1013 lines
28 KiB
Python
1013 lines
28 KiB
Python
|
"""
|
||
|
Tests the 'read_fwf' function in parsers.py. This
|
||
|
test suite is independent of the others because the
|
||
|
engine is set to 'python-fwf' internally.
|
||
|
"""
|
||
|
|
||
|
from datetime import datetime
|
||
|
from io import (
|
||
|
BytesIO,
|
||
|
StringIO,
|
||
|
)
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.errors import EmptyDataError
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
DatetimeIndex,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.arrays import (
|
||
|
ArrowStringArray,
|
||
|
StringArray,
|
||
|
)
|
||
|
from pandas.tests.io.test_compression import _compression_to_extension
|
||
|
|
||
|
from pandas.io.parsers import (
|
||
|
read_csv,
|
||
|
read_fwf,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_basic():
|
||
|
data = """\
|
||
|
A B C D
|
||
|
201158 360.242940 149.910199 11950.7
|
||
|
201159 444.953632 166.985655 11788.4
|
||
|
201160 364.136849 183.628767 11806.2
|
||
|
201161 413.836124 184.375703 11916.8
|
||
|
201162 502.953953 173.237159 12468.3
|
||
|
"""
|
||
|
result = read_fwf(StringIO(data))
|
||
|
expected = DataFrame(
|
||
|
[
|
||
|
[201158, 360.242940, 149.910199, 11950.7],
|
||
|
[201159, 444.953632, 166.985655, 11788.4],
|
||
|
[201160, 364.136849, 183.628767, 11806.2],
|
||
|
[201161, 413.836124, 184.375703, 11916.8],
|
||
|
[201162, 502.953953, 173.237159, 12468.3],
|
||
|
],
|
||
|
columns=["A", "B", "C", "D"],
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_colspecs():
|
||
|
data = """\
|
||
|
A B C D E
|
||
|
201158 360.242940 149.910199 11950.7
|
||
|
201159 444.953632 166.985655 11788.4
|
||
|
201160 364.136849 183.628767 11806.2
|
||
|
201161 413.836124 184.375703 11916.8
|
||
|
201162 502.953953 173.237159 12468.3
|
||
|
"""
|
||
|
colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)]
|
||
|
result = read_fwf(StringIO(data), colspecs=colspecs)
|
||
|
|
||
|
expected = DataFrame(
|
||
|
[
|
||
|
[2011, 58, 360.242940, 149.910199, 11950.7],
|
||
|
[2011, 59, 444.953632, 166.985655, 11788.4],
|
||
|
[2011, 60, 364.136849, 183.628767, 11806.2],
|
||
|
[2011, 61, 413.836124, 184.375703, 11916.8],
|
||
|
[2011, 62, 502.953953, 173.237159, 12468.3],
|
||
|
],
|
||
|
columns=["A", "B", "C", "D", "E"],
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_widths():
|
||
|
data = """\
|
||
|
A B C D E
|
||
|
2011 58 360.242940 149.910199 11950.7
|
||
|
2011 59 444.953632 166.985655 11788.4
|
||
|
2011 60 364.136849 183.628767 11806.2
|
||
|
2011 61 413.836124 184.375703 11916.8
|
||
|
2011 62 502.953953 173.237159 12468.3
|
||
|
"""
|
||
|
result = read_fwf(StringIO(data), widths=[5, 5, 13, 13, 7])
|
||
|
|
||
|
expected = DataFrame(
|
||
|
[
|
||
|
[2011, 58, 360.242940, 149.910199, 11950.7],
|
||
|
[2011, 59, 444.953632, 166.985655, 11788.4],
|
||
|
[2011, 60, 364.136849, 183.628767, 11806.2],
|
||
|
[2011, 61, 413.836124, 184.375703, 11916.8],
|
||
|
[2011, 62, 502.953953, 173.237159, 12468.3],
|
||
|
],
|
||
|
columns=["A", "B", "C", "D", "E"],
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_non_space_filler():
|
||
|
# From Thomas Kluyver:
|
||
|
#
|
||
|
# Apparently, some non-space filler characters can be seen, this is
|
||
|
# supported by specifying the 'delimiter' character:
|
||
|
#
|
||
|
# http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html
|
||
|
data = """\
|
||
|
A~~~~B~~~~C~~~~~~~~~~~~D~~~~~~~~~~~~E
|
||
|
201158~~~~360.242940~~~149.910199~~~11950.7
|
||
|
201159~~~~444.953632~~~166.985655~~~11788.4
|
||
|
201160~~~~364.136849~~~183.628767~~~11806.2
|
||
|
201161~~~~413.836124~~~184.375703~~~11916.8
|
||
|
201162~~~~502.953953~~~173.237159~~~12468.3
|
||
|
"""
|
||
|
colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)]
|
||
|
result = read_fwf(StringIO(data), colspecs=colspecs, delimiter="~")
|
||
|
|
||
|
expected = DataFrame(
|
||
|
[
|
||
|
[2011, 58, 360.242940, 149.910199, 11950.7],
|
||
|
[2011, 59, 444.953632, 166.985655, 11788.4],
|
||
|
[2011, 60, 364.136849, 183.628767, 11806.2],
|
||
|
[2011, 61, 413.836124, 184.375703, 11916.8],
|
||
|
[2011, 62, 502.953953, 173.237159, 12468.3],
|
||
|
],
|
||
|
columns=["A", "B", "C", "D", "E"],
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_over_specified():
|
||
|
data = """\
|
||
|
A B C D E
|
||
|
201158 360.242940 149.910199 11950.7
|
||
|
201159 444.953632 166.985655 11788.4
|
||
|
201160 364.136849 183.628767 11806.2
|
||
|
201161 413.836124 184.375703 11916.8
|
||
|
201162 502.953953 173.237159 12468.3
|
||
|
"""
|
||
|
colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)]
|
||
|
|
||
|
with pytest.raises(ValueError, match="must specify only one of"):
|
||
|
read_fwf(StringIO(data), colspecs=colspecs, widths=[6, 10, 10, 7])
|
||
|
|
||
|
|
||
|
def test_under_specified():
|
||
|
data = """\
|
||
|
A B C D E
|
||
|
201158 360.242940 149.910199 11950.7
|
||
|
201159 444.953632 166.985655 11788.4
|
||
|
201160 364.136849 183.628767 11806.2
|
||
|
201161 413.836124 184.375703 11916.8
|
||
|
201162 502.953953 173.237159 12468.3
|
||
|
"""
|
||
|
with pytest.raises(ValueError, match="Must specify either"):
|
||
|
read_fwf(StringIO(data), colspecs=None, widths=None)
|
||
|
|
||
|
|
||
|
def test_read_csv_compat():
|
||
|
csv_data = """\
|
||
|
A,B,C,D,E
|
||
|
2011,58,360.242940,149.910199,11950.7
|
||
|
2011,59,444.953632,166.985655,11788.4
|
||
|
2011,60,364.136849,183.628767,11806.2
|
||
|
2011,61,413.836124,184.375703,11916.8
|
||
|
2011,62,502.953953,173.237159,12468.3
|
||
|
"""
|
||
|
expected = read_csv(StringIO(csv_data), engine="python")
|
||
|
|
||
|
fwf_data = """\
|
||
|
A B C D E
|
||
|
201158 360.242940 149.910199 11950.7
|
||
|
201159 444.953632 166.985655 11788.4
|
||
|
201160 364.136849 183.628767 11806.2
|
||
|
201161 413.836124 184.375703 11916.8
|
||
|
201162 502.953953 173.237159 12468.3
|
||
|
"""
|
||
|
colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)]
|
||
|
result = read_fwf(StringIO(fwf_data), colspecs=colspecs)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_bytes_io_input():
|
||
|
result = read_fwf(BytesIO("שלום\nשלום".encode()), widths=[2, 2], encoding="utf8")
|
||
|
expected = DataFrame([["של", "ום"]], columns=["של", "ום"])
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_fwf_colspecs_is_list_or_tuple():
|
||
|
data = """index,A,B,C,D
|
||
|
foo,2,3,4,5
|
||
|
bar,7,8,9,10
|
||
|
baz,12,13,14,15
|
||
|
qux,12,13,14,15
|
||
|
foo2,12,13,14,15
|
||
|
bar2,12,13,14,15
|
||
|
"""
|
||
|
|
||
|
msg = "column specifications must be a list or tuple.+"
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
read_fwf(StringIO(data), colspecs={"a": 1}, delimiter=",")
|
||
|
|
||
|
|
||
|
def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples():
|
||
|
data = """index,A,B,C,D
|
||
|
foo,2,3,4,5
|
||
|
bar,7,8,9,10
|
||
|
baz,12,13,14,15
|
||
|
qux,12,13,14,15
|
||
|
foo2,12,13,14,15
|
||
|
bar2,12,13,14,15
|
||
|
"""
|
||
|
|
||
|
msg = "Each column specification must be.+"
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
read_fwf(StringIO(data), colspecs=[("a", 1)])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"colspecs,exp_data",
|
||
|
[
|
||
|
([(0, 3), (3, None)], [[123, 456], [456, 789]]),
|
||
|
([(None, 3), (3, 6)], [[123, 456], [456, 789]]),
|
||
|
([(0, None), (3, None)], [[123456, 456], [456789, 789]]),
|
||
|
([(None, None), (3, 6)], [[123456, 456], [456789, 789]]),
|
||
|
],
|
||
|
)
|
||
|
def test_fwf_colspecs_none(colspecs, exp_data):
|
||
|
# see gh-7079
|
||
|
data = """\
|
||
|
123456
|
||
|
456789
|
||
|
"""
|
||
|
expected = DataFrame(exp_data)
|
||
|
|
||
|
result = read_fwf(StringIO(data), colspecs=colspecs, header=None)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"infer_nrows,exp_data",
|
||
|
[
|
||
|
# infer_nrows --> colspec == [(2, 3), (5, 6)]
|
||
|
(1, [[1, 2], [3, 8]]),
|
||
|
# infer_nrows > number of rows
|
||
|
(10, [[1, 2], [123, 98]]),
|
||
|
],
|
||
|
)
|
||
|
def test_fwf_colspecs_infer_nrows(infer_nrows, exp_data):
|
||
|
# see gh-15138
|
||
|
data = """\
|
||
|
1 2
|
||
|
123 98
|
||
|
"""
|
||
|
expected = DataFrame(exp_data)
|
||
|
|
||
|
result = read_fwf(StringIO(data), infer_nrows=infer_nrows, header=None)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_fwf_regression():
|
||
|
# see gh-3594
|
||
|
#
|
||
|
# Turns out "T060" is parsable as a datetime slice!
|
||
|
tz_list = [1, 10, 20, 30, 60, 80, 100]
|
||
|
widths = [16] + [8] * len(tz_list)
|
||
|
names = ["SST"] + [f"T{z:03d}" for z in tz_list[1:]]
|
||
|
|
||
|
data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192
|
||
|
2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869
|
||
|
2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657
|
||
|
2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379
|
||
|
2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039
|
||
|
"""
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning, match="use 'date_format' instead"):
|
||
|
result = read_fwf(
|
||
|
StringIO(data),
|
||
|
index_col=0,
|
||
|
header=None,
|
||
|
names=names,
|
||
|
widths=widths,
|
||
|
parse_dates=True,
|
||
|
date_parser=lambda s: datetime.strptime(s, "%Y%j%H%M%S"),
|
||
|
)
|
||
|
expected = DataFrame(
|
||
|
[
|
||
|
[9.5403, 9.4105, 8.6571, 7.8372, 6.0612, 5.8843, 5.5192],
|
||
|
[9.5435, 9.2010, 8.6167, 7.8176, 6.0804, 5.8728, 5.4869],
|
||
|
[9.5873, 9.1326, 8.4694, 7.5889, 6.0422, 5.8526, 5.4657],
|
||
|
[9.5810, 9.0896, 8.4009, 7.4652, 6.0322, 5.8189, 5.4379],
|
||
|
[9.6034, 9.0897, 8.3822, 7.4905, 6.0908, 5.7904, 5.4039],
|
||
|
],
|
||
|
index=DatetimeIndex(
|
||
|
[
|
||
|
"2009-06-13 20:20:00",
|
||
|
"2009-06-13 20:30:00",
|
||
|
"2009-06-13 20:40:00",
|
||
|
"2009-06-13 20:50:00",
|
||
|
"2009-06-13 21:00:00",
|
||
|
]
|
||
|
),
|
||
|
columns=["SST", "T010", "T020", "T030", "T060", "T080", "T100"],
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
result = read_fwf(
|
||
|
StringIO(data),
|
||
|
index_col=0,
|
||
|
header=None,
|
||
|
names=names,
|
||
|
widths=widths,
|
||
|
parse_dates=True,
|
||
|
date_format="%Y%j%H%M%S",
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_fwf_for_uint8():
|
||
|
data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127
|
||
|
1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" # noqa:E501
|
||
|
df = read_fwf(
|
||
|
StringIO(data),
|
||
|
colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)],
|
||
|
names=["time", "pri", "pgn", "dst", "src", "data"],
|
||
|
converters={
|
||
|
"pgn": lambda x: int(x, 16),
|
||
|
"src": lambda x: int(x, 16),
|
||
|
"dst": lambda x: int(x, 16),
|
||
|
"data": lambda x: len(x.split(" ")),
|
||
|
},
|
||
|
)
|
||
|
|
||
|
expected = DataFrame(
|
||
|
[
|
||
|
[1421302965.213420, 3, 61184, 23, 40, 8],
|
||
|
[1421302964.226776, 6, 61442, None, 71, 8],
|
||
|
],
|
||
|
columns=["time", "pri", "pgn", "dst", "src", "data"],
|
||
|
)
|
||
|
expected["dst"] = expected["dst"].astype(object)
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("comment", ["#", "~", "!"])
|
||
|
def test_fwf_comment(comment):
|
||
|
data = """\
|
||
|
1 2. 4 #hello world
|
||
|
5 NaN 10.0
|
||
|
"""
|
||
|
data = data.replace("#", comment)
|
||
|
|
||
|
colspecs = [(0, 3), (4, 9), (9, 25)]
|
||
|
expected = DataFrame([[1, 2.0, 4], [5, np.nan, 10.0]])
|
||
|
|
||
|
result = read_fwf(StringIO(data), colspecs=colspecs, header=None, comment=comment)
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_fwf_skip_blank_lines():
|
||
|
data = """
|
||
|
|
||
|
A B C D
|
||
|
|
||
|
201158 360.242940 149.910199 11950.7
|
||
|
201159 444.953632 166.985655 11788.4
|
||
|
|
||
|
|
||
|
201162 502.953953 173.237159 12468.3
|
||
|
|
||
|
"""
|
||
|
result = read_fwf(StringIO(data), skip_blank_lines=True)
|
||
|
expected = DataFrame(
|
||
|
[
|
||
|
[201158, 360.242940, 149.910199, 11950.7],
|
||
|
[201159, 444.953632, 166.985655, 11788.4],
|
||
|
[201162, 502.953953, 173.237159, 12468.3],
|
||
|
],
|
||
|
columns=["A", "B", "C", "D"],
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
data = """\
|
||
|
A B C D
|
||
|
201158 360.242940 149.910199 11950.7
|
||
|
201159 444.953632 166.985655 11788.4
|
||
|
|
||
|
|
||
|
201162 502.953953 173.237159 12468.3
|
||
|
"""
|
||
|
result = read_fwf(StringIO(data), skip_blank_lines=False)
|
||
|
expected = DataFrame(
|
||
|
[
|
||
|
[201158, 360.242940, 149.910199, 11950.7],
|
||
|
[201159, 444.953632, 166.985655, 11788.4],
|
||
|
[np.nan, np.nan, np.nan, np.nan],
|
||
|
[np.nan, np.nan, np.nan, np.nan],
|
||
|
[201162, 502.953953, 173.237159, 12468.3],
|
||
|
],
|
||
|
columns=["A", "B", "C", "D"],
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("thousands", [",", "#", "~"])
|
||
|
def test_fwf_thousands(thousands):
|
||
|
data = """\
|
||
|
1 2,334.0 5
|
||
|
10 13 10.
|
||
|
"""
|
||
|
data = data.replace(",", thousands)
|
||
|
|
||
|
colspecs = [(0, 3), (3, 11), (12, 16)]
|
||
|
expected = DataFrame([[1, 2334.0, 5], [10, 13, 10.0]])
|
||
|
|
||
|
result = read_fwf(
|
||
|
StringIO(data), header=None, colspecs=colspecs, thousands=thousands
|
||
|
)
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("header", [True, False])
|
||
|
def test_bool_header_arg(header):
|
||
|
# see gh-6114
|
||
|
data = """\
|
||
|
MyColumn
|
||
|
a
|
||
|
b
|
||
|
a
|
||
|
b"""
|
||
|
|
||
|
msg = "Passing a bool to header is invalid"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
read_fwf(StringIO(data), header=header)
|
||
|
|
||
|
|
||
|
def test_full_file():
|
||
|
# File with all values.
|
||
|
test = """index A B C
|
||
|
2000-01-03T00:00:00 0.980268513777 3 foo
|
||
|
2000-01-04T00:00:00 1.04791624281 -4 bar
|
||
|
2000-01-05T00:00:00 0.498580885705 73 baz
|
||
|
2000-01-06T00:00:00 1.12020151869 1 foo
|
||
|
2000-01-07T00:00:00 0.487094399463 0 bar
|
||
|
2000-01-10T00:00:00 0.836648671666 2 baz
|
||
|
2000-01-11T00:00:00 0.157160753327 34 foo"""
|
||
|
colspecs = ((0, 19), (21, 35), (38, 40), (42, 45))
|
||
|
expected = read_fwf(StringIO(test), colspecs=colspecs)
|
||
|
|
||
|
result = read_fwf(StringIO(test))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_full_file_with_missing():
|
||
|
# File with missing values.
|
||
|
test = """index A B C
|
||
|
2000-01-03T00:00:00 0.980268513777 3 foo
|
||
|
2000-01-04T00:00:00 1.04791624281 -4 bar
|
||
|
0.498580885705 73 baz
|
||
|
2000-01-06T00:00:00 1.12020151869 1 foo
|
||
|
2000-01-07T00:00:00 0 bar
|
||
|
2000-01-10T00:00:00 0.836648671666 2 baz
|
||
|
34"""
|
||
|
colspecs = ((0, 19), (21, 35), (38, 40), (42, 45))
|
||
|
expected = read_fwf(StringIO(test), colspecs=colspecs)
|
||
|
|
||
|
result = read_fwf(StringIO(test))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_full_file_with_spaces():
|
||
|
# File with spaces in columns.
|
||
|
test = """
|
||
|
Account Name Balance CreditLimit AccountCreated
|
||
|
101 Keanu Reeves 9315.45 10000.00 1/17/1998
|
||
|
312 Gerard Butler 90.00 1000.00 8/6/2003
|
||
|
868 Jennifer Love Hewitt 0 17000.00 5/25/1985
|
||
|
761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006
|
||
|
317 Bill Murray 789.65 5000.00 2/5/2007
|
||
|
""".strip(
|
||
|
"\r\n"
|
||
|
)
|
||
|
colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70))
|
||
|
expected = read_fwf(StringIO(test), colspecs=colspecs)
|
||
|
|
||
|
result = read_fwf(StringIO(test))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_full_file_with_spaces_and_missing():
|
||
|
# File with spaces and missing values in columns.
|
||
|
test = """
|
||
|
Account Name Balance CreditLimit AccountCreated
|
||
|
101 10000.00 1/17/1998
|
||
|
312 Gerard Butler 90.00 1000.00 8/6/2003
|
||
|
868 5/25/1985
|
||
|
761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006
|
||
|
317 Bill Murray 789.65
|
||
|
""".strip(
|
||
|
"\r\n"
|
||
|
)
|
||
|
colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70))
|
||
|
expected = read_fwf(StringIO(test), colspecs=colspecs)
|
||
|
|
||
|
result = read_fwf(StringIO(test))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_messed_up_data():
|
||
|
# Completely messed up file.
|
||
|
test = """
|
||
|
Account Name Balance Credit Limit Account Created
|
||
|
101 10000.00 1/17/1998
|
||
|
312 Gerard Butler 90.00 1000.00
|
||
|
|
||
|
761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006
|
||
|
317 Bill Murray 789.65
|
||
|
""".strip(
|
||
|
"\r\n"
|
||
|
)
|
||
|
colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79))
|
||
|
expected = read_fwf(StringIO(test), colspecs=colspecs)
|
||
|
|
||
|
result = read_fwf(StringIO(test))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_multiple_delimiters():
|
||
|
test = r"""
|
||
|
col1~~~~~col2 col3++++++++++++++++++col4
|
||
|
~~22.....11.0+++foo~~~~~~~~~~Keanu Reeves
|
||
|
33+++122.33\\\bar.........Gerard Butler
|
||
|
++44~~~~12.01 baz~~Jennifer Love Hewitt
|
||
|
~~55 11+++foo++++Jada Pinkett-Smith
|
||
|
..66++++++.03~~~bar Bill Murray
|
||
|
""".strip(
|
||
|
"\r\n"
|
||
|
)
|
||
|
delimiter = " +~.\\"
|
||
|
colspecs = ((0, 4), (7, 13), (15, 19), (21, 41))
|
||
|
expected = read_fwf(StringIO(test), colspecs=colspecs, delimiter=delimiter)
|
||
|
|
||
|
result = read_fwf(StringIO(test), delimiter=delimiter)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_variable_width_unicode():
|
||
|
data = """
|
||
|
שלום שלום
|
||
|
ום שלל
|
||
|
של ום
|
||
|
""".strip(
|
||
|
"\r\n"
|
||
|
)
|
||
|
encoding = "utf8"
|
||
|
kwargs = {"header": None, "encoding": encoding}
|
||
|
|
||
|
expected = read_fwf(
|
||
|
BytesIO(data.encode(encoding)), colspecs=[(0, 4), (5, 9)], **kwargs
|
||
|
)
|
||
|
result = read_fwf(BytesIO(data.encode(encoding)), **kwargs)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [{}, {"a": "float64", "b": str, "c": "int32"}])
|
||
|
def test_dtype(dtype):
|
||
|
data = """ a b c
|
||
|
1 2 3.2
|
||
|
3 4 5.2
|
||
|
"""
|
||
|
colspecs = [(0, 5), (5, 10), (10, None)]
|
||
|
result = read_fwf(StringIO(data), colspecs=colspecs, dtype=dtype)
|
||
|
|
||
|
expected = DataFrame(
|
||
|
{"a": [1, 3], "b": [2, 4], "c": [3.2, 5.2]}, columns=["a", "b", "c"]
|
||
|
)
|
||
|
|
||
|
for col, dt in dtype.items():
|
||
|
expected[col] = expected[col].astype(dt)
|
||
|
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_skiprows_inference():
|
||
|
# see gh-11256
|
||
|
data = """
|
||
|
Text contained in the file header
|
||
|
|
||
|
DataCol1 DataCol2
|
||
|
0.0 1.0
|
||
|
101.6 956.1
|
||
|
""".strip()
|
||
|
skiprows = 2
|
||
|
expected = read_csv(StringIO(data), skiprows=skiprows, delim_whitespace=True)
|
||
|
|
||
|
result = read_fwf(StringIO(data), skiprows=skiprows)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_skiprows_by_index_inference():
|
||
|
data = """
|
||
|
To be skipped
|
||
|
Not To Be Skipped
|
||
|
Once more to be skipped
|
||
|
123 34 8 123
|
||
|
456 78 9 456
|
||
|
""".strip()
|
||
|
skiprows = [0, 2]
|
||
|
expected = read_csv(StringIO(data), skiprows=skiprows, delim_whitespace=True)
|
||
|
|
||
|
result = read_fwf(StringIO(data), skiprows=skiprows)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_skiprows_inference_empty():
|
||
|
data = """
|
||
|
AA BBB C
|
||
|
12 345 6
|
||
|
78 901 2
|
||
|
""".strip()
|
||
|
|
||
|
msg = "No rows from which to infer column width"
|
||
|
with pytest.raises(EmptyDataError, match=msg):
|
||
|
read_fwf(StringIO(data), skiprows=3)
|
||
|
|
||
|
|
||
|
def test_whitespace_preservation():
|
||
|
# see gh-16772
|
||
|
header = None
|
||
|
csv_data = """
|
||
|
a ,bbb
|
||
|
cc,dd """
|
||
|
|
||
|
fwf_data = """
|
||
|
a bbb
|
||
|
ccdd """
|
||
|
result = read_fwf(
|
||
|
StringIO(fwf_data), widths=[3, 3], header=header, skiprows=[0], delimiter="\n\t"
|
||
|
)
|
||
|
expected = read_csv(StringIO(csv_data), header=header)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_default_delimiter():
|
||
|
header = None
|
||
|
csv_data = """
|
||
|
a,bbb
|
||
|
cc,dd"""
|
||
|
|
||
|
fwf_data = """
|
||
|
a \tbbb
|
||
|
cc\tdd """
|
||
|
result = read_fwf(StringIO(fwf_data), widths=[3, 3], header=header, skiprows=[0])
|
||
|
expected = read_csv(StringIO(csv_data), header=header)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("infer", [True, False])
|
||
|
def test_fwf_compression(compression_only, infer):
|
||
|
data = """1111111111
|
||
|
2222222222
|
||
|
3333333333""".strip()
|
||
|
|
||
|
compression = compression_only
|
||
|
extension = _compression_to_extension[compression]
|
||
|
|
||
|
kwargs = {"widths": [5, 5], "names": ["one", "two"]}
|
||
|
expected = read_fwf(StringIO(data), **kwargs)
|
||
|
|
||
|
data = bytes(data, encoding="utf-8")
|
||
|
|
||
|
with tm.ensure_clean(filename="tmp." + extension) as path:
|
||
|
tm.write_to_compressed(compression, path, data)
|
||
|
|
||
|
if infer is not None:
|
||
|
kwargs["compression"] = "infer" if infer else compression
|
||
|
|
||
|
result = read_fwf(path, **kwargs)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_binary_mode():
|
||
|
"""
|
||
|
read_fwf supports opening files in binary mode.
|
||
|
|
||
|
GH 18035.
|
||
|
"""
|
||
|
data = """aas aas aas
|
||
|
bba bab b a"""
|
||
|
df_reference = DataFrame(
|
||
|
[["bba", "bab", "b a"]], columns=["aas", "aas.1", "aas.2"], index=[0]
|
||
|
)
|
||
|
with tm.ensure_clean() as path:
|
||
|
Path(path).write_text(data)
|
||
|
with open(path, "rb") as file:
|
||
|
df = read_fwf(file)
|
||
|
file.seek(0)
|
||
|
tm.assert_frame_equal(df, df_reference)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("memory_map", [True, False])
|
||
|
def test_encoding_mmap(memory_map):
|
||
|
"""
|
||
|
encoding should be working, even when using a memory-mapped file.
|
||
|
|
||
|
GH 23254.
|
||
|
"""
|
||
|
encoding = "iso8859_1"
|
||
|
with tm.ensure_clean() as path:
|
||
|
Path(path).write_bytes(" 1 A Ä 2\n".encode(encoding))
|
||
|
df = read_fwf(
|
||
|
path,
|
||
|
header=None,
|
||
|
widths=[2, 2, 2, 2],
|
||
|
encoding=encoding,
|
||
|
memory_map=memory_map,
|
||
|
)
|
||
|
df_reference = DataFrame([[1, "A", "Ä", 2]])
|
||
|
tm.assert_frame_equal(df, df_reference)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"colspecs, names, widths, index_col",
|
||
|
[
|
||
|
(
|
||
|
[(0, 6), (6, 12), (12, 18), (18, None)],
|
||
|
list("abcde"),
|
||
|
None,
|
||
|
None,
|
||
|
),
|
||
|
(
|
||
|
None,
|
||
|
list("abcde"),
|
||
|
[6] * 4,
|
||
|
None,
|
||
|
),
|
||
|
(
|
||
|
[(0, 6), (6, 12), (12, 18), (18, None)],
|
||
|
list("abcde"),
|
||
|
None,
|
||
|
True,
|
||
|
),
|
||
|
(
|
||
|
None,
|
||
|
list("abcde"),
|
||
|
[6] * 4,
|
||
|
False,
|
||
|
),
|
||
|
(
|
||
|
None,
|
||
|
list("abcde"),
|
||
|
[6] * 4,
|
||
|
True,
|
||
|
),
|
||
|
(
|
||
|
[(0, 6), (6, 12), (12, 18), (18, None)],
|
||
|
list("abcde"),
|
||
|
None,
|
||
|
False,
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_len_colspecs_len_names(colspecs, names, widths, index_col):
|
||
|
# GH#40830
|
||
|
data = """col1 col2 col3 col4
|
||
|
bab ba 2"""
|
||
|
msg = "Length of colspecs must match length of names"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
read_fwf(
|
||
|
StringIO(data),
|
||
|
colspecs=colspecs,
|
||
|
names=names,
|
||
|
widths=widths,
|
||
|
index_col=index_col,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"colspecs, names, widths, index_col, expected",
|
||
|
[
|
||
|
(
|
||
|
[(0, 6), (6, 12), (12, 18), (18, None)],
|
||
|
list("abc"),
|
||
|
None,
|
||
|
0,
|
||
|
DataFrame(
|
||
|
index=["col1", "ba"],
|
||
|
columns=["a", "b", "c"],
|
||
|
data=[["col2", "col3", "col4"], ["b ba", "2", np.nan]],
|
||
|
),
|
||
|
),
|
||
|
(
|
||
|
[(0, 6), (6, 12), (12, 18), (18, None)],
|
||
|
list("ab"),
|
||
|
None,
|
||
|
[0, 1],
|
||
|
DataFrame(
|
||
|
index=[["col1", "ba"], ["col2", "b ba"]],
|
||
|
columns=["a", "b"],
|
||
|
data=[["col3", "col4"], ["2", np.nan]],
|
||
|
),
|
||
|
),
|
||
|
(
|
||
|
[(0, 6), (6, 12), (12, 18), (18, None)],
|
||
|
list("a"),
|
||
|
None,
|
||
|
[0, 1, 2],
|
||
|
DataFrame(
|
||
|
index=[["col1", "ba"], ["col2", "b ba"], ["col3", "2"]],
|
||
|
columns=["a"],
|
||
|
data=[["col4"], [np.nan]],
|
||
|
),
|
||
|
),
|
||
|
(
|
||
|
None,
|
||
|
list("abc"),
|
||
|
[6] * 4,
|
||
|
0,
|
||
|
DataFrame(
|
||
|
index=["col1", "ba"],
|
||
|
columns=["a", "b", "c"],
|
||
|
data=[["col2", "col3", "col4"], ["b ba", "2", np.nan]],
|
||
|
),
|
||
|
),
|
||
|
(
|
||
|
None,
|
||
|
list("ab"),
|
||
|
[6] * 4,
|
||
|
[0, 1],
|
||
|
DataFrame(
|
||
|
index=[["col1", "ba"], ["col2", "b ba"]],
|
||
|
columns=["a", "b"],
|
||
|
data=[["col3", "col4"], ["2", np.nan]],
|
||
|
),
|
||
|
),
|
||
|
(
|
||
|
None,
|
||
|
list("a"),
|
||
|
[6] * 4,
|
||
|
[0, 1, 2],
|
||
|
DataFrame(
|
||
|
index=[["col1", "ba"], ["col2", "b ba"], ["col3", "2"]],
|
||
|
columns=["a"],
|
||
|
data=[["col4"], [np.nan]],
|
||
|
),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_len_colspecs_len_names_with_index_col(
|
||
|
colspecs, names, widths, index_col, expected
|
||
|
):
|
||
|
# GH#40830
|
||
|
data = """col1 col2 col3 col4
|
||
|
bab ba 2"""
|
||
|
result = read_fwf(
|
||
|
StringIO(data),
|
||
|
colspecs=colspecs,
|
||
|
names=names,
|
||
|
widths=widths,
|
||
|
index_col=index_col,
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_colspecs_with_comment():
|
||
|
# GH 14135
|
||
|
result = read_fwf(
|
||
|
StringIO("#\nA1K\n"), colspecs=[(1, 2), (2, 3)], comment="#", header=None
|
||
|
)
|
||
|
expected = DataFrame([[1, "K"]], columns=[0, 1])
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_skip_rows_and_n_rows():
|
||
|
# GH#44021
|
||
|
data = """a\tb
|
||
|
1\t a
|
||
|
2\t b
|
||
|
3\t c
|
||
|
4\t d
|
||
|
5\t e
|
||
|
6\t f
|
||
|
"""
|
||
|
result = read_fwf(StringIO(data), nrows=4, skiprows=[2, 4])
|
||
|
expected = DataFrame({"a": [1, 3, 5, 6], "b": ["a", "c", "e", "f"]})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_skiprows_with_iterator():
|
||
|
# GH#10261
|
||
|
data = """0
|
||
|
1
|
||
|
2
|
||
|
3
|
||
|
4
|
||
|
5
|
||
|
6
|
||
|
7
|
||
|
8
|
||
|
9
|
||
|
"""
|
||
|
df_iter = read_fwf(
|
||
|
StringIO(data),
|
||
|
colspecs=[(0, 2)],
|
||
|
names=["a"],
|
||
|
iterator=True,
|
||
|
chunksize=2,
|
||
|
skiprows=[0, 1, 2, 6, 9],
|
||
|
)
|
||
|
expected_frames = [
|
||
|
DataFrame({"a": [3, 4]}),
|
||
|
DataFrame({"a": [5, 7, 8]}, index=[2, 3, 4]),
|
||
|
DataFrame({"a": []}, dtype="object"),
|
||
|
]
|
||
|
for i, result in enumerate(df_iter):
|
||
|
tm.assert_frame_equal(result, expected_frames[i])
|
||
|
|
||
|
|
||
|
def test_names_and_infer_colspecs():
|
||
|
# GH#45337
|
||
|
data = """X Y Z
|
||
|
959.0 345 22.2
|
||
|
"""
|
||
|
result = read_fwf(StringIO(data), skiprows=1, usecols=[0, 2], names=["a", "b"])
|
||
|
expected = DataFrame({"a": [959.0], "b": 22.2})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_widths_and_usecols():
|
||
|
# GH#46580
|
||
|
data = """0 1 n -0.4100.1
|
||
|
0 2 p 0.2 90.1
|
||
|
0 3 n -0.3140.4"""
|
||
|
result = read_fwf(
|
||
|
StringIO(data),
|
||
|
header=None,
|
||
|
usecols=(0, 1, 3),
|
||
|
widths=(3, 5, 1, 5, 5),
|
||
|
index_col=False,
|
||
|
names=("c0", "c1", "c3"),
|
||
|
)
|
||
|
expected = DataFrame(
|
||
|
{
|
||
|
"c0": 0,
|
||
|
"c1": [1, 2, 3],
|
||
|
"c3": [-0.4, 0.2, -0.3],
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_dtype_backend(string_storage, dtype_backend):
|
||
|
# GH#50289
|
||
|
if string_storage == "python":
|
||
|
arr = StringArray(np.array(["a", "b"], dtype=np.object_))
|
||
|
arr_na = StringArray(np.array([pd.NA, "a"], dtype=np.object_))
|
||
|
else:
|
||
|
pa = pytest.importorskip("pyarrow")
|
||
|
arr = ArrowStringArray(pa.array(["a", "b"]))
|
||
|
arr_na = ArrowStringArray(pa.array([None, "a"]))
|
||
|
|
||
|
data = """a b c d e f g h i
|
||
|
1 2.5 True a
|
||
|
3 4.5 False b True 6 7.5 a"""
|
||
|
with pd.option_context("mode.string_storage", string_storage):
|
||
|
result = read_fwf(StringIO(data), dtype_backend=dtype_backend)
|
||
|
|
||
|
expected = DataFrame(
|
||
|
{
|
||
|
"a": pd.Series([1, 3], dtype="Int64"),
|
||
|
"b": pd.Series([2.5, 4.5], dtype="Float64"),
|
||
|
"c": pd.Series([True, False], dtype="boolean"),
|
||
|
"d": arr,
|
||
|
"e": pd.Series([pd.NA, True], dtype="boolean"),
|
||
|
"f": pd.Series([pd.NA, 6], dtype="Int64"),
|
||
|
"g": pd.Series([pd.NA, 7.5], dtype="Float64"),
|
||
|
"h": arr_na,
|
||
|
"i": pd.Series([pd.NA, pd.NA], dtype="Int64"),
|
||
|
}
|
||
|
)
|
||
|
if dtype_backend == "pyarrow":
|
||
|
pa = pytest.importorskip("pyarrow")
|
||
|
from pandas.arrays import ArrowExtensionArray
|
||
|
|
||
|
expected = DataFrame(
|
||
|
{
|
||
|
col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
|
||
|
for col in expected.columns
|
||
|
}
|
||
|
)
|
||
|
expected["i"] = ArrowExtensionArray(pa.array([None, None]))
|
||
|
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_invalid_dtype_backend():
|
||
|
msg = (
|
||
|
"dtype_backend numpy is invalid, only 'numpy_nullable' and "
|
||
|
"'pyarrow' are allowed."
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
read_fwf("test", dtype_backend="numpy")
|