Inzynierka/Lib/site-packages/pandas/tests/scalar/test_nat.py

697 lines
19 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from datetime import (
datetime,
timedelta,
)
import operator
import numpy as np
import pytest
import pytz
from pandas._libs.tslibs import iNaT
from pandas.compat.numpy import np_version_gte1p24p3
from pandas.core.dtypes.common import is_datetime64_any_dtype
from pandas import (
DatetimeIndex,
DatetimeTZDtype,
Index,
NaT,
Period,
Series,
Timedelta,
TimedeltaIndex,
Timestamp,
isna,
offsets,
)
import pandas._testing as tm
from pandas.core.arrays import (
DatetimeArray,
PeriodArray,
TimedeltaArray,
)
from pandas.core.ops import roperator
@pytest.mark.parametrize(
"nat,idx",
[
(Timestamp("NaT"), DatetimeArray),
(Timedelta("NaT"), TimedeltaArray),
(Period("NaT", freq="M"), PeriodArray),
],
)
def test_nat_fields(nat, idx):
for field in idx._field_ops:
# weekday is a property of DTI, but a method
# on NaT/Timestamp for compat with datetime
if field == "weekday":
continue
result = getattr(NaT, field)
assert np.isnan(result)
result = getattr(nat, field)
assert np.isnan(result)
for field in idx._bool_ops:
result = getattr(NaT, field)
assert result is False
result = getattr(nat, field)
assert result is False
def test_nat_vector_field_access():
idx = DatetimeIndex(["1/1/2000", None, None, "1/4/2000"])
for field in DatetimeArray._field_ops:
# weekday is a property of DTI, but a method
# on NaT/Timestamp for compat with datetime
if field == "weekday":
continue
result = getattr(idx, field)
expected = Index([getattr(x, field) for x in idx])
tm.assert_index_equal(result, expected)
ser = Series(idx)
for field in DatetimeArray._field_ops:
# weekday is a property of DTI, but a method
# on NaT/Timestamp for compat with datetime
if field == "weekday":
continue
result = getattr(ser.dt, field)
expected = [getattr(x, field) for x in idx]
tm.assert_series_equal(result, Series(expected))
for field in DatetimeArray._bool_ops:
result = getattr(ser.dt, field)
expected = [getattr(x, field) for x in idx]
tm.assert_series_equal(result, Series(expected))
@pytest.mark.parametrize("klass", [Timestamp, Timedelta, Period])
@pytest.mark.parametrize(
"value", [None, np.nan, iNaT, float("nan"), NaT, "NaT", "nat", "", "NAT"]
)
def test_identity(klass, value):
assert klass(value) is NaT
@pytest.mark.parametrize("klass", [Timestamp, Timedelta])
@pytest.mark.parametrize("method", ["round", "floor", "ceil"])
@pytest.mark.parametrize("freq", ["s", "5s", "min", "5min", "h", "5h"])
def test_round_nat(klass, method, freq):
# see gh-14940
ts = klass("nat")
round_method = getattr(ts, method)
assert round_method(freq) is ts
@pytest.mark.parametrize(
"method",
[
"astimezone",
"combine",
"ctime",
"dst",
"fromordinal",
"fromtimestamp",
"fromisocalendar",
"isocalendar",
"strftime",
"strptime",
"time",
"timestamp",
"timetuple",
"timetz",
"toordinal",
"tzname",
"utcfromtimestamp",
"utcnow",
"utcoffset",
"utctimetuple",
"timestamp",
],
)
def test_nat_methods_raise(method):
# see gh-9513, gh-17329
msg = f"NaTType does not support {method}"
with pytest.raises(ValueError, match=msg):
getattr(NaT, method)()
@pytest.mark.parametrize("method", ["weekday", "isoweekday"])
def test_nat_methods_nan(method):
# see gh-9513, gh-17329
assert np.isnan(getattr(NaT, method)())
@pytest.mark.parametrize(
"method", ["date", "now", "replace", "today", "tz_convert", "tz_localize"]
)
def test_nat_methods_nat(method):
# see gh-8254, gh-9513, gh-17329
assert getattr(NaT, method)() is NaT
@pytest.mark.parametrize(
"get_nat", [lambda x: NaT, lambda x: Timedelta(x), lambda x: Timestamp(x)]
)
def test_nat_iso_format(get_nat):
# see gh-12300
assert get_nat("NaT").isoformat() == "NaT"
assert get_nat("NaT").isoformat(timespec="nanoseconds") == "NaT"
@pytest.mark.parametrize(
"klass,expected",
[
(Timestamp, ["normalize", "to_julian_date", "to_period", "unit"]),
(
Timedelta,
[
"components",
"resolution_string",
"to_pytimedelta",
"to_timedelta64",
"unit",
"view",
],
),
],
)
def test_missing_public_nat_methods(klass, expected):
# see gh-17327
#
# NaT should have *most* of the Timestamp and Timedelta methods.
# Here, we check which public methods NaT does not have. We
# ignore any missing private methods.
nat_names = dir(NaT)
klass_names = dir(klass)
missing = [x for x in klass_names if x not in nat_names and not x.startswith("_")]
missing.sort()
assert missing == expected
def _get_overlap_public_nat_methods(klass, as_tuple=False):
"""
Get overlapping public methods between NaT and another class.
Parameters
----------
klass : type
The class to compare with NaT
as_tuple : bool, default False
Whether to return a list of tuples of the form (klass, method).
Returns
-------
overlap : list
"""
nat_names = dir(NaT)
klass_names = dir(klass)
overlap = [
x
for x in nat_names
if x in klass_names and not x.startswith("_") and callable(getattr(klass, x))
]
# Timestamp takes precedence over Timedelta in terms of overlap.
if klass is Timedelta:
ts_names = dir(Timestamp)
overlap = [x for x in overlap if x not in ts_names]
if as_tuple:
overlap = [(klass, method) for method in overlap]
overlap.sort()
return overlap
@pytest.mark.parametrize(
"klass,expected",
[
(
Timestamp,
[
"as_unit",
"astimezone",
"ceil",
"combine",
"ctime",
"date",
"day_name",
"dst",
"floor",
"fromisocalendar",
"fromisoformat",
"fromordinal",
"fromtimestamp",
"isocalendar",
"isoformat",
"isoweekday",
"month_name",
"now",
"replace",
"round",
"strftime",
"strptime",
"time",
"timestamp",
"timetuple",
"timetz",
"to_datetime64",
"to_numpy",
"to_pydatetime",
"today",
"toordinal",
"tz_convert",
"tz_localize",
"tzname",
"utcfromtimestamp",
"utcnow",
"utcoffset",
"utctimetuple",
"weekday",
],
),
(Timedelta, ["total_seconds"]),
],
)
def test_overlap_public_nat_methods(klass, expected):
# see gh-17327
#
# NaT should have *most* of the Timestamp and Timedelta methods.
# In case when Timestamp, Timedelta, and NaT are overlap, the overlap
# is considered to be with Timestamp and NaT, not Timedelta.
assert _get_overlap_public_nat_methods(klass) == expected
@pytest.mark.parametrize(
"compare",
(
_get_overlap_public_nat_methods(Timestamp, True)
+ _get_overlap_public_nat_methods(Timedelta, True)
),
ids=lambda x: f"{x[0].__name__}.{x[1]}",
)
def test_nat_doc_strings(compare):
# see gh-17327
#
# The docstrings for overlapping methods should match.
klass, method = compare
klass_doc = getattr(klass, method).__doc__
# Ignore differences with Timestamp.isoformat() as they're intentional
if klass == Timestamp and method == "isoformat":
return
if method == "to_numpy":
# GH#44460 can return either dt64 or td64 depending on dtype,
# different docstring is intentional
return
nat_doc = getattr(NaT, method).__doc__
assert klass_doc == nat_doc
_ops = {
"left_plus_right": lambda a, b: a + b,
"right_plus_left": lambda a, b: b + a,
"left_minus_right": lambda a, b: a - b,
"right_minus_left": lambda a, b: b - a,
"left_times_right": lambda a, b: a * b,
"right_times_left": lambda a, b: b * a,
"left_div_right": lambda a, b: a / b,
"right_div_left": lambda a, b: b / a,
}
@pytest.mark.parametrize("op_name", list(_ops.keys()))
@pytest.mark.parametrize(
"value,val_type",
[
(2, "scalar"),
(1.5, "floating"),
(np.nan, "floating"),
("foo", "str"),
(timedelta(3600), "timedelta"),
(Timedelta("5s"), "timedelta"),
(datetime(2014, 1, 1), "timestamp"),
(Timestamp("2014-01-01"), "timestamp"),
(Timestamp("2014-01-01", tz="UTC"), "timestamp"),
(Timestamp("2014-01-01", tz="US/Eastern"), "timestamp"),
(pytz.timezone("Asia/Tokyo").localize(datetime(2014, 1, 1)), "timestamp"),
],
)
def test_nat_arithmetic_scalar(op_name, value, val_type):
# see gh-6873
invalid_ops = {
"scalar": {"right_div_left"},
"floating": {
"right_div_left",
"left_minus_right",
"right_minus_left",
"left_plus_right",
"right_plus_left",
},
"str": set(_ops.keys()),
"timedelta": {"left_times_right", "right_times_left"},
"timestamp": {
"left_times_right",
"right_times_left",
"left_div_right",
"right_div_left",
},
}
op = _ops[op_name]
if op_name in invalid_ops.get(val_type, set()):
if (
val_type == "timedelta"
and "times" in op_name
and isinstance(value, Timedelta)
):
typs = "(Timedelta|NaTType)"
msg = rf"unsupported operand type\(s\) for \*: '{typs}' and '{typs}'"
elif val_type == "str":
# un-specific check here because the message comes from str
# and varies by method
msg = "|".join(
[
"can only concatenate str",
"unsupported operand type",
"can't multiply sequence",
"Can't convert 'NaTType'",
"must be str, not NaTType",
]
)
else:
msg = "unsupported operand type"
with pytest.raises(TypeError, match=msg):
op(NaT, value)
else:
if val_type == "timedelta" and "div" in op_name:
expected = np.nan
else:
expected = NaT
assert op(NaT, value) is expected
@pytest.mark.parametrize(
"val,expected", [(np.nan, NaT), (NaT, np.nan), (np.timedelta64("NaT"), np.nan)]
)
def test_nat_rfloordiv_timedelta(val, expected):
# see gh-#18846
#
# See also test_timedelta.TestTimedeltaArithmetic.test_floordiv
td = Timedelta(hours=3, minutes=4)
assert td // val is expected
@pytest.mark.parametrize(
"op_name",
["left_plus_right", "right_plus_left", "left_minus_right", "right_minus_left"],
)
@pytest.mark.parametrize(
"value",
[
DatetimeIndex(["2011-01-01", "2011-01-02"], name="x"),
DatetimeIndex(["2011-01-01", "2011-01-02"], tz="US/Eastern", name="x"),
DatetimeArray._from_sequence(["2011-01-01", "2011-01-02"]),
DatetimeArray._from_sequence(
["2011-01-01", "2011-01-02"], dtype=DatetimeTZDtype(tz="US/Pacific")
),
TimedeltaIndex(["1 day", "2 day"], name="x"),
],
)
def test_nat_arithmetic_index(op_name, value):
# see gh-11718
exp_name = "x"
exp_data = [NaT] * 2
if is_datetime64_any_dtype(value.dtype) and "plus" in op_name:
expected = DatetimeIndex(exp_data, tz=value.tz, name=exp_name)
else:
expected = TimedeltaIndex(exp_data, name=exp_name)
if not isinstance(value, Index):
expected = expected.array
op = _ops[op_name]
result = op(NaT, value)
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"op_name",
["left_plus_right", "right_plus_left", "left_minus_right", "right_minus_left"],
)
@pytest.mark.parametrize("box", [TimedeltaIndex, Series, TimedeltaArray._from_sequence])
def test_nat_arithmetic_td64_vector(op_name, box):
# see gh-19124
vec = box(["1 day", "2 day"], dtype="timedelta64[ns]")
box_nat = box([NaT, NaT], dtype="timedelta64[ns]")
tm.assert_equal(_ops[op_name](vec, NaT), box_nat)
@pytest.mark.parametrize(
"dtype,op,out_dtype",
[
("datetime64[ns]", operator.add, "datetime64[ns]"),
("datetime64[ns]", roperator.radd, "datetime64[ns]"),
("datetime64[ns]", operator.sub, "timedelta64[ns]"),
("datetime64[ns]", roperator.rsub, "timedelta64[ns]"),
("timedelta64[ns]", operator.add, "datetime64[ns]"),
("timedelta64[ns]", roperator.radd, "datetime64[ns]"),
("timedelta64[ns]", operator.sub, "datetime64[ns]"),
("timedelta64[ns]", roperator.rsub, "timedelta64[ns]"),
],
)
def test_nat_arithmetic_ndarray(dtype, op, out_dtype):
other = np.arange(10).astype(dtype)
result = op(NaT, other)
expected = np.empty(other.shape, dtype=out_dtype)
expected.fill("NaT")
tm.assert_numpy_array_equal(result, expected)
def test_nat_pinned_docstrings():
# see gh-17327
assert NaT.ctime.__doc__ == datetime.ctime.__doc__
def test_to_numpy_alias():
# GH 24653: alias .to_numpy() for scalars
expected = NaT.to_datetime64()
result = NaT.to_numpy()
assert isna(expected) and isna(result)
# GH#44460
result = NaT.to_numpy("M8[s]")
assert isinstance(result, np.datetime64)
assert result.dtype == "M8[s]"
result = NaT.to_numpy("m8[ns]")
assert isinstance(result, np.timedelta64)
assert result.dtype == "m8[ns]"
result = NaT.to_numpy("m8[s]")
assert isinstance(result, np.timedelta64)
assert result.dtype == "m8[s]"
with pytest.raises(ValueError, match="NaT.to_numpy dtype must be a "):
NaT.to_numpy(np.int64)
@pytest.mark.parametrize(
"other",
[
Timedelta(0),
Timedelta(0).to_pytimedelta(),
pytest.param(
Timedelta(0).to_timedelta64(),
marks=pytest.mark.xfail(
not np_version_gte1p24p3,
reason="td64 doesn't return NotImplemented, see numpy#17017",
),
),
Timestamp(0),
Timestamp(0).to_pydatetime(),
pytest.param(
Timestamp(0).to_datetime64(),
marks=pytest.mark.xfail(
not np_version_gte1p24p3,
reason="dt64 doesn't return NotImplemented, see numpy#17017",
),
),
Timestamp(0).tz_localize("UTC"),
NaT,
],
)
def test_nat_comparisons(compare_operators_no_eq_ne, other):
# GH 26039
opname = compare_operators_no_eq_ne
assert getattr(NaT, opname)(other) is False
op = getattr(operator, opname.strip("_"))
assert op(NaT, other) is False
assert op(other, NaT) is False
@pytest.mark.parametrize("other", [np.timedelta64(0, "ns"), np.datetime64("now", "ns")])
def test_nat_comparisons_numpy(other):
# Once numpy#17017 is fixed and the xfailed cases in test_nat_comparisons
# pass, this test can be removed
assert not NaT == other
assert NaT != other
assert not NaT < other
assert not NaT > other
assert not NaT <= other
assert not NaT >= other
@pytest.mark.parametrize("other_and_type", [("foo", "str"), (2, "int"), (2.0, "float")])
@pytest.mark.parametrize(
"symbol_and_op",
[("<=", operator.le), ("<", operator.lt), (">=", operator.ge), (">", operator.gt)],
)
def test_nat_comparisons_invalid(other_and_type, symbol_and_op):
# GH#35585
other, other_type = other_and_type
symbol, op = symbol_and_op
assert not NaT == other
assert not other == NaT
assert NaT != other
assert other != NaT
msg = f"'{symbol}' not supported between instances of 'NaTType' and '{other_type}'"
with pytest.raises(TypeError, match=msg):
op(NaT, other)
msg = f"'{symbol}' not supported between instances of '{other_type}' and 'NaTType'"
with pytest.raises(TypeError, match=msg):
op(other, NaT)
@pytest.mark.parametrize(
"other",
[
np.array(["foo"] * 2, dtype=object),
np.array([2, 3], dtype="int64"),
np.array([2.0, 3.5], dtype="float64"),
],
ids=["str", "int", "float"],
)
def test_nat_comparisons_invalid_ndarray(other):
# GH#40722
expected = np.array([False, False])
result = NaT == other
tm.assert_numpy_array_equal(result, expected)
result = other == NaT
tm.assert_numpy_array_equal(result, expected)
expected = np.array([True, True])
result = NaT != other
tm.assert_numpy_array_equal(result, expected)
result = other != NaT
tm.assert_numpy_array_equal(result, expected)
for symbol, op in [
("<=", operator.le),
("<", operator.lt),
(">=", operator.ge),
(">", operator.gt),
]:
msg = f"'{symbol}' not supported between"
with pytest.raises(TypeError, match=msg):
op(NaT, other)
if other.dtype == np.dtype("object"):
# uses the reverse operator, so symbol changes
msg = None
with pytest.raises(TypeError, match=msg):
op(other, NaT)
def test_compare_date(fixed_now_ts):
# GH#39151 comparing NaT with date object is deprecated
# See also: tests.scalar.timestamps.test_comparisons::test_compare_date
dt = fixed_now_ts.to_pydatetime().date()
msg = "Cannot compare NaT with datetime.date object"
for left, right in [(NaT, dt), (dt, NaT)]:
assert not left == right
assert left != right
with pytest.raises(TypeError, match=msg):
left < right
with pytest.raises(TypeError, match=msg):
left <= right
with pytest.raises(TypeError, match=msg):
left > right
with pytest.raises(TypeError, match=msg):
left >= right
@pytest.mark.parametrize(
"obj",
[
offsets.YearEnd(2),
offsets.YearBegin(2),
offsets.MonthBegin(1),
offsets.MonthEnd(2),
offsets.MonthEnd(12),
offsets.Day(2),
offsets.Day(5),
offsets.Hour(24),
offsets.Hour(3),
offsets.Minute(),
np.timedelta64(3, "h"),
np.timedelta64(4, "h"),
np.timedelta64(3200, "s"),
np.timedelta64(3600, "s"),
np.timedelta64(3600 * 24, "s"),
np.timedelta64(2, "D"),
np.timedelta64(365, "D"),
timedelta(-2),
timedelta(365),
timedelta(minutes=120),
timedelta(days=4, minutes=180),
timedelta(hours=23),
timedelta(hours=23, minutes=30),
timedelta(hours=48),
],
)
def test_nat_addsub_tdlike_scalar(obj):
assert NaT + obj is NaT
assert obj + NaT is NaT
assert NaT - obj is NaT
def test_pickle():
# GH#4606
p = tm.round_trip_pickle(NaT)
assert p is NaT