556 lines
17 KiB
Python
556 lines
17 KiB
Python
|
"""
|
||
|
Laplacian of a compressed-sparse graph
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.sparse import isspmatrix
|
||
|
from scipy.sparse.linalg import LinearOperator
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Graph laplacian
|
||
|
def laplacian(
|
||
|
csgraph,
|
||
|
normed=False,
|
||
|
return_diag=False,
|
||
|
use_out_degree=False,
|
||
|
*,
|
||
|
copy=True,
|
||
|
form="array",
|
||
|
dtype=None,
|
||
|
symmetrized=False,
|
||
|
):
|
||
|
"""
|
||
|
Return the Laplacian of a directed graph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
csgraph : array_like or sparse matrix, 2 dimensions
|
||
|
compressed-sparse graph, with shape (N, N).
|
||
|
normed : bool, optional
|
||
|
If True, then compute symmetrically normalized Laplacian.
|
||
|
Default: False.
|
||
|
return_diag : bool, optional
|
||
|
If True, then also return an array related to vertex degrees.
|
||
|
Default: False.
|
||
|
use_out_degree : bool, optional
|
||
|
If True, then use out-degree instead of in-degree.
|
||
|
This distinction matters only if the graph is asymmetric.
|
||
|
Default: False.
|
||
|
copy: bool, optional
|
||
|
If False, then change `csgraph` in place if possible,
|
||
|
avoiding doubling the memory use.
|
||
|
Default: True, for backward compatibility.
|
||
|
form: 'array', or 'function', or 'lo'
|
||
|
Determines the format of the output Laplacian:
|
||
|
|
||
|
* 'array' is a numpy array;
|
||
|
* 'function' is a pointer to evaluating the Laplacian-vector
|
||
|
or Laplacian-matrix product;
|
||
|
* 'lo' results in the format of the `LinearOperator`.
|
||
|
|
||
|
Choosing 'function' or 'lo' always avoids doubling
|
||
|
the memory use, ignoring `copy` value.
|
||
|
Default: 'array', for backward compatibility.
|
||
|
dtype: None or one of numeric numpy dtypes, optional
|
||
|
The dtype of the output. If ``dtype=None``, the dtype of the
|
||
|
output matches the dtype of the input csgraph, except for
|
||
|
the case ``normed=True`` and integer-like csgraph, where
|
||
|
the output dtype is 'float' allowing accurate normalization,
|
||
|
but dramatically increasing the memory use.
|
||
|
Default: None, for backward compatibility.
|
||
|
symmetrized: bool, optional
|
||
|
If True, then the output Laplacian is symmetric/Hermitian.
|
||
|
The symmetrization is done by ``csgraph + csgraph.T.conj``
|
||
|
without dividing by 2 to preserve integer dtypes if possible
|
||
|
prior to the construction of the Laplacian.
|
||
|
The symmetrization will increase the memory footprint of
|
||
|
sparse matrices unless the sparsity pattern is symmetric or
|
||
|
`form` is 'function' or 'lo'.
|
||
|
Default: False, for backward compatibility.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lap : ndarray, or sparse matrix, or `LinearOperator`
|
||
|
The N x N Laplacian of csgraph. It will be a NumPy array (dense)
|
||
|
if the input was dense, or a sparse matrix otherwise, or
|
||
|
the format of a function or `LinearOperator` if
|
||
|
`form` equals 'function' or 'lo', respectively.
|
||
|
diag : ndarray, optional
|
||
|
The length-N main diagonal of the Laplacian matrix.
|
||
|
For the normalized Laplacian, this is the array of square roots
|
||
|
of vertex degrees or 1 if the degree is zero.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Laplacian matrix of a graph is sometimes referred to as the
|
||
|
"Kirchhoff matrix" or just the "Laplacian", and is useful in many
|
||
|
parts of spectral graph theory.
|
||
|
In particular, the eigen-decomposition of the Laplacian can give
|
||
|
insight into many properties of the graph, e.g.,
|
||
|
is commonly used for spectral data embedding and clustering.
|
||
|
|
||
|
The constructed Laplacian doubles the memory use if ``copy=True`` and
|
||
|
``form="array"`` which is the default.
|
||
|
Choosing ``copy=False`` has no effect unless ``form="array"``
|
||
|
or the matrix is sparse in the ``coo`` format, or dense array, except
|
||
|
for the integer input with ``normed=True`` that forces the float output.
|
||
|
|
||
|
Sparse input is reformatted into ``coo`` if ``form="array"``,
|
||
|
which is the default.
|
||
|
|
||
|
If the input adjacency matrix is not symmetic, the Laplacian is
|
||
|
also non-symmetric unless ``symmetrized=True`` is used.
|
||
|
|
||
|
Diagonal entries of the input adjacency matrix are ignored and
|
||
|
replaced with zeros for the purpose of normalization where ``normed=True``.
|
||
|
The normalization uses the inverse square roots of row-sums of the input
|
||
|
adjacency matrix, and thus may fail if the row-sums contain
|
||
|
negative or complex with a non-zero imaginary part values.
|
||
|
|
||
|
The normalization is symmetric, making the normalized Laplacian also
|
||
|
symmetric if the input csgraph was symmetric.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Laplacian matrix. https://en.wikipedia.org/wiki/Laplacian_matrix
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.sparse import csgraph
|
||
|
|
||
|
Our first illustration is the symmetric graph
|
||
|
|
||
|
>>> G = np.arange(4) * np.arange(4)[:, np.newaxis]
|
||
|
>>> G
|
||
|
array([[0, 0, 0, 0],
|
||
|
[0, 1, 2, 3],
|
||
|
[0, 2, 4, 6],
|
||
|
[0, 3, 6, 9]])
|
||
|
|
||
|
and its symmetric Laplacian matrix
|
||
|
|
||
|
>>> csgraph.laplacian(G)
|
||
|
array([[ 0, 0, 0, 0],
|
||
|
[ 0, 5, -2, -3],
|
||
|
[ 0, -2, 8, -6],
|
||
|
[ 0, -3, -6, 9]])
|
||
|
|
||
|
The non-symmetric graph
|
||
|
|
||
|
>>> G = np.arange(9).reshape(3, 3)
|
||
|
>>> G
|
||
|
array([[0, 1, 2],
|
||
|
[3, 4, 5],
|
||
|
[6, 7, 8]])
|
||
|
|
||
|
has different row- and column sums, resulting in two varieties
|
||
|
of the Laplacian matrix, using an in-degree, which is the default
|
||
|
|
||
|
>>> L_in_degree = csgraph.laplacian(G)
|
||
|
>>> L_in_degree
|
||
|
array([[ 9, -1, -2],
|
||
|
[-3, 8, -5],
|
||
|
[-6, -7, 7]])
|
||
|
|
||
|
or alternatively an out-degree
|
||
|
|
||
|
>>> L_out_degree = csgraph.laplacian(G, use_out_degree=True)
|
||
|
>>> L_out_degree
|
||
|
array([[ 3, -1, -2],
|
||
|
[-3, 8, -5],
|
||
|
[-6, -7, 13]])
|
||
|
|
||
|
Constructing a symmetric Laplacian matrix, one can add the two as
|
||
|
|
||
|
>>> L_in_degree + L_out_degree.T
|
||
|
array([[ 12, -4, -8],
|
||
|
[ -4, 16, -12],
|
||
|
[ -8, -12, 20]])
|
||
|
|
||
|
or use the ``symmetrized=True`` option
|
||
|
|
||
|
>>> csgraph.laplacian(G, symmetrized=True)
|
||
|
array([[ 12, -4, -8],
|
||
|
[ -4, 16, -12],
|
||
|
[ -8, -12, 20]])
|
||
|
|
||
|
that is equivalent to symmetrizing the original graph
|
||
|
|
||
|
>>> csgraph.laplacian(G + G.T)
|
||
|
array([[ 12, -4, -8],
|
||
|
[ -4, 16, -12],
|
||
|
[ -8, -12, 20]])
|
||
|
|
||
|
The goal of normalization is to make the non-zero diagonal entries
|
||
|
of the Laplacian matrix to be all unit, also scaling off-diagonal
|
||
|
entries correspondingly. The normalization can be done manually, e.g.,
|
||
|
|
||
|
>>> G = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]])
|
||
|
>>> L, d = csgraph.laplacian(G, return_diag=True)
|
||
|
>>> L
|
||
|
array([[ 2, -1, -1],
|
||
|
[-1, 2, -1],
|
||
|
[-1, -1, 2]])
|
||
|
>>> d
|
||
|
array([2, 2, 2])
|
||
|
>>> scaling = np.sqrt(d)
|
||
|
>>> scaling
|
||
|
array([1.41421356, 1.41421356, 1.41421356])
|
||
|
>>> (1/scaling)*L*(1/scaling)
|
||
|
array([[ 1. , -0.5, -0.5],
|
||
|
[-0.5, 1. , -0.5],
|
||
|
[-0.5, -0.5, 1. ]])
|
||
|
|
||
|
Or using ``normed=True`` option
|
||
|
|
||
|
>>> L, d = csgraph.laplacian(G, return_diag=True, normed=True)
|
||
|
>>> L
|
||
|
array([[ 1. , -0.5, -0.5],
|
||
|
[-0.5, 1. , -0.5],
|
||
|
[-0.5, -0.5, 1. ]])
|
||
|
|
||
|
which now instead of the diagonal returns the scaling coefficients
|
||
|
|
||
|
>>> d
|
||
|
array([1.41421356, 1.41421356, 1.41421356])
|
||
|
|
||
|
Zero scaling coefficients are substituted with 1s, where scaling
|
||
|
has thus no effect, e.g.,
|
||
|
|
||
|
>>> G = np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0]])
|
||
|
>>> G
|
||
|
array([[0, 0, 0],
|
||
|
[0, 0, 1],
|
||
|
[0, 1, 0]])
|
||
|
>>> L, d = csgraph.laplacian(G, return_diag=True, normed=True)
|
||
|
>>> L
|
||
|
array([[ 0., -0., -0.],
|
||
|
[-0., 1., -1.],
|
||
|
[-0., -1., 1.]])
|
||
|
>>> d
|
||
|
array([1., 1., 1.])
|
||
|
|
||
|
Only the symmetric normalization is implemented, resulting
|
||
|
in a symmetric Laplacian matrix if and only if its graph is symmetric
|
||
|
and has all non-negative degrees, like in the examples above.
|
||
|
|
||
|
The output Laplacian matrix is by default a dense array or a sparse matrix
|
||
|
inferring its shape, format, and dtype from the input graph matrix:
|
||
|
|
||
|
>>> G = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]).astype(np.float32)
|
||
|
>>> G
|
||
|
array([[0., 1., 1.],
|
||
|
[1., 0., 1.],
|
||
|
[1., 1., 0.]], dtype=float32)
|
||
|
>>> csgraph.laplacian(G)
|
||
|
array([[ 2., -1., -1.],
|
||
|
[-1., 2., -1.],
|
||
|
[-1., -1., 2.]], dtype=float32)
|
||
|
|
||
|
but can alternatively be generated matrix-free as a LinearOperator:
|
||
|
|
||
|
>>> L = csgraph.laplacian(G, form="lo")
|
||
|
>>> L
|
||
|
<3x3 _CustomLinearOperator with dtype=float32>
|
||
|
>>> L(np.eye(3))
|
||
|
array([[ 2., -1., -1.],
|
||
|
[-1., 2., -1.],
|
||
|
[-1., -1., 2.]])
|
||
|
|
||
|
or as a lambda-function:
|
||
|
|
||
|
>>> L = csgraph.laplacian(G, form="function")
|
||
|
>>> L
|
||
|
<function _laplace.<locals>.<lambda> at 0x0000012AE6F5A598>
|
||
|
>>> L(np.eye(3))
|
||
|
array([[ 2., -1., -1.],
|
||
|
[-1., 2., -1.],
|
||
|
[-1., -1., 2.]])
|
||
|
|
||
|
The Laplacian matrix is used for
|
||
|
spectral data clustering and embedding
|
||
|
as well as for spectral graph partitioning.
|
||
|
Our final example illustrates the latter
|
||
|
for a noisy directed linear graph.
|
||
|
|
||
|
>>> from scipy.sparse import diags, random
|
||
|
>>> from scipy.sparse.linalg import lobpcg
|
||
|
|
||
|
Create a directed linear graph with ``N=35`` vertices
|
||
|
using a sparse adjacency matrix ``G``:
|
||
|
|
||
|
>>> N = 35
|
||
|
>>> G = diags(np.ones(N-1), 1, format="csr")
|
||
|
|
||
|
Fix a random seed ``rng`` and add a random sparse noise to the graph ``G``:
|
||
|
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> G += 1e-2 * random(N, N, density=0.1, random_state=rng)
|
||
|
|
||
|
Set initial approximations for eigenvectors:
|
||
|
|
||
|
>>> X = rng.random((N, 2))
|
||
|
|
||
|
The constant vector of ones is always a trivial eigenvector
|
||
|
of the non-normalized Laplacian to be filtered out:
|
||
|
|
||
|
>>> Y = np.ones((N, 1))
|
||
|
|
||
|
Alternating (1) the sign of the graph weights allows determining
|
||
|
labels for spectral max- and min- cuts in a single loop.
|
||
|
Since the graph is undirected, the option ``symmetrized=True``
|
||
|
must be used in the construction of the Laplacian.
|
||
|
The option ``normed=True`` cannot be used in (2) for the negative weights
|
||
|
here as the symmetric normalization evaluates square roots.
|
||
|
The option ``form="lo"`` in (2) is matrix-free, i.e., guarantees
|
||
|
a fixed memory footprint and read-only access to the graph.
|
||
|
Calling the eigenvalue solver ``lobpcg`` (3) computes the Fiedler vector
|
||
|
that determines the labels as the signs of its components in (5).
|
||
|
Since the sign in an eigenvector is not deterministic and can flip,
|
||
|
we fix the sign of the first component to be always +1 in (4).
|
||
|
|
||
|
>>> for cut in ["max", "min"]:
|
||
|
... G = -G # 1.
|
||
|
... L = csgraph.laplacian(G, symmetrized=True, form="lo") # 2.
|
||
|
... _, eves = lobpcg(L, X, Y=Y, largest=False, tol=1e-3) # 3.
|
||
|
... eves *= np.sign(eves[0, 0]) # 4.
|
||
|
... print(cut + "-cut labels:\\n", 1 * (eves[:, 0]>0)) # 5.
|
||
|
max-cut labels:
|
||
|
[1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]
|
||
|
min-cut labels:
|
||
|
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
|
||
|
|
||
|
As anticipated for a (slightly noisy) linear graph,
|
||
|
the max-cut strips all the edges of the graph coloring all
|
||
|
odd vertices into one color and all even vertices into another one,
|
||
|
while the balanced min-cut partitions the graph
|
||
|
in the middle by deleting a single edge.
|
||
|
Both determined partitions are optimal.
|
||
|
"""
|
||
|
if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]:
|
||
|
raise ValueError('csgraph must be a square matrix or array')
|
||
|
|
||
|
if normed and (
|
||
|
np.issubdtype(csgraph.dtype, np.signedinteger)
|
||
|
or np.issubdtype(csgraph.dtype, np.uint)
|
||
|
):
|
||
|
csgraph = csgraph.astype(np.float64)
|
||
|
|
||
|
if form == "array":
|
||
|
create_lap = (
|
||
|
_laplacian_sparse if isspmatrix(csgraph) else _laplacian_dense
|
||
|
)
|
||
|
else:
|
||
|
create_lap = (
|
||
|
_laplacian_sparse_flo
|
||
|
if isspmatrix(csgraph)
|
||
|
else _laplacian_dense_flo
|
||
|
)
|
||
|
|
||
|
degree_axis = 1 if use_out_degree else 0
|
||
|
|
||
|
lap, d = create_lap(
|
||
|
csgraph,
|
||
|
normed=normed,
|
||
|
axis=degree_axis,
|
||
|
copy=copy,
|
||
|
form=form,
|
||
|
dtype=dtype,
|
||
|
symmetrized=symmetrized,
|
||
|
)
|
||
|
if return_diag:
|
||
|
return lap, d
|
||
|
return lap
|
||
|
|
||
|
|
||
|
def _setdiag_dense(m, d):
|
||
|
step = len(d) + 1
|
||
|
m.flat[::step] = d
|
||
|
|
||
|
|
||
|
def _laplace(m, d):
|
||
|
return lambda v: v * d[:, np.newaxis] - m @ v
|
||
|
|
||
|
|
||
|
def _laplace_normed(m, d, nd):
|
||
|
laplace = _laplace(m, d)
|
||
|
return lambda v: nd[:, np.newaxis] * laplace(v * nd[:, np.newaxis])
|
||
|
|
||
|
|
||
|
def _laplace_sym(m, d):
|
||
|
return (
|
||
|
lambda v: v * d[:, np.newaxis]
|
||
|
- m @ v
|
||
|
- np.transpose(np.conjugate(np.transpose(np.conjugate(v)) @ m))
|
||
|
)
|
||
|
|
||
|
|
||
|
def _laplace_normed_sym(m, d, nd):
|
||
|
laplace_sym = _laplace_sym(m, d)
|
||
|
return lambda v: nd[:, np.newaxis] * laplace_sym(v * nd[:, np.newaxis])
|
||
|
|
||
|
|
||
|
def _linearoperator(mv, shape, dtype):
|
||
|
return LinearOperator(matvec=mv, matmat=mv, shape=shape, dtype=dtype)
|
||
|
|
||
|
|
||
|
def _laplacian_sparse_flo(graph, normed, axis, copy, form, dtype, symmetrized):
|
||
|
# The keyword argument `copy` is unused and has no effect here.
|
||
|
del copy
|
||
|
|
||
|
if dtype is None:
|
||
|
dtype = graph.dtype
|
||
|
|
||
|
graph_sum = graph.sum(axis=axis).getA1()
|
||
|
graph_diagonal = graph.diagonal()
|
||
|
diag = graph_sum - graph_diagonal
|
||
|
if symmetrized:
|
||
|
graph_sum += graph.sum(axis=1 - axis).getA1()
|
||
|
diag = graph_sum - graph_diagonal - graph_diagonal
|
||
|
|
||
|
if normed:
|
||
|
isolated_node_mask = diag == 0
|
||
|
w = np.where(isolated_node_mask, 1, np.sqrt(diag))
|
||
|
if symmetrized:
|
||
|
md = _laplace_normed_sym(graph, graph_sum, 1.0 / w)
|
||
|
else:
|
||
|
md = _laplace_normed(graph, graph_sum, 1.0 / w)
|
||
|
if form == "function":
|
||
|
return md, w.astype(dtype, copy=False)
|
||
|
elif form == "lo":
|
||
|
m = _linearoperator(md, shape=graph.shape, dtype=dtype)
|
||
|
return m, w.astype(dtype, copy=False)
|
||
|
else:
|
||
|
raise ValueError(f"Invalid form: {form!r}")
|
||
|
else:
|
||
|
if symmetrized:
|
||
|
md = _laplace_sym(graph, graph_sum)
|
||
|
else:
|
||
|
md = _laplace(graph, graph_sum)
|
||
|
if form == "function":
|
||
|
return md, diag.astype(dtype, copy=False)
|
||
|
elif form == "lo":
|
||
|
m = _linearoperator(md, shape=graph.shape, dtype=dtype)
|
||
|
return m, diag.astype(dtype, copy=False)
|
||
|
else:
|
||
|
raise ValueError(f"Invalid form: {form!r}")
|
||
|
|
||
|
|
||
|
def _laplacian_sparse(graph, normed, axis, copy, form, dtype, symmetrized):
|
||
|
# The keyword argument `form` is unused and has no effect here.
|
||
|
del form
|
||
|
|
||
|
if dtype is None:
|
||
|
dtype = graph.dtype
|
||
|
|
||
|
needs_copy = False
|
||
|
if graph.format in ('lil', 'dok'):
|
||
|
m = graph.tocoo()
|
||
|
else:
|
||
|
m = graph
|
||
|
if copy:
|
||
|
needs_copy = True
|
||
|
|
||
|
if symmetrized:
|
||
|
m += m.T.conj()
|
||
|
|
||
|
w = m.sum(axis=axis).getA1() - m.diagonal()
|
||
|
if normed:
|
||
|
m = m.tocoo(copy=needs_copy)
|
||
|
isolated_node_mask = (w == 0)
|
||
|
w = np.where(isolated_node_mask, 1, np.sqrt(w))
|
||
|
m.data /= w[m.row]
|
||
|
m.data /= w[m.col]
|
||
|
m.data *= -1
|
||
|
m.setdiag(1 - isolated_node_mask)
|
||
|
else:
|
||
|
if m.format == 'dia':
|
||
|
m = m.copy()
|
||
|
else:
|
||
|
m = m.tocoo(copy=needs_copy)
|
||
|
m.data *= -1
|
||
|
m.setdiag(w)
|
||
|
|
||
|
return m.astype(dtype, copy=False), w.astype(dtype)
|
||
|
|
||
|
|
||
|
def _laplacian_dense_flo(graph, normed, axis, copy, form, dtype, symmetrized):
|
||
|
|
||
|
if copy:
|
||
|
m = np.array(graph)
|
||
|
else:
|
||
|
m = np.asarray(graph)
|
||
|
|
||
|
if dtype is None:
|
||
|
dtype = m.dtype
|
||
|
|
||
|
graph_sum = m.sum(axis=axis)
|
||
|
graph_diagonal = m.diagonal()
|
||
|
diag = graph_sum - graph_diagonal
|
||
|
if symmetrized:
|
||
|
graph_sum += m.sum(axis=1 - axis)
|
||
|
diag = graph_sum - graph_diagonal - graph_diagonal
|
||
|
|
||
|
if normed:
|
||
|
isolated_node_mask = diag == 0
|
||
|
w = np.where(isolated_node_mask, 1, np.sqrt(diag))
|
||
|
if symmetrized:
|
||
|
md = _laplace_normed_sym(m, graph_sum, 1.0 / w)
|
||
|
else:
|
||
|
md = _laplace_normed(m, graph_sum, 1.0 / w)
|
||
|
if form == "function":
|
||
|
return md, w.astype(dtype, copy=False)
|
||
|
elif form == "lo":
|
||
|
m = _linearoperator(md, shape=graph.shape, dtype=dtype)
|
||
|
return m, w.astype(dtype, copy=False)
|
||
|
else:
|
||
|
raise ValueError(f"Invalid form: {form!r}")
|
||
|
else:
|
||
|
if symmetrized:
|
||
|
md = _laplace_sym(m, graph_sum)
|
||
|
else:
|
||
|
md = _laplace(m, graph_sum)
|
||
|
if form == "function":
|
||
|
return md, diag.astype(dtype, copy=False)
|
||
|
elif form == "lo":
|
||
|
m = _linearoperator(md, shape=graph.shape, dtype=dtype)
|
||
|
return m, diag.astype(dtype, copy=False)
|
||
|
else:
|
||
|
raise ValueError(f"Invalid form: {form!r}")
|
||
|
|
||
|
|
||
|
def _laplacian_dense(graph, normed, axis, copy, form, dtype, symmetrized):
|
||
|
|
||
|
if form != "array":
|
||
|
raise ValueError(f'{form!r} must be "array"')
|
||
|
|
||
|
if dtype is None:
|
||
|
dtype = graph.dtype
|
||
|
|
||
|
if copy:
|
||
|
m = np.array(graph)
|
||
|
else:
|
||
|
m = np.asarray(graph)
|
||
|
|
||
|
if dtype is None:
|
||
|
dtype = m.dtype
|
||
|
|
||
|
if symmetrized:
|
||
|
m += m.T.conj()
|
||
|
np.fill_diagonal(m, 0)
|
||
|
w = m.sum(axis=axis)
|
||
|
if normed:
|
||
|
isolated_node_mask = (w == 0)
|
||
|
w = np.where(isolated_node_mask, 1, np.sqrt(w))
|
||
|
m /= w
|
||
|
m /= w[:, np.newaxis]
|
||
|
m *= -1
|
||
|
_setdiag_dense(m, 1 - isolated_node_mask)
|
||
|
else:
|
||
|
m *= -1
|
||
|
_setdiag_dense(m, w)
|
||
|
|
||
|
return m.astype(dtype, copy=False), w.astype(dtype, copy=False)
|