Inzynierka/Lib/site-packages/pandas/tests/io/parser/test_mangle_dupes.py

166 lines
4.5 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""
Tests that duplicate columns are handled appropriately when parsed by the
CSV engine. In general, the expected result is that they are either thoroughly
de-duplicated (if mangling requested) or ignored otherwise.
"""
from io import StringIO
import pytest
from pandas import DataFrame
import pandas._testing as tm
skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip")
@skip_pyarrow
def test_basic(all_parsers):
parser = all_parsers
data = "a,a,b,b,b\n1,2,3,4,5"
result = parser.read_csv(StringIO(data), sep=",")
expected = DataFrame([[1, 2, 3, 4, 5]], columns=["a", "a.1", "b", "b.1", "b.2"])
tm.assert_frame_equal(result, expected)
@skip_pyarrow
def test_basic_names(all_parsers):
# See gh-7160
parser = all_parsers
data = "a,b,a\n0,1,2\n3,4,5"
expected = DataFrame([[0, 1, 2], [3, 4, 5]], columns=["a", "b", "a.1"])
result = parser.read_csv(StringIO(data))
tm.assert_frame_equal(result, expected)
def test_basic_names_raise(all_parsers):
# See gh-7160
parser = all_parsers
data = "0,1,2\n3,4,5"
with pytest.raises(ValueError, match="Duplicate names"):
parser.read_csv(StringIO(data), names=["a", "b", "a"])
@skip_pyarrow
@pytest.mark.parametrize(
"data,expected",
[
("a,a,a.1\n1,2,3", DataFrame([[1, 2, 3]], columns=["a", "a.2", "a.1"])),
(
"a,a,a.1,a.1.1,a.1.1.1,a.1.1.1.1\n1,2,3,4,5,6",
DataFrame(
[[1, 2, 3, 4, 5, 6]],
columns=["a", "a.2", "a.1", "a.1.1", "a.1.1.1", "a.1.1.1.1"],
),
),
(
"a,a,a.3,a.1,a.2,a,a\n1,2,3,4,5,6,7",
DataFrame(
[[1, 2, 3, 4, 5, 6, 7]],
columns=["a", "a.4", "a.3", "a.1", "a.2", "a.5", "a.6"],
),
),
],
)
def test_thorough_mangle_columns(all_parsers, data, expected):
# see gh-17060
parser = all_parsers
result = parser.read_csv(StringIO(data))
tm.assert_frame_equal(result, expected)
@skip_pyarrow
@pytest.mark.parametrize(
"data,names,expected",
[
(
"a,b,b\n1,2,3",
["a.1", "a.1", "a.1.1"],
DataFrame(
[["a", "b", "b"], ["1", "2", "3"]], columns=["a.1", "a.1.1", "a.1.1.1"]
),
),
(
"a,b,c,d,e,f\n1,2,3,4,5,6",
["a", "a", "a.1", "a.1.1", "a.1.1.1", "a.1.1.1.1"],
DataFrame(
[["a", "b", "c", "d", "e", "f"], ["1", "2", "3", "4", "5", "6"]],
columns=["a", "a.1", "a.1.1", "a.1.1.1", "a.1.1.1.1", "a.1.1.1.1.1"],
),
),
(
"a,b,c,d,e,f,g\n1,2,3,4,5,6,7",
["a", "a", "a.3", "a.1", "a.2", "a", "a"],
DataFrame(
[
["a", "b", "c", "d", "e", "f", "g"],
["1", "2", "3", "4", "5", "6", "7"],
],
columns=["a", "a.1", "a.3", "a.1.1", "a.2", "a.2.1", "a.3.1"],
),
),
],
)
def test_thorough_mangle_names(all_parsers, data, names, expected):
# see gh-17095
parser = all_parsers
with pytest.raises(ValueError, match="Duplicate names"):
parser.read_csv(StringIO(data), names=names)
@skip_pyarrow
def test_mangled_unnamed_placeholders(all_parsers):
# xref gh-13017
orig_key = "0"
parser = all_parsers
orig_value = [1, 2, 3]
df = DataFrame({orig_key: orig_value})
# This test recursively updates `df`.
for i in range(3):
expected = DataFrame()
for j in range(i + 1):
col_name = "Unnamed: 0" + f".{1*j}" * min(j, 1)
expected.insert(loc=0, column=col_name, value=[0, 1, 2])
expected[orig_key] = orig_value
df = parser.read_csv(StringIO(df.to_csv()))
tm.assert_frame_equal(df, expected)
@skip_pyarrow
def test_mangle_dupe_cols_already_exists(all_parsers):
# GH#14704
parser = all_parsers
data = "a,a,a.1,a,a.3,a.1,a.1.1\n1,2,3,4,5,6,7"
result = parser.read_csv(StringIO(data))
expected = DataFrame(
[[1, 2, 3, 4, 5, 6, 7]],
columns=["a", "a.2", "a.1", "a.4", "a.3", "a.1.2", "a.1.1"],
)
tm.assert_frame_equal(result, expected)
@skip_pyarrow
def test_mangle_dupe_cols_already_exists_unnamed_col(all_parsers):
# GH#14704
parser = all_parsers
data = ",Unnamed: 0,,Unnamed: 2\n1,2,3,4"
result = parser.read_csv(StringIO(data))
expected = DataFrame(
[[1, 2, 3, 4]],
columns=["Unnamed: 0.1", "Unnamed: 0", "Unnamed: 2.1", "Unnamed: 2"],
)
tm.assert_frame_equal(result, expected)