors raised during the downcasting
will be surfaced regardless of the value of the 'errors' input.
In addition, downcasting will only occur if the size
of the resulting data's dtype is strictly larger than
the dtype it is to be cast to, so if none of the dtypes
checked satisfy that specification, no downcasting will be
performed on the data.
dtype_backend : {"numpy_nullable", "pyarrow"}, defaults to NumPy backed DataFrames
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
arrays, nullable dtypes are used for all dtypes that have a nullable
implementation when "numpy_nullable" is set, pyarrow is used for all
dtypes if "pyarrow" is set.
The dtype_backends are still experimential.
.. versionadded:: 2.0
Returns
-------
ret
Numeric if parsing succeeded.
Return type depends on input. Series if Series, otherwise ndarray.
See Also
--------
DataFrame.astype : Cast argument to a specified dtype.
to_datetime : Convert argument to datetime.
to_timedelta : Convert argument to timedelta.
numpy.ndarray.astype : Cast a numpy array to a specified type.
DataFrame.convert_dtypes : Convert dtypes.
Examples
--------
Take separate series and convert to numeric, coercing when told to
>>> s = pd.Series(['1.0', '2', -3])
>>> pd.to_numeric(s)
0 1.0
1 2.0
2 -3.0
dtype: float64
>>> pd.to_numeric(s, downcast='float')
0 1.0
1 2.0
2 -3.0
dtype: float32
>>> pd.to_numeric(s, downcast='signed')
0 1
1 2
2 -3
dtype: int8
>>> s = pd.Series(['apple', '1.0', '2', -3])
>>> pd.to_numeric(s, errors='ignore')
0 apple
1 1.0
2 2
3 -3
dtype: object
>>> pd.to_numeric(s, errors='coerce')
0 NaN
1 1.0
2 2.0
3 -3.0
dtype: float64
Downcasting of nullable integer and floating dtypes is supported:
>>> s = pd.Series([1, 2, 3], dtype="Int64")
>>> pd.to_numeric(s, downcast="integer")
0 1
1 2
2 3
dtype: Int8
>>> s = pd.Series([1.0, 2.1, 3.0], dtype="Float64")
>>> pd.to_numeric(s, downcast="float")
0 1.0
1 2.1
2 3.0
dtype: Float32
"""
if downcast not in (None, "integer", "signed", "unsigned", "float"):
raise ValueError("invalid downcasting method provided")
if errors not in ("ignore", "raise", "coerce"):
raise ValueError("invalid error value specified")
check_dtype_backend(dtype_backend)
is_series = False
is_index = False
is_scalars = False
if isinstance(arg, ABCSeries):
is_series = True
values = arg.values
elif isinstance(arg, ABCIndex):
is_index = True
if needs_i8_conversion(arg.dtype):
values = arg.view("i8")
else:
values = arg.values
elif isinstance(arg, (list, tuple)):
values = np.array(arg, dtype="O")
elif is_scalar(arg):
if is_decimal(arg):
return float(arg)
if is_number(arg):
return arg
is_scalars = True
values = np.array([arg], dtype="O")
elif getattr(arg, "ndim", 1) > 1:
raise TypeError("arg must be a list, tuple, 1-d array, or Series")
else:
values = arg
orig_values = values
# GH33013: for IntegerArray & FloatingArray extract non-null values for casting
# save mask to reconstruct the full array after casting
mask: npt.NDArray[np.bool_] | None = None
if isinstance(values, BaseMaskedArray):
mask = values._mask
values = values._data[~mask]
values_dtype = getattr(values, "dtype", None)
if isinstance(values_dtype, pd.ArrowDtype):
mask = values.isna()
values = values.dropna().to_numpy()
new_mask: np.ndarray | None = None
if is_numeric_dtype(values_dtype):
pass
elif is_datetime_or_timedelta_dtype(values_dtype):
values = values.view(np.int64)
else:
values = ensure_object(values)
coerce_numeric = errors not in ("ignore", "raise")
try:
values, new_mask = lib.maybe_convert_numeric( # type: ignore[call-overload] # noqa
values,
set(),
coerce_numeric=coerce_numeric,
convert_to_masked_nullable=dtype_backend is not lib.no_default
or isinstance(values_dtype, StringDtype),
)
except (ValueError, TypeError):
if errors == "raise":
raise
values = orig_values
if new_mask is not None:
# Remove unnecessary values, is expected later anyway and enables
# downcasting
values = values[~new_mask]
elif (
dtype_backend is not lib.no_default
and new_mask is None
or isinstance(values_dtype, StringDtype)
):
new_mask = np.zeros(values.shape, dtype=np.bool_)
# attempt downcast only if the data has been successfully converted
# to a numerical dtype and if a downcast method has been specified
if downcast is not None and is_numeric_dtype(values.dtype):
typecodes: str | None = None
if downcast in ("integer", "signed"):
typecodes = np.typecodes["Integer"]
elif downcast == "unsigned" and (not len(values) or np.min(values) >= 0):
typecodes = np.typecodes["UnsignedInteger"]
elif downcast == "float":
typecodes = np.typecodes["Float"]
# pandas support goes only to np.float32,
# as float dtypes smaller than that are
# extremely rare and not well supported
float_32_char = np.dtype(np.float32).char
float_32_ind = typecodes.index(float_32_char)
typecodes = typecodes[float_32_ind:]
if typecodes is not None:
# from smallest to largest
for typecode in typecodes:
dtype = np.dtype(typecode)
if dtype.itemsize <= values.dtype.itemsize:
values = maybe_downcast_numeric(values, dtype)
# successful conversion
if values.dtype == dtype:
break
# GH33013: for IntegerArray, BooleanArray & FloatingArray need to reconstruct
# masked array
if (mask is not None or new_mask is not None) and not is_string_dtype(values.dtype):
if mask is None or (new_mask is not None and new_mask.shape == mask.shape):
# GH 52588
mask = new_mask
else:
mask = mask.copy()
assert isinstance(mask, np.ndarray)
data = np.zeros(mask.shape, dtype=values.dtype)
data[~mask] = values
from pandas.core.arrays import (
ArrowExtensionArray,
BooleanArray,
FloatingArray,
IntegerArray,
)
klass: type[IntegerArray] | type[BooleanArray] | type[FloatingArray]
if is_integer_dtype(data.dtype):
klass = IntegerArray
elif is_bool_dtype(data.dtype):
klass = BooleanArray
else:
klass = FloatingArray
values = klass(data, mask)
if dtype_backend == "pyarrow" or isinstance(values_dtype, pd.ArrowDtype):
values = ArrowExtensionArray(values.__arrow_array__())
if is_series:
return arg._constructor(values, index=arg.index, name=arg.name)
elif is_index:
# because we want to coerce to numeric if possible,
# do not use _shallow_copy
return pd.Index(values, name=arg.name)
elif is_scalars:
return values[0]
else:
return values