Inzynierka/Lib/site-packages/pandas/tests/indexes/categorical/test_map.py

116 lines
4.0 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
import numpy as np
import pytest
import pandas as pd
from pandas import (
CategoricalIndex,
Index,
Series,
)
import pandas._testing as tm
class TestMap:
@pytest.mark.parametrize(
"data, categories",
[
(list("abcbca"), list("cab")),
(pd.interval_range(0, 3).repeat(3), pd.interval_range(0, 3)),
],
ids=["string", "interval"],
)
def test_map_str(self, data, categories, ordered):
# GH 31202 - override base class since we want to maintain categorical/ordered
index = CategoricalIndex(data, categories=categories, ordered=ordered)
result = index.map(str)
expected = CategoricalIndex(
map(str, data), categories=map(str, categories), ordered=ordered
)
tm.assert_index_equal(result, expected)
def test_map(self):
ci = CategoricalIndex(list("ABABC"), categories=list("CBA"), ordered=True)
result = ci.map(lambda x: x.lower())
exp = CategoricalIndex(list("ababc"), categories=list("cba"), ordered=True)
tm.assert_index_equal(result, exp)
ci = CategoricalIndex(
list("ABABC"), categories=list("BAC"), ordered=False, name="XXX"
)
result = ci.map(lambda x: x.lower())
exp = CategoricalIndex(
list("ababc"), categories=list("bac"), ordered=False, name="XXX"
)
tm.assert_index_equal(result, exp)
# GH 12766: Return an index not an array
tm.assert_index_equal(
ci.map(lambda x: 1), Index(np.array([1] * 5, dtype=np.int64), name="XXX")
)
# change categories dtype
ci = CategoricalIndex(list("ABABC"), categories=list("BAC"), ordered=False)
def f(x):
return {"A": 10, "B": 20, "C": 30}.get(x)
result = ci.map(f)
exp = CategoricalIndex(
[10, 20, 10, 20, 30], categories=[20, 10, 30], ordered=False
)
tm.assert_index_equal(result, exp)
result = ci.map(Series([10, 20, 30], index=["A", "B", "C"]))
tm.assert_index_equal(result, exp)
result = ci.map({"A": 10, "B": 20, "C": 30})
tm.assert_index_equal(result, exp)
def test_map_with_categorical_series(self):
# GH 12756
a = Index([1, 2, 3, 4])
b = Series(["even", "odd", "even", "odd"], dtype="category")
c = Series(["even", "odd", "even", "odd"])
exp = CategoricalIndex(["odd", "even", "odd", np.nan])
tm.assert_index_equal(a.map(b), exp)
exp = Index(["odd", "even", "odd", np.nan])
tm.assert_index_equal(a.map(c), exp)
@pytest.mark.parametrize(
("data", "f"),
(
([1, 1, np.nan], pd.isna),
([1, 2, np.nan], pd.isna),
([1, 1, np.nan], {1: False}),
([1, 2, np.nan], {1: False, 2: False}),
([1, 1, np.nan], Series([False, False])),
([1, 2, np.nan], Series([False, False, False])),
),
)
def test_map_with_nan(self, data, f): # GH 24241
values = pd.Categorical(data)
result = values.map(f)
if data[1] == 1:
expected = pd.Categorical([False, False, np.nan])
tm.assert_categorical_equal(result, expected)
else:
expected = Index([False, False, np.nan])
tm.assert_index_equal(result, expected)
def test_map_with_dict_or_series(self):
orig_values = ["a", "B", 1, "a"]
new_values = ["one", 2, 3.0, "one"]
cur_index = CategoricalIndex(orig_values, name="XXX")
expected = CategoricalIndex(new_values, name="XXX", categories=[3.0, 2, "one"])
mapper = Series(new_values[:-1], index=orig_values[:-1])
result = cur_index.map(mapper)
# Order of categories in result can be different
tm.assert_index_equal(result, expected)
mapper = dict(zip(orig_values[:-1], new_values[:-1]))
result = cur_index.map(mapper)
# Order of categories in result can be different
tm.assert_index_equal(result, expected)