Inzynierka/Lib/site-packages/pandas/tests/indexing/test_categorical.py

557 lines
19 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
import re
import numpy as np
import pytest
from pandas.core.dtypes.common import is_categorical_dtype
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
DataFrame,
Index,
Interval,
Series,
Timedelta,
Timestamp,
)
import pandas._testing as tm
from pandas.api.types import CategoricalDtype as CDT
@pytest.fixture
def df():
return DataFrame(
{
"A": np.arange(6, dtype="int64"),
},
index=CategoricalIndex(list("aabbca"), dtype=CDT(list("cab")), name="B"),
)
@pytest.fixture
def df2():
return DataFrame(
{
"A": np.arange(6, dtype="int64"),
},
index=CategoricalIndex(list("aabbca"), dtype=CDT(list("cabe")), name="B"),
)
class TestCategoricalIndex:
def test_loc_scalar(self, df):
dtype = CDT(list("cab"))
result = df.loc["a"]
bidx = Series(list("aaa"), name="B").astype(dtype)
assert bidx.dtype == dtype
expected = DataFrame({"A": [0, 1, 5]}, index=Index(bidx))
tm.assert_frame_equal(result, expected)
df = df.copy()
df.loc["a"] = 20
bidx2 = Series(list("aabbca"), name="B").astype(dtype)
assert bidx2.dtype == dtype
expected = DataFrame(
{
"A": [20, 20, 2, 3, 4, 20],
},
index=Index(bidx2),
)
tm.assert_frame_equal(df, expected)
# value not in the categories
with pytest.raises(KeyError, match=r"^'d'$"):
df.loc["d"]
df2 = df.copy()
expected = df2.copy()
expected.index = expected.index.astype(object)
expected.loc["d"] = 10
df2.loc["d"] = 10
tm.assert_frame_equal(df2, expected)
def test_loc_setitem_with_expansion_non_category(self, df):
# Setting-with-expansion with a new key "d" that is not among caegories
df.loc["a"] = 20
# Setting a new row on an existing column
df3 = df.copy()
df3.loc["d", "A"] = 10
bidx3 = Index(list("aabbcad"), name="B")
expected3 = DataFrame(
{
"A": [20, 20, 2, 3, 4, 20, 10.0],
},
index=Index(bidx3),
)
tm.assert_frame_equal(df3, expected3)
# Settig a new row _and_ new column
df4 = df.copy()
df4.loc["d", "C"] = 10
expected3 = DataFrame(
{
"A": [20, 20, 2, 3, 4, 20, np.nan],
"C": [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 10],
},
index=Index(bidx3),
)
tm.assert_frame_equal(df4, expected3)
def test_loc_getitem_scalar_non_category(self, df):
with pytest.raises(KeyError, match="^1$"):
df.loc[1]
def test_slicing(self):
cat = Series(Categorical([1, 2, 3, 4]))
reverse = cat[::-1]
exp = np.array([4, 3, 2, 1], dtype=np.int64)
tm.assert_numpy_array_equal(reverse.__array__(), exp)
df = DataFrame({"value": (np.arange(100) + 1).astype("int64")})
df["D"] = pd.cut(df.value, bins=[0, 25, 50, 75, 100])
expected = Series([11, Interval(0, 25)], index=["value", "D"], name=10)
result = df.iloc[10]
tm.assert_series_equal(result, expected)
expected = DataFrame(
{"value": np.arange(11, 21).astype("int64")},
index=np.arange(10, 20).astype("int64"),
)
expected["D"] = pd.cut(expected.value, bins=[0, 25, 50, 75, 100])
result = df.iloc[10:20]
tm.assert_frame_equal(result, expected)
expected = Series([9, Interval(0, 25)], index=["value", "D"], name=8)
result = df.loc[8]
tm.assert_series_equal(result, expected)
def test_slicing_and_getting_ops(self):
# systematically test the slicing operations:
# for all slicing ops:
# - returning a dataframe
# - returning a column
# - returning a row
# - returning a single value
cats = Categorical(
["a", "c", "b", "c", "c", "c", "c"], categories=["a", "b", "c"]
)
idx = Index(["h", "i", "j", "k", "l", "m", "n"])
values = [1, 2, 3, 4, 5, 6, 7]
df = DataFrame({"cats": cats, "values": values}, index=idx)
# the expected values
cats2 = Categorical(["b", "c"], categories=["a", "b", "c"])
idx2 = Index(["j", "k"])
values2 = [3, 4]
# 2:4,: | "j":"k",:
exp_df = DataFrame({"cats": cats2, "values": values2}, index=idx2)
# :,"cats" | :,0
exp_col = Series(cats, index=idx, name="cats")
# "j",: | 2,:
exp_row = Series(["b", 3], index=["cats", "values"], dtype="object", name="j")
# "j","cats | 2,0
exp_val = "b"
# iloc
# frame
res_df = df.iloc[2:4, :]
tm.assert_frame_equal(res_df, exp_df)
assert is_categorical_dtype(res_df["cats"].dtype)
# row
res_row = df.iloc[2, :]
tm.assert_series_equal(res_row, exp_row)
assert isinstance(res_row["cats"], str)
# col
res_col = df.iloc[:, 0]
tm.assert_series_equal(res_col, exp_col)
assert is_categorical_dtype(res_col.dtype)
# single value
res_val = df.iloc[2, 0]
assert res_val == exp_val
# loc
# frame
res_df = df.loc["j":"k", :]
tm.assert_frame_equal(res_df, exp_df)
assert is_categorical_dtype(res_df["cats"].dtype)
# row
res_row = df.loc["j", :]
tm.assert_series_equal(res_row, exp_row)
assert isinstance(res_row["cats"], str)
# col
res_col = df.loc[:, "cats"]
tm.assert_series_equal(res_col, exp_col)
assert is_categorical_dtype(res_col.dtype)
# single value
res_val = df.loc["j", "cats"]
assert res_val == exp_val
# single value
res_val = df.loc["j", df.columns[0]]
assert res_val == exp_val
# iat
res_val = df.iat[2, 0]
assert res_val == exp_val
# at
res_val = df.at["j", "cats"]
assert res_val == exp_val
# fancy indexing
exp_fancy = df.iloc[[2]]
res_fancy = df[df["cats"] == "b"]
tm.assert_frame_equal(res_fancy, exp_fancy)
res_fancy = df[df["values"] == 3]
tm.assert_frame_equal(res_fancy, exp_fancy)
# get_value
res_val = df.at["j", "cats"]
assert res_val == exp_val
# i : int, slice, or sequence of integers
res_row = df.iloc[2]
tm.assert_series_equal(res_row, exp_row)
assert isinstance(res_row["cats"], str)
res_df = df.iloc[slice(2, 4)]
tm.assert_frame_equal(res_df, exp_df)
assert is_categorical_dtype(res_df["cats"].dtype)
res_df = df.iloc[[2, 3]]
tm.assert_frame_equal(res_df, exp_df)
assert is_categorical_dtype(res_df["cats"].dtype)
res_col = df.iloc[:, 0]
tm.assert_series_equal(res_col, exp_col)
assert is_categorical_dtype(res_col.dtype)
res_df = df.iloc[:, slice(0, 2)]
tm.assert_frame_equal(res_df, df)
assert is_categorical_dtype(res_df["cats"].dtype)
res_df = df.iloc[:, [0, 1]]
tm.assert_frame_equal(res_df, df)
assert is_categorical_dtype(res_df["cats"].dtype)
def test_slicing_doc_examples(self):
# GH 7918
cats = Categorical(
["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c"]
)
idx = Index(["h", "i", "j", "k", "l", "m", "n"])
values = [1, 2, 2, 2, 3, 4, 5]
df = DataFrame({"cats": cats, "values": values}, index=idx)
result = df.iloc[2:4, :]
expected = DataFrame(
{
"cats": Categorical(["b", "b"], categories=["a", "b", "c"]),
"values": [2, 2],
},
index=["j", "k"],
)
tm.assert_frame_equal(result, expected)
result = df.iloc[2:4, :].dtypes
expected = Series(["category", "int64"], ["cats", "values"])
tm.assert_series_equal(result, expected)
result = df.loc["h":"j", "cats"]
expected = Series(
Categorical(["a", "b", "b"], categories=["a", "b", "c"]),
index=["h", "i", "j"],
name="cats",
)
tm.assert_series_equal(result, expected)
result = df.loc["h":"j", df.columns[0:1]]
expected = DataFrame(
{"cats": Categorical(["a", "b", "b"], categories=["a", "b", "c"])},
index=["h", "i", "j"],
)
tm.assert_frame_equal(result, expected)
def test_loc_getitem_listlike_labels(self, df):
# list of labels
result = df.loc[["c", "a"]]
expected = df.iloc[[4, 0, 1, 5]]
tm.assert_frame_equal(result, expected, check_index_type=True)
def test_loc_getitem_listlike_unused_category(self, df2):
# GH#37901 a label that is in index.categories but not in index
# listlike containing an element in the categories but not in the values
with pytest.raises(KeyError, match=re.escape("['e'] not in index")):
df2.loc[["a", "b", "e"]]
def test_loc_getitem_label_unused_category(self, df2):
# element in the categories but not in the values
with pytest.raises(KeyError, match=r"^'e'$"):
df2.loc["e"]
def test_loc_getitem_non_category(self, df2):
# not all labels in the categories
with pytest.raises(KeyError, match=re.escape("['d'] not in index")):
df2.loc[["a", "d"]]
def test_loc_setitem_expansion_label_unused_category(self, df2):
# assigning with a label that is in the categories but not in the index
df = df2.copy()
df.loc["e"] = 20
result = df.loc[["a", "b", "e"]]
exp_index = CategoricalIndex(list("aaabbe"), categories=list("cabe"), name="B")
expected = DataFrame({"A": [0, 1, 5, 2, 3, 20]}, index=exp_index)
tm.assert_frame_equal(result, expected)
def test_loc_listlike_dtypes(self):
# GH 11586
# unique categories and codes
index = CategoricalIndex(["a", "b", "c"])
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=index)
# unique slice
res = df.loc[["a", "b"]]
exp_index = CategoricalIndex(["a", "b"], categories=index.categories)
exp = DataFrame({"A": [1, 2], "B": [4, 5]}, index=exp_index)
tm.assert_frame_equal(res, exp, check_index_type=True)
# duplicated slice
res = df.loc[["a", "a", "b"]]
exp_index = CategoricalIndex(["a", "a", "b"], categories=index.categories)
exp = DataFrame({"A": [1, 1, 2], "B": [4, 4, 5]}, index=exp_index)
tm.assert_frame_equal(res, exp, check_index_type=True)
with pytest.raises(KeyError, match=re.escape("['x'] not in index")):
df.loc[["a", "x"]]
def test_loc_listlike_dtypes_duplicated_categories_and_codes(self):
# duplicated categories and codes
index = CategoricalIndex(["a", "b", "a"])
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=index)
# unique slice
res = df.loc[["a", "b"]]
exp = DataFrame(
{"A": [1, 3, 2], "B": [4, 6, 5]}, index=CategoricalIndex(["a", "a", "b"])
)
tm.assert_frame_equal(res, exp, check_index_type=True)
# duplicated slice
res = df.loc[["a", "a", "b"]]
exp = DataFrame(
{"A": [1, 3, 1, 3, 2], "B": [4, 6, 4, 6, 5]},
index=CategoricalIndex(["a", "a", "a", "a", "b"]),
)
tm.assert_frame_equal(res, exp, check_index_type=True)
with pytest.raises(KeyError, match=re.escape("['x'] not in index")):
df.loc[["a", "x"]]
def test_loc_listlike_dtypes_unused_category(self):
# contains unused category
index = CategoricalIndex(["a", "b", "a", "c"], categories=list("abcde"))
df = DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]}, index=index)
res = df.loc[["a", "b"]]
exp = DataFrame(
{"A": [1, 3, 2], "B": [5, 7, 6]},
index=CategoricalIndex(["a", "a", "b"], categories=list("abcde")),
)
tm.assert_frame_equal(res, exp, check_index_type=True)
# duplicated slice
res = df.loc[["a", "a", "b"]]
exp = DataFrame(
{"A": [1, 3, 1, 3, 2], "B": [5, 7, 5, 7, 6]},
index=CategoricalIndex(["a", "a", "a", "a", "b"], categories=list("abcde")),
)
tm.assert_frame_equal(res, exp, check_index_type=True)
with pytest.raises(KeyError, match=re.escape("['x'] not in index")):
df.loc[["a", "x"]]
def test_loc_getitem_listlike_unused_category_raises_keyerror(self):
# key that is an *unused* category raises
index = CategoricalIndex(["a", "b", "a", "c"], categories=list("abcde"))
df = DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]}, index=index)
with pytest.raises(KeyError, match="e"):
# For comparison, check the scalar behavior
df.loc["e"]
with pytest.raises(KeyError, match=re.escape("['e'] not in index")):
df.loc[["a", "e"]]
def test_ix_categorical_index(self):
# GH 12531
df = DataFrame(np.random.randn(3, 3), index=list("ABC"), columns=list("XYZ"))
cdf = df.copy()
cdf.index = CategoricalIndex(df.index)
cdf.columns = CategoricalIndex(df.columns)
expect = Series(df.loc["A", :], index=cdf.columns, name="A")
tm.assert_series_equal(cdf.loc["A", :], expect)
expect = Series(df.loc[:, "X"], index=cdf.index, name="X")
tm.assert_series_equal(cdf.loc[:, "X"], expect)
exp_index = CategoricalIndex(list("AB"), categories=["A", "B", "C"])
expect = DataFrame(df.loc[["A", "B"], :], columns=cdf.columns, index=exp_index)
tm.assert_frame_equal(cdf.loc[["A", "B"], :], expect)
exp_columns = CategoricalIndex(list("XY"), categories=["X", "Y", "Z"])
expect = DataFrame(df.loc[:, ["X", "Y"]], index=cdf.index, columns=exp_columns)
tm.assert_frame_equal(cdf.loc[:, ["X", "Y"]], expect)
def test_ix_categorical_index_non_unique(self):
# non-unique
df = DataFrame(np.random.randn(3, 3), index=list("ABA"), columns=list("XYX"))
cdf = df.copy()
cdf.index = CategoricalIndex(df.index)
cdf.columns = CategoricalIndex(df.columns)
exp_index = CategoricalIndex(list("AA"), categories=["A", "B"])
expect = DataFrame(df.loc["A", :], columns=cdf.columns, index=exp_index)
tm.assert_frame_equal(cdf.loc["A", :], expect)
exp_columns = CategoricalIndex(list("XX"), categories=["X", "Y"])
expect = DataFrame(df.loc[:, "X"], index=cdf.index, columns=exp_columns)
tm.assert_frame_equal(cdf.loc[:, "X"], expect)
expect = DataFrame(
df.loc[["A", "B"], :],
columns=cdf.columns,
index=CategoricalIndex(list("AAB")),
)
tm.assert_frame_equal(cdf.loc[["A", "B"], :], expect)
expect = DataFrame(
df.loc[:, ["X", "Y"]],
index=cdf.index,
columns=CategoricalIndex(list("XXY")),
)
tm.assert_frame_equal(cdf.loc[:, ["X", "Y"]], expect)
def test_loc_slice(self, df):
# GH9748
msg = (
"cannot do slice indexing on CategoricalIndex with these "
r"indexers \[1\] of type int"
)
with pytest.raises(TypeError, match=msg):
df.loc[1:5]
result = df.loc["b":"c"]
expected = df.iloc[[2, 3, 4]]
tm.assert_frame_equal(result, expected)
def test_loc_and_at_with_categorical_index(self):
# GH 20629
df = DataFrame(
[[1, 2], [3, 4], [5, 6]], index=CategoricalIndex(["A", "B", "C"])
)
s = df[0]
assert s.loc["A"] == 1
assert s.at["A"] == 1
assert df.loc["B", 1] == 4
assert df.at["B", 1] == 4
@pytest.mark.parametrize(
"idx_values",
[
# python types
[1, 2, 3],
[-1, -2, -3],
[1.5, 2.5, 3.5],
[-1.5, -2.5, -3.5],
# numpy int/uint
*(np.array([1, 2, 3], dtype=dtype) for dtype in tm.ALL_INT_NUMPY_DTYPES),
# numpy floats
*(np.array([1.5, 2.5, 3.5], dtype=dtyp) for dtyp in tm.FLOAT_NUMPY_DTYPES),
# numpy object
np.array([1, "b", 3.5], dtype=object),
# pandas scalars
[Interval(1, 4), Interval(4, 6), Interval(6, 9)],
[Timestamp(2019, 1, 1), Timestamp(2019, 2, 1), Timestamp(2019, 3, 1)],
[Timedelta(1, "d"), Timedelta(2, "d"), Timedelta(3, "D")],
# pandas Integer arrays
*(pd.array([1, 2, 3], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES),
# other pandas arrays
pd.IntervalIndex.from_breaks([1, 4, 6, 9]).array,
pd.date_range("2019-01-01", periods=3).array,
pd.timedelta_range(start="1d", periods=3).array,
],
)
def test_loc_getitem_with_non_string_categories(self, idx_values, ordered):
# GH-17569
cat_idx = CategoricalIndex(idx_values, ordered=ordered)
df = DataFrame({"A": ["foo", "bar", "baz"]}, index=cat_idx)
sl = slice(idx_values[0], idx_values[1])
# scalar selection
result = df.loc[idx_values[0]]
expected = Series(["foo"], index=["A"], name=idx_values[0])
tm.assert_series_equal(result, expected)
# list selection
result = df.loc[idx_values[:2]]
expected = DataFrame(["foo", "bar"], index=cat_idx[:2], columns=["A"])
tm.assert_frame_equal(result, expected)
# slice selection
result = df.loc[sl]
expected = DataFrame(["foo", "bar"], index=cat_idx[:2], columns=["A"])
tm.assert_frame_equal(result, expected)
# scalar assignment
result = df.copy()
result.loc[idx_values[0]] = "qux"
expected = DataFrame({"A": ["qux", "bar", "baz"]}, index=cat_idx)
tm.assert_frame_equal(result, expected)
# list assignment
result = df.copy()
result.loc[idx_values[:2], "A"] = ["qux", "qux2"]
expected = DataFrame({"A": ["qux", "qux2", "baz"]}, index=cat_idx)
tm.assert_frame_equal(result, expected)
# slice assignment
result = df.copy()
result.loc[sl, "A"] = ["qux", "qux2"]
expected = DataFrame({"A": ["qux", "qux2", "baz"]}, index=cat_idx)
tm.assert_frame_equal(result, expected)
def test_getitem_categorical_with_nan(self):
# GH#41933
ci = CategoricalIndex(["A", "B", np.nan])
ser = Series(range(3), index=ci)
assert ser[np.nan] == 2
assert ser.loc[np.nan] == 2
df = DataFrame(ser)
assert df.loc[np.nan, 0] == 2
assert df.loc[np.nan][0] == 2