283 lines
8.8 KiB
Python
283 lines
8.8 KiB
Python
|
"""
|
||
|
This file contains a minimal set of tests for compliance with the extension
|
||
|
array interface test suite, and should contain no other tests.
|
||
|
The test suite for the full functionality of the array is located in
|
||
|
`pandas/tests/arrays/`.
|
||
|
|
||
|
The tests in this file are inherited from the BaseExtensionTests, and only
|
||
|
minimal tweaks should be applied to get the tests passing (by overwriting a
|
||
|
parent method).
|
||
|
|
||
|
Additional tests should either be added to one of the BaseExtensionTests
|
||
|
classes (if they are relevant for the extension interface for all dtypes), or
|
||
|
be added to the array-specific tests in `pandas/tests/arrays/`.
|
||
|
|
||
|
"""
|
||
|
import string
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.errors import PerformanceWarning
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
from pandas.api.types import is_string_dtype
|
||
|
from pandas.core.arrays import ArrowStringArray
|
||
|
from pandas.core.arrays.string_ import StringDtype
|
||
|
from pandas.tests.extension import base
|
||
|
|
||
|
|
||
|
def split_array(arr):
|
||
|
if arr.dtype.storage != "pyarrow":
|
||
|
pytest.skip("only applicable for pyarrow chunked array n/a")
|
||
|
|
||
|
def _split_array(arr):
|
||
|
import pyarrow as pa
|
||
|
|
||
|
arrow_array = arr._data
|
||
|
split = len(arrow_array) // 2
|
||
|
arrow_array = pa.chunked_array(
|
||
|
[*arrow_array[:split].chunks, *arrow_array[split:].chunks]
|
||
|
)
|
||
|
assert arrow_array.num_chunks == 2
|
||
|
return type(arr)(arrow_array)
|
||
|
|
||
|
return _split_array(arr)
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=[True, False])
|
||
|
def chunked(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def dtype(string_storage):
|
||
|
return StringDtype(storage=string_storage)
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def data(dtype, chunked):
|
||
|
strings = np.random.choice(list(string.ascii_letters), size=100)
|
||
|
while strings[0] == strings[1]:
|
||
|
strings = np.random.choice(list(string.ascii_letters), size=100)
|
||
|
|
||
|
arr = dtype.construct_array_type()._from_sequence(strings)
|
||
|
return split_array(arr) if chunked else arr
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def data_missing(dtype, chunked):
|
||
|
"""Length 2 array with [NA, Valid]"""
|
||
|
arr = dtype.construct_array_type()._from_sequence([pd.NA, "A"])
|
||
|
return split_array(arr) if chunked else arr
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def data_for_sorting(dtype, chunked):
|
||
|
arr = dtype.construct_array_type()._from_sequence(["B", "C", "A"])
|
||
|
return split_array(arr) if chunked else arr
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def data_missing_for_sorting(dtype, chunked):
|
||
|
arr = dtype.construct_array_type()._from_sequence(["B", pd.NA, "A"])
|
||
|
return split_array(arr) if chunked else arr
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def na_value():
|
||
|
return pd.NA
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def data_for_grouping(dtype, chunked):
|
||
|
arr = dtype.construct_array_type()._from_sequence(
|
||
|
["B", "B", pd.NA, pd.NA, "A", "A", "B", "C"]
|
||
|
)
|
||
|
return split_array(arr) if chunked else arr
|
||
|
|
||
|
|
||
|
class TestDtype(base.BaseDtypeTests):
|
||
|
def test_eq_with_str(self, dtype):
|
||
|
assert dtype == f"string[{dtype.storage}]"
|
||
|
super().test_eq_with_str(dtype)
|
||
|
|
||
|
def test_is_not_string_type(self, dtype):
|
||
|
# Different from BaseDtypeTests.test_is_not_string_type
|
||
|
# because StringDtype is a string type
|
||
|
assert is_string_dtype(dtype)
|
||
|
|
||
|
|
||
|
class TestInterface(base.BaseInterfaceTests):
|
||
|
def test_view(self, data, request):
|
||
|
if data.dtype.storage == "pyarrow":
|
||
|
pytest.skip(reason="2D support not implemented for ArrowStringArray")
|
||
|
super().test_view(data)
|
||
|
|
||
|
|
||
|
class TestConstructors(base.BaseConstructorsTests):
|
||
|
def test_from_dtype(self, data):
|
||
|
# base test uses string representation of dtype
|
||
|
pass
|
||
|
|
||
|
def test_constructor_from_list(self):
|
||
|
# GH 27673
|
||
|
pytest.importorskip("pyarrow", minversion="1.0.0")
|
||
|
result = pd.Series(["E"], dtype=StringDtype(storage="pyarrow"))
|
||
|
assert isinstance(result.dtype, StringDtype)
|
||
|
assert result.dtype.storage == "pyarrow"
|
||
|
|
||
|
|
||
|
class TestReshaping(base.BaseReshapingTests):
|
||
|
def test_transpose(self, data, request):
|
||
|
if data.dtype.storage == "pyarrow":
|
||
|
pytest.skip(reason="2D support not implemented for ArrowStringArray")
|
||
|
super().test_transpose(data)
|
||
|
|
||
|
|
||
|
class TestGetitem(base.BaseGetitemTests):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestSetitem(base.BaseSetitemTests):
|
||
|
def test_setitem_preserves_views(self, data, request):
|
||
|
if data.dtype.storage == "pyarrow":
|
||
|
pytest.skip(reason="2D support not implemented for ArrowStringArray")
|
||
|
super().test_setitem_preserves_views(data)
|
||
|
|
||
|
|
||
|
class TestIndex(base.BaseIndexTests):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestMissing(base.BaseMissingTests):
|
||
|
def test_dropna_array(self, data_missing):
|
||
|
result = data_missing.dropna()
|
||
|
expected = data_missing[[1]]
|
||
|
self.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
def test_fillna_no_op_returns_copy(self, data):
|
||
|
data = data[~data.isna()]
|
||
|
|
||
|
valid = data[0]
|
||
|
result = data.fillna(valid)
|
||
|
assert result is not data
|
||
|
self.assert_extension_array_equal(result, data)
|
||
|
|
||
|
with tm.maybe_produces_warning(
|
||
|
PerformanceWarning, data.dtype.storage == "pyarrow"
|
||
|
):
|
||
|
result = data.fillna(method="backfill")
|
||
|
assert result is not data
|
||
|
self.assert_extension_array_equal(result, data)
|
||
|
|
||
|
def test_fillna_series_method(self, data_missing, fillna_method):
|
||
|
with tm.maybe_produces_warning(
|
||
|
PerformanceWarning,
|
||
|
fillna_method is not None and data_missing.dtype.storage == "pyarrow",
|
||
|
check_stacklevel=False,
|
||
|
):
|
||
|
super().test_fillna_series_method(data_missing, fillna_method)
|
||
|
|
||
|
|
||
|
class TestNoReduce(base.BaseNoReduceTests):
|
||
|
@pytest.mark.parametrize("skipna", [True, False])
|
||
|
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna):
|
||
|
op_name = all_numeric_reductions
|
||
|
|
||
|
if op_name in ["min", "max"]:
|
||
|
return None
|
||
|
|
||
|
ser = pd.Series(data)
|
||
|
with pytest.raises(TypeError):
|
||
|
getattr(ser, op_name)(skipna=skipna)
|
||
|
|
||
|
|
||
|
class TestMethods(base.BaseMethodsTests):
|
||
|
def test_value_counts_with_normalize(self, data):
|
||
|
data = data[:10].unique()
|
||
|
values = np.array(data[~data.isna()])
|
||
|
ser = pd.Series(data, dtype=data.dtype)
|
||
|
|
||
|
result = ser.value_counts(normalize=True).sort_index()
|
||
|
|
||
|
expected = pd.Series(
|
||
|
[1 / len(values)] * len(values), index=result.index, name="proportion"
|
||
|
)
|
||
|
if getattr(data.dtype, "storage", "") == "pyarrow":
|
||
|
expected = expected.astype("double[pyarrow]")
|
||
|
else:
|
||
|
expected = expected.astype("Float64")
|
||
|
|
||
|
self.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestCasting(base.BaseCastingTests):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestComparisonOps(base.BaseComparisonOpsTests):
|
||
|
def _compare_other(self, ser, data, op, other):
|
||
|
op_name = f"__{op.__name__}__"
|
||
|
result = getattr(ser, op_name)(other)
|
||
|
dtype = "boolean[pyarrow]" if ser.dtype.storage == "pyarrow" else "boolean"
|
||
|
expected = getattr(ser.astype(object), op_name)(other).astype(dtype)
|
||
|
self.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_compare_scalar(self, data, comparison_op):
|
||
|
ser = pd.Series(data)
|
||
|
self._compare_other(ser, data, comparison_op, "abc")
|
||
|
|
||
|
|
||
|
class TestParsing(base.BaseParsingTests):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestPrinting(base.BasePrintingTests):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestGroupBy(base.BaseGroupbyTests):
|
||
|
@pytest.mark.parametrize("as_index", [True, False])
|
||
|
def test_groupby_extension_agg(self, as_index, data_for_grouping):
|
||
|
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
|
||
|
result = df.groupby("B", as_index=as_index).A.mean()
|
||
|
_, uniques = pd.factorize(data_for_grouping, sort=True)
|
||
|
|
||
|
if as_index:
|
||
|
index = pd.Index(uniques, name="B")
|
||
|
expected = pd.Series([3.0, 1.0, 4.0], index=index, name="A")
|
||
|
self.assert_series_equal(result, expected)
|
||
|
else:
|
||
|
expected = pd.DataFrame({"B": uniques, "A": [3.0, 1.0, 4.0]})
|
||
|
self.assert_frame_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:Falling back:pandas.errors.PerformanceWarning")
|
||
|
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
|
||
|
super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op)
|
||
|
|
||
|
|
||
|
class Test2DCompat(base.Dim2CompatTests):
|
||
|
@pytest.fixture(autouse=True)
|
||
|
def arrow_not_supported(self, data, request):
|
||
|
if isinstance(data, ArrowStringArray):
|
||
|
pytest.skip(reason="2D support not implemented for ArrowStringArray")
|
||
|
|
||
|
|
||
|
def test_searchsorted_with_na_raises(data_for_sorting, as_series):
|
||
|
# GH50447
|
||
|
b, c, a = data_for_sorting
|
||
|
arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c]
|
||
|
arr[-1] = pd.NA
|
||
|
|
||
|
if as_series:
|
||
|
arr = pd.Series(arr)
|
||
|
|
||
|
msg = (
|
||
|
"searchsorted requires array to be sorted, "
|
||
|
"which is impossible with NAs present."
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
arr.searchsorted(b)
|