Inzynierka/Lib/site-packages/pandas/tests/frame/methods/test_to_timestamp.py

153 lines
5.6 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from datetime import timedelta
import numpy as np
import pytest
from pandas import (
DataFrame,
DatetimeIndex,
PeriodIndex,
Series,
Timedelta,
date_range,
period_range,
to_datetime,
)
import pandas._testing as tm
def _get_with_delta(delta, freq="A-DEC"):
return date_range(
to_datetime("1/1/2001") + delta,
to_datetime("12/31/2009") + delta,
freq=freq,
)
class TestToTimestamp:
def test_to_timestamp(self, frame_or_series):
K = 5
index = period_range(freq="A", start="1/1/2001", end="12/1/2009")
obj = DataFrame(
np.random.randn(len(index), K),
index=index,
columns=["A", "B", "C", "D", "E"],
)
obj["mix"] = "a"
obj = tm.get_obj(obj, frame_or_series)
exp_index = date_range("1/1/2001", end="12/31/2009", freq="A-DEC")
exp_index = exp_index + Timedelta(1, "D") - Timedelta(1, "ns")
result = obj.to_timestamp("D", "end")
tm.assert_index_equal(result.index, exp_index)
tm.assert_numpy_array_equal(result.values, obj.values)
if frame_or_series is Series:
assert result.name == "A"
exp_index = date_range("1/1/2001", end="1/1/2009", freq="AS-JAN")
result = obj.to_timestamp("D", "start")
tm.assert_index_equal(result.index, exp_index)
result = obj.to_timestamp(how="start")
tm.assert_index_equal(result.index, exp_index)
delta = timedelta(hours=23)
result = obj.to_timestamp("H", "end")
exp_index = _get_with_delta(delta)
exp_index = exp_index + Timedelta(1, "h") - Timedelta(1, "ns")
tm.assert_index_equal(result.index, exp_index)
delta = timedelta(hours=23, minutes=59)
result = obj.to_timestamp("T", "end")
exp_index = _get_with_delta(delta)
exp_index = exp_index + Timedelta(1, "m") - Timedelta(1, "ns")
tm.assert_index_equal(result.index, exp_index)
result = obj.to_timestamp("S", "end")
delta = timedelta(hours=23, minutes=59, seconds=59)
exp_index = _get_with_delta(delta)
exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns")
tm.assert_index_equal(result.index, exp_index)
def test_to_timestamp_columns(self):
K = 5
index = period_range(freq="A", start="1/1/2001", end="12/1/2009")
df = DataFrame(
np.random.randn(len(index), K),
index=index,
columns=["A", "B", "C", "D", "E"],
)
df["mix"] = "a"
# columns
df = df.T
exp_index = date_range("1/1/2001", end="12/31/2009", freq="A-DEC")
exp_index = exp_index + Timedelta(1, "D") - Timedelta(1, "ns")
result = df.to_timestamp("D", "end", axis=1)
tm.assert_index_equal(result.columns, exp_index)
tm.assert_numpy_array_equal(result.values, df.values)
exp_index = date_range("1/1/2001", end="1/1/2009", freq="AS-JAN")
result = df.to_timestamp("D", "start", axis=1)
tm.assert_index_equal(result.columns, exp_index)
delta = timedelta(hours=23)
result = df.to_timestamp("H", "end", axis=1)
exp_index = _get_with_delta(delta)
exp_index = exp_index + Timedelta(1, "h") - Timedelta(1, "ns")
tm.assert_index_equal(result.columns, exp_index)
delta = timedelta(hours=23, minutes=59)
result = df.to_timestamp("T", "end", axis=1)
exp_index = _get_with_delta(delta)
exp_index = exp_index + Timedelta(1, "m") - Timedelta(1, "ns")
tm.assert_index_equal(result.columns, exp_index)
result = df.to_timestamp("S", "end", axis=1)
delta = timedelta(hours=23, minutes=59, seconds=59)
exp_index = _get_with_delta(delta)
exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns")
tm.assert_index_equal(result.columns, exp_index)
result1 = df.to_timestamp("5t", axis=1)
result2 = df.to_timestamp("t", axis=1)
expected = date_range("2001-01-01", "2009-01-01", freq="AS")
assert isinstance(result1.columns, DatetimeIndex)
assert isinstance(result2.columns, DatetimeIndex)
tm.assert_numpy_array_equal(result1.columns.asi8, expected.asi8)
tm.assert_numpy_array_equal(result2.columns.asi8, expected.asi8)
# PeriodIndex.to_timestamp always use 'infer'
assert result1.columns.freqstr == "AS-JAN"
assert result2.columns.freqstr == "AS-JAN"
def test_to_timestamp_invalid_axis(self):
index = period_range(freq="A", start="1/1/2001", end="12/1/2009")
obj = DataFrame(np.random.randn(len(index), 5), index=index)
# invalid axis
with pytest.raises(ValueError, match="axis"):
obj.to_timestamp(axis=2)
def test_to_timestamp_hourly(self, frame_or_series):
index = period_range(freq="H", start="1/1/2001", end="1/2/2001")
obj = Series(1, index=index, name="foo")
if frame_or_series is not Series:
obj = obj.to_frame()
exp_index = date_range("1/1/2001 00:59:59", end="1/2/2001 00:59:59", freq="H")
result = obj.to_timestamp(how="end")
exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns")
tm.assert_index_equal(result.index, exp_index)
if frame_or_series is Series:
assert result.name == "foo"
def test_to_timestamp_raises(self, index, frame_or_series):
# GH#33327
obj = frame_or_series(index=index, dtype=object)
if not isinstance(index, PeriodIndex):
msg = f"unsupported Type {type(index).__name__}"
with pytest.raises(TypeError, match=msg):
obj.to_timestamp()