Inzynierka/Lib/site-packages/scipy/optimize/_linprog_highs.py

441 lines
17 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""HiGHS Linear Optimization Methods
Interface to HiGHS linear optimization software.
https://highs.dev/
.. versionadded:: 1.5.0
References
----------
.. [1] Q. Huangfu and J.A.J. Hall. "Parallelizing the dual revised simplex
method." Mathematical Programming Computation, 10 (1), 119-142,
2018. DOI: 10.1007/s12532-017-0130-5
"""
import inspect
import numpy as np
from ._optimize import _check_unknown_options, OptimizeWarning, OptimizeResult
from warnings import warn
from ._highs._highs_wrapper import _highs_wrapper
from ._highs._highs_constants import (
CONST_I_INF,
CONST_INF,
MESSAGE_LEVEL_NONE,
HIGHS_OBJECTIVE_SENSE_MINIMIZE,
MODEL_STATUS_NOTSET,
MODEL_STATUS_LOAD_ERROR,
MODEL_STATUS_MODEL_ERROR,
MODEL_STATUS_PRESOLVE_ERROR,
MODEL_STATUS_SOLVE_ERROR,
MODEL_STATUS_POSTSOLVE_ERROR,
MODEL_STATUS_MODEL_EMPTY,
MODEL_STATUS_OPTIMAL,
MODEL_STATUS_INFEASIBLE,
MODEL_STATUS_UNBOUNDED_OR_INFEASIBLE,
MODEL_STATUS_UNBOUNDED,
MODEL_STATUS_REACHED_DUAL_OBJECTIVE_VALUE_UPPER_BOUND
as MODEL_STATUS_RDOVUB,
MODEL_STATUS_REACHED_OBJECTIVE_TARGET,
MODEL_STATUS_REACHED_TIME_LIMIT,
MODEL_STATUS_REACHED_ITERATION_LIMIT,
HIGHS_SIMPLEX_STRATEGY_CHOOSE,
HIGHS_SIMPLEX_STRATEGY_DUAL,
HIGHS_SIMPLEX_CRASH_STRATEGY_OFF,
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE,
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG,
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX,
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE,
HIGHS_VAR_TYPE_CONTINUOUS,
)
from scipy.sparse import csc_matrix, vstack, issparse
def _highs_to_scipy_status_message(highs_status, highs_message):
"""Converts HiGHS status number/message to SciPy status number/message"""
scipy_statuses_messages = {
None: (4, "HiGHS did not provide a status code. "),
MODEL_STATUS_NOTSET: (4, ""),
MODEL_STATUS_LOAD_ERROR: (4, ""),
MODEL_STATUS_MODEL_ERROR: (2, ""),
MODEL_STATUS_PRESOLVE_ERROR: (4, ""),
MODEL_STATUS_SOLVE_ERROR: (4, ""),
MODEL_STATUS_POSTSOLVE_ERROR: (4, ""),
MODEL_STATUS_MODEL_EMPTY: (4, ""),
MODEL_STATUS_RDOVUB: (4, ""),
MODEL_STATUS_REACHED_OBJECTIVE_TARGET: (4, ""),
MODEL_STATUS_OPTIMAL: (0, "Optimization terminated successfully. "),
MODEL_STATUS_REACHED_TIME_LIMIT: (1, "Time limit reached. "),
MODEL_STATUS_REACHED_ITERATION_LIMIT: (1, "Iteration limit reached. "),
MODEL_STATUS_INFEASIBLE: (2, "The problem is infeasible. "),
MODEL_STATUS_UNBOUNDED: (3, "The problem is unbounded. "),
MODEL_STATUS_UNBOUNDED_OR_INFEASIBLE: (4, "The problem is unbounded "
"or infeasible. ")}
unrecognized = (4, "The HiGHS status code was not recognized. ")
scipy_status, scipy_message = (
scipy_statuses_messages.get(highs_status, unrecognized))
scipy_message = (f"{scipy_message}"
f"(HiGHS Status {highs_status}: {highs_message})")
return scipy_status, scipy_message
def _replace_inf(x):
# Replace `np.inf` with CONST_INF
infs = np.isinf(x)
x[infs] = np.sign(x[infs])*CONST_INF
return x
def _convert_to_highs_enum(option, option_str, choices):
# If option is in the choices we can look it up, if not use
# the default value taken from function signature and warn:
try:
return choices[option.lower()]
except AttributeError:
return choices[option]
except KeyError:
sig = inspect.signature(_linprog_highs)
default_str = sig.parameters[option_str].default
warn(f"Option {option_str} is {option}, but only values in "
f"{set(choices.keys())} are allowed. Using default: "
f"{default_str}.",
OptimizeWarning, stacklevel=3)
return choices[default_str]
def _linprog_highs(lp, solver, time_limit=None, presolve=True,
disp=False, maxiter=None,
dual_feasibility_tolerance=None,
primal_feasibility_tolerance=None,
ipm_optimality_tolerance=None,
simplex_dual_edge_weight_strategy=None,
mip_rel_gap=None,
mip_max_nodes=None,
**unknown_options):
r"""
Solve the following linear programming problem using one of the HiGHS
solvers:
User-facing documentation is in _linprog_doc.py.
Parameters
----------
lp : _LPProblem
A ``scipy.optimize._linprog_util._LPProblem`` ``namedtuple``.
solver : "ipm" or "simplex" or None
Which HiGHS solver to use. If ``None``, "simplex" will be used.
Options
-------
maxiter : int
The maximum number of iterations to perform in either phase. For
``solver='ipm'``, this does not include the number of crossover
iterations. Default is the largest possible value for an ``int``
on the platform.
disp : bool
Set to ``True`` if indicators of optimization status are to be printed
to the console each iteration; default ``False``.
time_limit : float
The maximum time in seconds allotted to solve the problem; default is
the largest possible value for a ``double`` on the platform.
presolve : bool
Presolve attempts to identify trivial infeasibilities,
identify trivial unboundedness, and simplify the problem before
sending it to the main solver. It is generally recommended
to keep the default setting ``True``; set to ``False`` if presolve is
to be disabled.
dual_feasibility_tolerance : double
Dual feasibility tolerance. Default is 1e-07.
The minimum of this and ``primal_feasibility_tolerance``
is used for the feasibility tolerance when ``solver='ipm'``.
primal_feasibility_tolerance : double
Primal feasibility tolerance. Default is 1e-07.
The minimum of this and ``dual_feasibility_tolerance``
is used for the feasibility tolerance when ``solver='ipm'``.
ipm_optimality_tolerance : double
Optimality tolerance for ``solver='ipm'``. Default is 1e-08.
Minimum possible value is 1e-12 and must be smaller than the largest
possible value for a ``double`` on the platform.
simplex_dual_edge_weight_strategy : str (default: None)
Strategy for simplex dual edge weights. The default, ``None``,
automatically selects one of the following.
``'dantzig'`` uses Dantzig's original strategy of choosing the most
negative reduced cost.
``'devex'`` uses the strategy described in [15]_.
``steepest`` uses the exact steepest edge strategy as described in
[16]_.
``'steepest-devex'`` begins with the exact steepest edge strategy
until the computation is too costly or inexact and then switches to
the devex method.
Curently, using ``None`` always selects ``'steepest-devex'``, but this
may change as new options become available.
mip_max_nodes : int
The maximum number of nodes allotted to solve the problem; default is
the largest possible value for a ``HighsInt`` on the platform.
Ignored if not using the MIP solver.
unknown_options : dict
Optional arguments not used by this particular solver. If
``unknown_options`` is non-empty, a warning is issued listing all
unused options.
Returns
-------
sol : dict
A dictionary consisting of the fields:
x : 1D array
The values of the decision variables that minimizes the
objective function while satisfying the constraints.
fun : float
The optimal value of the objective function ``c @ x``.
slack : 1D array
The (nominally positive) values of the slack,
``b_ub - A_ub @ x``.
con : 1D array
The (nominally zero) residuals of the equality constraints,
``b_eq - A_eq @ x``.
success : bool
``True`` when the algorithm succeeds in finding an optimal
solution.
status : int
An integer representing the exit status of the algorithm.
``0`` : Optimization terminated successfully.
``1`` : Iteration or time limit reached.
``2`` : Problem appears to be infeasible.
``3`` : Problem appears to be unbounded.
``4`` : The HiGHS solver ran into a problem.
message : str
A string descriptor of the exit status of the algorithm.
nit : int
The total number of iterations performed.
For ``solver='simplex'``, this includes iterations in all
phases. For ``solver='ipm'``, this does not include
crossover iterations.
crossover_nit : int
The number of primal/dual pushes performed during the
crossover routine for ``solver='ipm'``. This is ``0``
for ``solver='simplex'``.
ineqlin : OptimizeResult
Solution and sensitivity information corresponding to the
inequality constraints, `b_ub`. A dictionary consisting of the
fields:
residual : np.ndnarray
The (nominally positive) values of the slack variables,
``b_ub - A_ub @ x``. This quantity is also commonly
referred to as "slack".
marginals : np.ndarray
The sensitivity (partial derivative) of the objective
function with respect to the right-hand side of the
inequality constraints, `b_ub`.
eqlin : OptimizeResult
Solution and sensitivity information corresponding to the
equality constraints, `b_eq`. A dictionary consisting of the
fields:
residual : np.ndarray
The (nominally zero) residuals of the equality constraints,
``b_eq - A_eq @ x``.
marginals : np.ndarray
The sensitivity (partial derivative) of the objective
function with respect to the right-hand side of the
equality constraints, `b_eq`.
lower, upper : OptimizeResult
Solution and sensitivity information corresponding to the
lower and upper bounds on decision variables, `bounds`.
residual : np.ndarray
The (nominally positive) values of the quantity
``x - lb`` (lower) or ``ub - x`` (upper).
marginals : np.ndarray
The sensitivity (partial derivative) of the objective
function with respect to the lower and upper
`bounds`.
mip_node_count : int
The number of subproblems or "nodes" solved by the MILP
solver. Only present when `integrality` is not `None`.
mip_dual_bound : float
The MILP solver's final estimate of the lower bound on the
optimal solution. Only present when `integrality` is not
`None`.
mip_gap : float
The difference between the final objective function value
and the final dual bound, scaled by the final objective
function value. Only present when `integrality` is not
`None`.
Notes
-----
The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
`marginals`, or partial derivatives of the objective function with respect
to the right-hand side of each constraint. These partial derivatives are
also referred to as "Lagrange multipliers", "dual values", and
"shadow prices". The sign convention of `marginals` is opposite that
of Lagrange multipliers produced by many nonlinear solvers.
References
----------
.. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
Mathematical programming 5.1 (1973): 1-28.
.. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
"""
_check_unknown_options(unknown_options)
# Map options to HiGHS enum values
simplex_dual_edge_weight_strategy_enum = _convert_to_highs_enum(
simplex_dual_edge_weight_strategy,
'simplex_dual_edge_weight_strategy',
choices={'dantzig': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG,
'devex': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX,
'steepest-devex': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE,
'steepest':
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE,
None: None})
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp
lb, ub = bounds.T.copy() # separate bounds, copy->C-cntgs
# highs_wrapper solves LHS <= A*x <= RHS, not equality constraints
lhs_ub = -np.ones_like(b_ub)*np.inf # LHS of UB constraints is -inf
rhs_ub = b_ub # RHS of UB constraints is b_ub
lhs_eq = b_eq # Equality constaint is inequality
rhs_eq = b_eq # constraint with LHS=RHS
lhs = np.concatenate((lhs_ub, lhs_eq))
rhs = np.concatenate((rhs_ub, rhs_eq))
if issparse(A_ub) or issparse(A_eq):
A = vstack((A_ub, A_eq))
else:
A = np.vstack((A_ub, A_eq))
A = csc_matrix(A)
options = {
'presolve': presolve,
'sense': HIGHS_OBJECTIVE_SENSE_MINIMIZE,
'solver': solver,
'time_limit': time_limit,
'highs_debug_level': MESSAGE_LEVEL_NONE,
'dual_feasibility_tolerance': dual_feasibility_tolerance,
'ipm_optimality_tolerance': ipm_optimality_tolerance,
'log_to_console': disp,
'mip_max_nodes': mip_max_nodes,
'output_flag': disp,
'primal_feasibility_tolerance': primal_feasibility_tolerance,
'simplex_dual_edge_weight_strategy':
simplex_dual_edge_weight_strategy_enum,
'simplex_strategy': HIGHS_SIMPLEX_STRATEGY_DUAL,
'simplex_crash_strategy': HIGHS_SIMPLEX_CRASH_STRATEGY_OFF,
'ipm_iteration_limit': maxiter,
'simplex_iteration_limit': maxiter,
'mip_rel_gap': mip_rel_gap,
}
# np.inf doesn't work; use very large constant
rhs = _replace_inf(rhs)
lhs = _replace_inf(lhs)
lb = _replace_inf(lb)
ub = _replace_inf(ub)
if integrality is None or np.sum(integrality) == 0:
integrality = np.empty(0)
else:
integrality = np.array(integrality)
res = _highs_wrapper(c, A.indptr, A.indices, A.data, lhs, rhs,
lb, ub, integrality.astype(np.uint8), options)
# HiGHS represents constraints as lhs/rhs, so
# Ax + s = b => Ax = b - s
# and we need to split up s by A_ub and A_eq
if 'slack' in res:
slack = res['slack']
con = np.array(slack[len(b_ub):])
slack = np.array(slack[:len(b_ub)])
else:
slack, con = None, None
# lagrange multipliers for equalities/inequalities and upper/lower bounds
if 'lambda' in res:
lamda = res['lambda']
marg_ineqlin = np.array(lamda[:len(b_ub)])
marg_eqlin = np.array(lamda[len(b_ub):])
marg_upper = np.array(res['marg_bnds'][1, :])
marg_lower = np.array(res['marg_bnds'][0, :])
else:
marg_ineqlin, marg_eqlin = None, None
marg_upper, marg_lower = None, None
# this needs to be updated if we start choosing the solver intelligently
solvers = {"ipm": "highs-ipm", "simplex": "highs-ds", None: "highs-ds"}
# Convert to scipy-style status and message
highs_status = res.get('status', None)
highs_message = res.get('message', None)
status, message = _highs_to_scipy_status_message(highs_status,
highs_message)
x = np.array(res['x']) if 'x' in res else None
sol = {'x': x,
'slack': slack,
'con': con,
'ineqlin': OptimizeResult({
'residual': slack,
'marginals': marg_ineqlin,
}),
'eqlin': OptimizeResult({
'residual': con,
'marginals': marg_eqlin,
}),
'lower': OptimizeResult({
'residual': None if x is None else x - lb,
'marginals': marg_lower,
}),
'upper': OptimizeResult({
'residual': None if x is None else ub - x,
'marginals': marg_upper
}),
'fun': res.get('fun'),
'status': status,
'success': res['status'] == MODEL_STATUS_OPTIMAL,
'message': message,
'nit': res.get('simplex_nit', 0) or res.get('ipm_nit', 0),
'crossover_nit': res.get('crossover_nit'),
}
if np.any(x) and integrality is not None:
sol.update({
'mip_node_count': res.get('mip_node_count', 0),
'mip_dual_bound': res.get('mip_dual_bound', 0.0),
'mip_gap': res.get('mip_gap', 0.0),
})
return sol