122 lines
3.8 KiB
Python
122 lines
3.8 KiB
Python
|
import numpy as np
|
||
|
from scipy.linalg import bandwidth, issymmetric, ishermitian
|
||
|
import pytest
|
||
|
from pytest import raises
|
||
|
|
||
|
|
||
|
def test_bandwidth_dtypes():
|
||
|
n = 5
|
||
|
for t in np.typecodes['All']:
|
||
|
A = np.zeros([n, n], dtype=t)
|
||
|
if t in 'eUVOMm':
|
||
|
raises(TypeError, bandwidth, A)
|
||
|
elif t == 'G': # No-op test. On win these pass on others fail.
|
||
|
pass
|
||
|
else:
|
||
|
_ = bandwidth(A)
|
||
|
|
||
|
|
||
|
def test_bandwidth_non2d_input():
|
||
|
A = np.array([1, 2, 3])
|
||
|
raises(ValueError, bandwidth, A)
|
||
|
A = np.array([[[1, 2, 3], [4, 5, 6]]])
|
||
|
raises(ValueError, bandwidth, A)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('T', [x for x in np.typecodes['All']
|
||
|
if x not in 'eGUVOMm'])
|
||
|
def test_bandwidth_square_inputs(T):
|
||
|
n = 20
|
||
|
k = 4
|
||
|
R = np.zeros([n, n], dtype=T, order='F')
|
||
|
# form a banded matrix inplace
|
||
|
R[[x for x in range(n)], [x for x in range(n)]] = 1
|
||
|
R[[x for x in range(n-k)], [x for x in range(k, n)]] = 1
|
||
|
R[[x for x in range(1, n)], [x for x in range(n-1)]] = 1
|
||
|
R[[x for x in range(k, n)], [x for x in range(n-k)]] = 1
|
||
|
assert bandwidth(R) == (k, k)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('T', [x for x in np.typecodes['All']
|
||
|
if x not in 'eGUVOMm'])
|
||
|
def test_bandwidth_rect_inputs(T):
|
||
|
n, m = 10, 20
|
||
|
k = 5
|
||
|
R = np.zeros([n, m], dtype=T, order='F')
|
||
|
# form a banded matrix inplace
|
||
|
R[[x for x in range(n)], [x for x in range(n)]] = 1
|
||
|
R[[x for x in range(n-k)], [x for x in range(k, n)]] = 1
|
||
|
R[[x for x in range(1, n)], [x for x in range(n-1)]] = 1
|
||
|
R[[x for x in range(k, n)], [x for x in range(n-k)]] = 1
|
||
|
assert bandwidth(R) == (k, k)
|
||
|
|
||
|
|
||
|
def test_issymetric_ishermitian_dtypes():
|
||
|
n = 5
|
||
|
for t in np.typecodes['All']:
|
||
|
A = np.zeros([n, n], dtype=t)
|
||
|
if t in 'eUVOMm':
|
||
|
raises(TypeError, issymmetric, A)
|
||
|
raises(TypeError, ishermitian, A)
|
||
|
elif t == 'G': # No-op test. On win these pass on others fail.
|
||
|
pass
|
||
|
else:
|
||
|
assert issymmetric(A)
|
||
|
assert ishermitian(A)
|
||
|
|
||
|
|
||
|
def test_issymmetric_ishermitian_invalid_input():
|
||
|
A = np.array([1, 2, 3])
|
||
|
raises(ValueError, issymmetric, A)
|
||
|
raises(ValueError, ishermitian, A)
|
||
|
A = np.array([[[1, 2, 3], [4, 5, 6]]])
|
||
|
raises(ValueError, issymmetric, A)
|
||
|
raises(ValueError, ishermitian, A)
|
||
|
A = np.array([[1, 2, 3], [4, 5, 6]])
|
||
|
raises(ValueError, issymmetric, A)
|
||
|
raises(ValueError, ishermitian, A)
|
||
|
|
||
|
|
||
|
def test_issymetric_complex_decimals():
|
||
|
A = np.arange(1, 10).astype(complex).reshape(3, 3)
|
||
|
A += np.arange(-4, 5).astype(complex).reshape(3, 3)*1j
|
||
|
# make entries decimal
|
||
|
A /= np.pi
|
||
|
A = A + A.T
|
||
|
assert issymmetric(A)
|
||
|
|
||
|
|
||
|
def test_ishermitian_complex_decimals():
|
||
|
A = np.arange(1, 10).astype(complex).reshape(3, 3)
|
||
|
A += np.arange(-4, 5).astype(complex).reshape(3, 3)*1j
|
||
|
# make entries decimal
|
||
|
A /= np.pi
|
||
|
A = A + A.T.conj()
|
||
|
assert ishermitian(A)
|
||
|
|
||
|
|
||
|
def test_issymmetric_approximate_results():
|
||
|
n = 20
|
||
|
rng = np.random.RandomState(123456789)
|
||
|
x = rng.uniform(high=5., size=[n, n])
|
||
|
y = x @ x.T # symmetric
|
||
|
p = rng.standard_normal([n, n])
|
||
|
z = p @ y @ p.T
|
||
|
assert issymmetric(z, atol=1e-10)
|
||
|
assert issymmetric(z, atol=1e-10, rtol=0.)
|
||
|
assert issymmetric(z, atol=0., rtol=1e-12)
|
||
|
assert issymmetric(z, atol=1e-13, rtol=1e-12)
|
||
|
|
||
|
|
||
|
def test_ishermitian_approximate_results():
|
||
|
n = 20
|
||
|
rng = np.random.RandomState(987654321)
|
||
|
x = rng.uniform(high=5., size=[n, n])
|
||
|
y = x @ x.T # symmetric
|
||
|
p = rng.standard_normal([n, n]) + rng.standard_normal([n, n])*1j
|
||
|
z = p @ y @ p.conj().T
|
||
|
assert ishermitian(z, atol=1e-10)
|
||
|
assert ishermitian(z, atol=1e-10, rtol=0.)
|
||
|
assert ishermitian(z, atol=0., rtol=1e-12)
|
||
|
assert ishermitian(z, atol=1e-13, rtol=1e-12)
|