133 lines
3.7 KiB
Python
133 lines
3.7 KiB
Python
|
"""
|
||
|
Test extension array for storing nested data in a pandas container.
|
||
|
|
||
|
The ListArray stores an ndarray of lists.
|
||
|
"""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import numbers
|
||
|
import random
|
||
|
import string
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._typing import type_t
|
||
|
|
||
|
from pandas.core.dtypes.base import ExtensionDtype
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas.api.types import (
|
||
|
is_object_dtype,
|
||
|
is_string_dtype,
|
||
|
)
|
||
|
from pandas.core.arrays import ExtensionArray
|
||
|
|
||
|
|
||
|
class ListDtype(ExtensionDtype):
|
||
|
type = list
|
||
|
name = "list"
|
||
|
na_value = np.nan
|
||
|
|
||
|
@classmethod
|
||
|
def construct_array_type(cls) -> type_t[ListArray]:
|
||
|
"""
|
||
|
Return the array type associated with this dtype.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
type
|
||
|
"""
|
||
|
return ListArray
|
||
|
|
||
|
|
||
|
class ListArray(ExtensionArray):
|
||
|
dtype = ListDtype()
|
||
|
__array_priority__ = 1000
|
||
|
|
||
|
def __init__(self, values, dtype=None, copy=False) -> None:
|
||
|
if not isinstance(values, np.ndarray):
|
||
|
raise TypeError("Need to pass a numpy array as values")
|
||
|
for val in values:
|
||
|
if not isinstance(val, self.dtype.type) and not pd.isna(val):
|
||
|
raise TypeError("All values must be of type " + str(self.dtype.type))
|
||
|
self.data = values
|
||
|
|
||
|
@classmethod
|
||
|
def _from_sequence(cls, scalars, dtype=None, copy=False):
|
||
|
data = np.empty(len(scalars), dtype=object)
|
||
|
data[:] = scalars
|
||
|
return cls(data)
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
if isinstance(item, numbers.Integral):
|
||
|
return self.data[item]
|
||
|
else:
|
||
|
# slice, list-like, mask
|
||
|
return type(self)(self.data[item])
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self.data)
|
||
|
|
||
|
def isna(self):
|
||
|
return np.array(
|
||
|
[not isinstance(x, list) and np.isnan(x) for x in self.data], dtype=bool
|
||
|
)
|
||
|
|
||
|
def take(self, indexer, allow_fill=False, fill_value=None):
|
||
|
# re-implement here, since NumPy has trouble setting
|
||
|
# sized objects like UserDicts into scalar slots of
|
||
|
# an ndarary.
|
||
|
indexer = np.asarray(indexer)
|
||
|
msg = (
|
||
|
"Index is out of bounds or cannot do a "
|
||
|
"non-empty take from an empty array."
|
||
|
)
|
||
|
|
||
|
if allow_fill:
|
||
|
if fill_value is None:
|
||
|
fill_value = self.dtype.na_value
|
||
|
# bounds check
|
||
|
if (indexer < -1).any():
|
||
|
raise ValueError
|
||
|
try:
|
||
|
output = [
|
||
|
self.data[loc] if loc != -1 else fill_value for loc in indexer
|
||
|
]
|
||
|
except IndexError as err:
|
||
|
raise IndexError(msg) from err
|
||
|
else:
|
||
|
try:
|
||
|
output = [self.data[loc] for loc in indexer]
|
||
|
except IndexError as err:
|
||
|
raise IndexError(msg) from err
|
||
|
|
||
|
return self._from_sequence(output)
|
||
|
|
||
|
def copy(self):
|
||
|
return type(self)(self.data[:])
|
||
|
|
||
|
def astype(self, dtype, copy=True):
|
||
|
if isinstance(dtype, type(self.dtype)) and dtype == self.dtype:
|
||
|
if copy:
|
||
|
return self.copy()
|
||
|
return self
|
||
|
elif is_string_dtype(dtype) and not is_object_dtype(dtype):
|
||
|
# numpy has problems with astype(str) for nested elements
|
||
|
return np.array([str(x) for x in self.data], dtype=dtype)
|
||
|
return np.array(self.data, dtype=dtype, copy=copy)
|
||
|
|
||
|
@classmethod
|
||
|
def _concat_same_type(cls, to_concat):
|
||
|
data = np.concatenate([x.data for x in to_concat])
|
||
|
return cls(data)
|
||
|
|
||
|
|
||
|
def make_data():
|
||
|
# TODO: Use a regular dict. See _NDFrameIndexer._setitem_with_indexer
|
||
|
data = np.empty(100, dtype=object)
|
||
|
data[:] = [
|
||
|
[random.choice(string.ascii_letters) for _ in range(random.randint(0, 10))]
|
||
|
for _ in range(100)
|
||
|
]
|
||
|
return data
|