Inzynierka/Lib/site-packages/pandas/tests/io/parser/common/test_ints.py

216 lines
6.3 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""
Tests that work on both the Python and C engines but do not have a
specific classification into the other test modules.
"""
from io import StringIO
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
# GH#43650: Some expected failures with the pyarrow engine can occasionally
# cause a deadlock instead, so we skip these instead of xfailing
skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip")
def test_int_conversion(all_parsers):
data = """A,B
1.0,1
2.0,2
3.0,3
"""
parser = all_parsers
result = parser.read_csv(StringIO(data))
expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]], columns=["A", "B"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data,kwargs,expected",
[
(
"A,B\nTrue,1\nFalse,2\nTrue,3",
{},
DataFrame([[True, 1], [False, 2], [True, 3]], columns=["A", "B"]),
),
(
"A,B\nYES,1\nno,2\nyes,3\nNo,3\nYes,3",
{"true_values": ["yes", "Yes", "YES"], "false_values": ["no", "NO", "No"]},
DataFrame(
[[True, 1], [False, 2], [True, 3], [False, 3], [True, 3]],
columns=["A", "B"],
),
),
(
"A,B\nTRUE,1\nFALSE,2\nTRUE,3",
{},
DataFrame([[True, 1], [False, 2], [True, 3]], columns=["A", "B"]),
),
(
"A,B\nfoo,bar\nbar,foo",
{"true_values": ["foo"], "false_values": ["bar"]},
DataFrame([[True, False], [False, True]], columns=["A", "B"]),
),
],
)
def test_parse_bool(all_parsers, data, kwargs, expected):
parser = all_parsers
result = parser.read_csv(StringIO(data), **kwargs)
tm.assert_frame_equal(result, expected)
def test_parse_integers_above_fp_precision(all_parsers):
data = """Numbers
17007000002000191
17007000002000191
17007000002000191
17007000002000191
17007000002000192
17007000002000192
17007000002000192
17007000002000192
17007000002000192
17007000002000194"""
parser = all_parsers
result = parser.read_csv(StringIO(data))
expected = DataFrame(
{
"Numbers": [
17007000002000191,
17007000002000191,
17007000002000191,
17007000002000191,
17007000002000192,
17007000002000192,
17007000002000192,
17007000002000192,
17007000002000192,
17007000002000194,
]
}
)
tm.assert_frame_equal(result, expected)
@skip_pyarrow # Flaky
@pytest.mark.parametrize("sep", [" ", r"\s+"])
def test_integer_overflow_bug(all_parsers, sep):
# see gh-2601
data = "65248E10 11\n55555E55 22\n"
parser = all_parsers
result = parser.read_csv(StringIO(data), header=None, sep=sep)
expected = DataFrame([[6.5248e14, 11], [5.5555e59, 22]])
tm.assert_frame_equal(result, expected)
def test_int64_min_issues(all_parsers):
# see gh-2599
parser = all_parsers
data = "A,B\n0,0\n0,"
result = parser.read_csv(StringIO(data))
expected = DataFrame({"A": [0, 0], "B": [0, np.nan]})
tm.assert_frame_equal(result, expected)
@skip_pyarrow
@pytest.mark.parametrize("conv", [None, np.int64, np.uint64])
def test_int64_overflow(all_parsers, conv):
data = """ID
00013007854817840016671868
00013007854817840016749251
00013007854817840016754630
00013007854817840016781876
00013007854817840017028824
00013007854817840017963235
00013007854817840018860166"""
parser = all_parsers
if conv is None:
# 13007854817840016671868 > UINT64_MAX, so this
# will overflow and return object as the dtype.
result = parser.read_csv(StringIO(data))
expected = DataFrame(
[
"00013007854817840016671868",
"00013007854817840016749251",
"00013007854817840016754630",
"00013007854817840016781876",
"00013007854817840017028824",
"00013007854817840017963235",
"00013007854817840018860166",
],
columns=["ID"],
)
tm.assert_frame_equal(result, expected)
else:
# 13007854817840016671868 > UINT64_MAX, so attempts
# to cast to either int64 or uint64 will result in
# an OverflowError being raised.
msg = (
"(Python int too large to convert to C long)|"
"(long too big to convert)|"
"(int too big to convert)"
)
with pytest.raises(OverflowError, match=msg):
parser.read_csv(StringIO(data), converters={"ID": conv})
@skip_pyarrow
@pytest.mark.parametrize(
"val", [np.iinfo(np.uint64).max, np.iinfo(np.int64).max, np.iinfo(np.int64).min]
)
def test_int64_uint64_range(all_parsers, val):
# These numbers fall right inside the int64-uint64
# range, so they should be parsed as string.
parser = all_parsers
result = parser.read_csv(StringIO(str(val)), header=None)
expected = DataFrame([val])
tm.assert_frame_equal(result, expected)
@skip_pyarrow
@pytest.mark.parametrize(
"val", [np.iinfo(np.uint64).max + 1, np.iinfo(np.int64).min - 1]
)
def test_outside_int64_uint64_range(all_parsers, val):
# These numbers fall just outside the int64-uint64
# range, so they should be parsed as string.
parser = all_parsers
result = parser.read_csv(StringIO(str(val)), header=None)
expected = DataFrame([str(val)])
tm.assert_frame_equal(result, expected)
@skip_pyarrow
@pytest.mark.parametrize("exp_data", [[str(-1), str(2**63)], [str(2**63), str(-1)]])
def test_numeric_range_too_wide(all_parsers, exp_data):
# No numerical dtype can hold both negative and uint64
# values, so they should be cast as string.
parser = all_parsers
data = "\n".join(exp_data)
expected = DataFrame(exp_data)
result = parser.read_csv(StringIO(data), header=None)
tm.assert_frame_equal(result, expected)
def test_integer_precision(all_parsers):
# Gh 7072
s = """1,1;0;0;0;1;1;3844;3844;3844;1;1;1;1;1;1;0;0;1;1;0;0,,,4321583677327450765
5,1;0;0;0;1;1;843;843;843;1;1;1;1;1;1;0;0;1;1;0;0,64.0,;,4321113141090630389"""
parser = all_parsers
result = parser.read_csv(StringIO(s), header=None)[4]
expected = Series([4321583677327450765, 4321113141090630389], name=4)
tm.assert_series_equal(result, expected)