808 lines
26 KiB
Python
808 lines
26 KiB
Python
|
"""Compute the action of the matrix exponential."""
|
||
|
from warnings import warn
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
import scipy.linalg
|
||
|
import scipy.sparse.linalg
|
||
|
from scipy.linalg._decomp_qr import qr
|
||
|
from scipy.sparse._sputils import is_pydata_spmatrix
|
||
|
from scipy.sparse.linalg import aslinearoperator
|
||
|
from scipy.sparse.linalg._interface import IdentityOperator
|
||
|
from scipy.sparse.linalg._onenormest import onenormest
|
||
|
|
||
|
__all__ = ['expm_multiply']
|
||
|
|
||
|
|
||
|
def _exact_inf_norm(A):
|
||
|
# A compatibility function which should eventually disappear.
|
||
|
if scipy.sparse.isspmatrix(A):
|
||
|
return max(abs(A).sum(axis=1).flat)
|
||
|
elif is_pydata_spmatrix(A):
|
||
|
return max(abs(A).sum(axis=1))
|
||
|
else:
|
||
|
return np.linalg.norm(A, np.inf)
|
||
|
|
||
|
|
||
|
def _exact_1_norm(A):
|
||
|
# A compatibility function which should eventually disappear.
|
||
|
if scipy.sparse.isspmatrix(A):
|
||
|
return max(abs(A).sum(axis=0).flat)
|
||
|
elif is_pydata_spmatrix(A):
|
||
|
return max(abs(A).sum(axis=0))
|
||
|
else:
|
||
|
return np.linalg.norm(A, 1)
|
||
|
|
||
|
|
||
|
def _trace(A):
|
||
|
# A compatibility function which should eventually disappear.
|
||
|
if is_pydata_spmatrix(A):
|
||
|
return A.to_scipy_sparse().trace()
|
||
|
else:
|
||
|
return A.trace()
|
||
|
|
||
|
|
||
|
def traceest(A, m3, seed=None):
|
||
|
"""Estimate `np.trace(A)` using `3*m3` matrix-vector products.
|
||
|
|
||
|
The result is not deterministic.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : LinearOperator
|
||
|
Linear operator whose trace will be estimated. Has to be square.
|
||
|
m3 : int
|
||
|
Number of matrix-vector products divided by 3 used to estimate the
|
||
|
trace.
|
||
|
seed : optional
|
||
|
Seed for `numpy.random.default_rng`.
|
||
|
Can be provided to obtain deterministic results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
trace : LinearOperator.dtype
|
||
|
Estimate of the trace
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is the Hutch++ algorithm given in [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Meyer, Raphael A., Cameron Musco, Christopher Musco, and David P.
|
||
|
Woodruff. "Hutch++: Optimal Stochastic Trace Estimation." In Symposium
|
||
|
on Simplicity in Algorithms (SOSA), pp. 142-155. Society for Industrial
|
||
|
and Applied Mathematics, 2021
|
||
|
https://doi.org/10.1137/1.9781611976496.16
|
||
|
|
||
|
"""
|
||
|
rng = np.random.default_rng(seed)
|
||
|
if len(A.shape) != 2 or A.shape[-1] != A.shape[-2]:
|
||
|
raise ValueError("Expected A to be like a square matrix.")
|
||
|
n = A.shape[-1]
|
||
|
S = rng.choice([-1.0, +1.0], [n, m3])
|
||
|
Q, _ = qr(A.matmat(S), overwrite_a=True, mode='economic')
|
||
|
trQAQ = np.trace(Q.conj().T @ A.matmat(Q))
|
||
|
G = rng.choice([-1, +1], [n, m3])
|
||
|
right = G - Q@(Q.conj().T @ G)
|
||
|
trGAG = np.trace(right.conj().T @ A.matmat(right))
|
||
|
return trQAQ + trGAG/m3
|
||
|
|
||
|
|
||
|
def _ident_like(A):
|
||
|
# A compatibility function which should eventually disappear.
|
||
|
if scipy.sparse.isspmatrix(A):
|
||
|
return scipy.sparse._construct.eye(A.shape[0], A.shape[1],
|
||
|
dtype=A.dtype, format=A.format)
|
||
|
elif is_pydata_spmatrix(A):
|
||
|
import sparse
|
||
|
return sparse.eye(A.shape[0], A.shape[1], dtype=A.dtype)
|
||
|
elif isinstance(A, scipy.sparse.linalg.LinearOperator):
|
||
|
return IdentityOperator(A.shape, dtype=A.dtype)
|
||
|
else:
|
||
|
return np.eye(A.shape[0], A.shape[1], dtype=A.dtype)
|
||
|
|
||
|
|
||
|
def expm_multiply(A, B, start=None, stop=None, num=None,
|
||
|
endpoint=None, traceA=None):
|
||
|
"""
|
||
|
Compute the action of the matrix exponential of A on B.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : transposable linear operator
|
||
|
The operator whose exponential is of interest.
|
||
|
B : ndarray
|
||
|
The matrix or vector to be multiplied by the matrix exponential of A.
|
||
|
start : scalar, optional
|
||
|
The starting time point of the sequence.
|
||
|
stop : scalar, optional
|
||
|
The end time point of the sequence, unless `endpoint` is set to False.
|
||
|
In that case, the sequence consists of all but the last of ``num + 1``
|
||
|
evenly spaced time points, so that `stop` is excluded.
|
||
|
Note that the step size changes when `endpoint` is False.
|
||
|
num : int, optional
|
||
|
Number of time points to use.
|
||
|
endpoint : bool, optional
|
||
|
If True, `stop` is the last time point. Otherwise, it is not included.
|
||
|
traceA : scalar, optional
|
||
|
Trace of `A`. If not given the trace is estimated for linear operators,
|
||
|
or calculated exactly for sparse matrices. It is used to precondition
|
||
|
`A`, thus an approximate trace is acceptable.
|
||
|
For linear operators, `traceA` should be provided to ensure performance
|
||
|
as the estimation is not guaranteed to be reliable for all cases.
|
||
|
|
||
|
.. versionadded: 1.9.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
expm_A_B : ndarray
|
||
|
The result of the action :math:`e^{t_k A} B`.
|
||
|
|
||
|
Warns
|
||
|
-----
|
||
|
UserWarning
|
||
|
If `A` is a linear operator and ``traceA=None`` (default).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The optional arguments defining the sequence of evenly spaced time points
|
||
|
are compatible with the arguments of `numpy.linspace`.
|
||
|
|
||
|
The output ndarray shape is somewhat complicated so I explain it here.
|
||
|
The ndim of the output could be either 1, 2, or 3.
|
||
|
It would be 1 if you are computing the expm action on a single vector
|
||
|
at a single time point.
|
||
|
It would be 2 if you are computing the expm action on a vector
|
||
|
at multiple time points, or if you are computing the expm action
|
||
|
on a matrix at a single time point.
|
||
|
It would be 3 if you want the action on a matrix with multiple
|
||
|
columns at multiple time points.
|
||
|
If multiple time points are requested, expm_A_B[0] will always
|
||
|
be the action of the expm at the first time point,
|
||
|
regardless of whether the action is on a vector or a matrix.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2011)
|
||
|
"Computing the Action of the Matrix Exponential,
|
||
|
with an Application to Exponential Integrators."
|
||
|
SIAM Journal on Scientific Computing,
|
||
|
33 (2). pp. 488-511. ISSN 1064-8275
|
||
|
http://eprints.ma.man.ac.uk/1591/
|
||
|
|
||
|
.. [2] Nicholas J. Higham and Awad H. Al-Mohy (2010)
|
||
|
"Computing Matrix Functions."
|
||
|
Acta Numerica,
|
||
|
19. 159-208. ISSN 0962-4929
|
||
|
http://eprints.ma.man.ac.uk/1451/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.sparse import csc_matrix
|
||
|
>>> from scipy.sparse.linalg import expm, expm_multiply
|
||
|
>>> A = csc_matrix([[1, 0], [0, 1]])
|
||
|
>>> A.toarray()
|
||
|
array([[1, 0],
|
||
|
[0, 1]], dtype=int64)
|
||
|
>>> B = np.array([np.exp(-1.), np.exp(-2.)])
|
||
|
>>> B
|
||
|
array([ 0.36787944, 0.13533528])
|
||
|
>>> expm_multiply(A, B, start=1, stop=2, num=3, endpoint=True)
|
||
|
array([[ 1. , 0.36787944],
|
||
|
[ 1.64872127, 0.60653066],
|
||
|
[ 2.71828183, 1. ]])
|
||
|
>>> expm(A).dot(B) # Verify 1st timestep
|
||
|
array([ 1. , 0.36787944])
|
||
|
>>> expm(1.5*A).dot(B) # Verify 2nd timestep
|
||
|
array([ 1.64872127, 0.60653066])
|
||
|
>>> expm(2*A).dot(B) # Verify 3rd timestep
|
||
|
array([ 2.71828183, 1. ])
|
||
|
"""
|
||
|
if all(arg is None for arg in (start, stop, num, endpoint)):
|
||
|
X = _expm_multiply_simple(A, B, traceA=traceA)
|
||
|
else:
|
||
|
X, status = _expm_multiply_interval(A, B, start, stop, num,
|
||
|
endpoint, traceA=traceA)
|
||
|
return X
|
||
|
|
||
|
|
||
|
def _expm_multiply_simple(A, B, t=1.0, traceA=None, balance=False):
|
||
|
"""
|
||
|
Compute the action of the matrix exponential at a single time point.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : transposable linear operator
|
||
|
The operator whose exponential is of interest.
|
||
|
B : ndarray
|
||
|
The matrix to be multiplied by the matrix exponential of A.
|
||
|
t : float
|
||
|
A time point.
|
||
|
traceA : scalar, optional
|
||
|
Trace of `A`. If not given the trace is estimated for linear operators,
|
||
|
or calculated exactly for sparse matrices. It is used to precondition
|
||
|
`A`, thus an approximate trace is acceptable
|
||
|
balance : bool
|
||
|
Indicates whether or not to apply balancing.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
F : ndarray
|
||
|
:math:`e^{t A} B`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is algorithm (3.2) in Al-Mohy and Higham (2011).
|
||
|
|
||
|
"""
|
||
|
if balance:
|
||
|
raise NotImplementedError
|
||
|
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||
|
raise ValueError('expected A to be like a square matrix')
|
||
|
if A.shape[1] != B.shape[0]:
|
||
|
raise ValueError('shapes of matrices A {} and B {} are incompatible'
|
||
|
.format(A.shape, B.shape))
|
||
|
ident = _ident_like(A)
|
||
|
is_linear_operator = isinstance(A, scipy.sparse.linalg.LinearOperator)
|
||
|
n = A.shape[0]
|
||
|
if len(B.shape) == 1:
|
||
|
n0 = 1
|
||
|
elif len(B.shape) == 2:
|
||
|
n0 = B.shape[1]
|
||
|
else:
|
||
|
raise ValueError('expected B to be like a matrix or a vector')
|
||
|
u_d = 2**-53
|
||
|
tol = u_d
|
||
|
if traceA is None:
|
||
|
if is_linear_operator:
|
||
|
warn("Trace of LinearOperator not available, it will be estimated."
|
||
|
" Provide `traceA` to ensure performance.", stacklevel=3)
|
||
|
# m3=1 is bit arbitrary choice, a more accurate trace (larger m3) might
|
||
|
# speed up exponential calculation, but trace estimation is more costly
|
||
|
traceA = traceest(A, m3=1) if is_linear_operator else _trace(A)
|
||
|
mu = traceA / float(n)
|
||
|
A = A - mu * ident
|
||
|
A_1_norm = onenormest(A) if is_linear_operator else _exact_1_norm(A)
|
||
|
if t*A_1_norm == 0:
|
||
|
m_star, s = 0, 1
|
||
|
else:
|
||
|
ell = 2
|
||
|
norm_info = LazyOperatorNormInfo(t*A, A_1_norm=t*A_1_norm, ell=ell)
|
||
|
m_star, s = _fragment_3_1(norm_info, n0, tol, ell=ell)
|
||
|
return _expm_multiply_simple_core(A, B, t, mu, m_star, s, tol, balance)
|
||
|
|
||
|
|
||
|
def _expm_multiply_simple_core(A, B, t, mu, m_star, s, tol=None, balance=False):
|
||
|
"""
|
||
|
A helper function.
|
||
|
"""
|
||
|
if balance:
|
||
|
raise NotImplementedError
|
||
|
if tol is None:
|
||
|
u_d = 2 ** -53
|
||
|
tol = u_d
|
||
|
F = B
|
||
|
eta = np.exp(t*mu / float(s))
|
||
|
for i in range(s):
|
||
|
c1 = _exact_inf_norm(B)
|
||
|
for j in range(m_star):
|
||
|
coeff = t / float(s*(j+1))
|
||
|
B = coeff * A.dot(B)
|
||
|
c2 = _exact_inf_norm(B)
|
||
|
F = F + B
|
||
|
if c1 + c2 <= tol * _exact_inf_norm(F):
|
||
|
break
|
||
|
c1 = c2
|
||
|
F = eta * F
|
||
|
B = F
|
||
|
return F
|
||
|
|
||
|
|
||
|
# This table helps to compute bounds.
|
||
|
# They seem to have been difficult to calculate, involving symbolic
|
||
|
# manipulation of equations, followed by numerical root finding.
|
||
|
_theta = {
|
||
|
# The first 30 values are from table A.3 of Computing Matrix Functions.
|
||
|
1: 2.29e-16,
|
||
|
2: 2.58e-8,
|
||
|
3: 1.39e-5,
|
||
|
4: 3.40e-4,
|
||
|
5: 2.40e-3,
|
||
|
6: 9.07e-3,
|
||
|
7: 2.38e-2,
|
||
|
8: 5.00e-2,
|
||
|
9: 8.96e-2,
|
||
|
10: 1.44e-1,
|
||
|
# 11
|
||
|
11: 2.14e-1,
|
||
|
12: 3.00e-1,
|
||
|
13: 4.00e-1,
|
||
|
14: 5.14e-1,
|
||
|
15: 6.41e-1,
|
||
|
16: 7.81e-1,
|
||
|
17: 9.31e-1,
|
||
|
18: 1.09,
|
||
|
19: 1.26,
|
||
|
20: 1.44,
|
||
|
# 21
|
||
|
21: 1.62,
|
||
|
22: 1.82,
|
||
|
23: 2.01,
|
||
|
24: 2.22,
|
||
|
25: 2.43,
|
||
|
26: 2.64,
|
||
|
27: 2.86,
|
||
|
28: 3.08,
|
||
|
29: 3.31,
|
||
|
30: 3.54,
|
||
|
# The rest are from table 3.1 of
|
||
|
# Computing the Action of the Matrix Exponential.
|
||
|
35: 4.7,
|
||
|
40: 6.0,
|
||
|
45: 7.2,
|
||
|
50: 8.5,
|
||
|
55: 9.9,
|
||
|
}
|
||
|
|
||
|
|
||
|
def _onenormest_matrix_power(A, p,
|
||
|
t=2, itmax=5, compute_v=False, compute_w=False):
|
||
|
"""
|
||
|
Efficiently estimate the 1-norm of A^p.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : ndarray
|
||
|
Matrix whose 1-norm of a power is to be computed.
|
||
|
p : int
|
||
|
Non-negative integer power.
|
||
|
t : int, optional
|
||
|
A positive parameter controlling the tradeoff between
|
||
|
accuracy versus time and memory usage.
|
||
|
Larger values take longer and use more memory
|
||
|
but give more accurate output.
|
||
|
itmax : int, optional
|
||
|
Use at most this many iterations.
|
||
|
compute_v : bool, optional
|
||
|
Request a norm-maximizing linear operator input vector if True.
|
||
|
compute_w : bool, optional
|
||
|
Request a norm-maximizing linear operator output vector if True.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
est : float
|
||
|
An underestimate of the 1-norm of the sparse matrix.
|
||
|
v : ndarray, optional
|
||
|
The vector such that ||Av||_1 == est*||v||_1.
|
||
|
It can be thought of as an input to the linear operator
|
||
|
that gives an output with particularly large norm.
|
||
|
w : ndarray, optional
|
||
|
The vector Av which has relatively large 1-norm.
|
||
|
It can be thought of as an output of the linear operator
|
||
|
that is relatively large in norm compared to the input.
|
||
|
|
||
|
"""
|
||
|
#XXX Eventually turn this into an API function in the _onenormest module,
|
||
|
#XXX and remove its underscore,
|
||
|
#XXX but wait until expm_multiply goes into scipy.
|
||
|
from scipy.sparse.linalg._onenormest import onenormest
|
||
|
return onenormest(aslinearoperator(A) ** p)
|
||
|
|
||
|
class LazyOperatorNormInfo:
|
||
|
"""
|
||
|
Information about an operator is lazily computed.
|
||
|
|
||
|
The information includes the exact 1-norm of the operator,
|
||
|
in addition to estimates of 1-norms of powers of the operator.
|
||
|
This uses the notation of Computing the Action (2011).
|
||
|
This class is specialized enough to probably not be of general interest
|
||
|
outside of this module.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, A, A_1_norm=None, ell=2, scale=1):
|
||
|
"""
|
||
|
Provide the operator and some norm-related information.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : linear operator
|
||
|
The operator of interest.
|
||
|
A_1_norm : float, optional
|
||
|
The exact 1-norm of A.
|
||
|
ell : int, optional
|
||
|
A technical parameter controlling norm estimation quality.
|
||
|
scale : int, optional
|
||
|
If specified, return the norms of scale*A instead of A.
|
||
|
|
||
|
"""
|
||
|
self._A = A
|
||
|
self._A_1_norm = A_1_norm
|
||
|
self._ell = ell
|
||
|
self._d = {}
|
||
|
self._scale = scale
|
||
|
|
||
|
def set_scale(self,scale):
|
||
|
"""
|
||
|
Set the scale parameter.
|
||
|
"""
|
||
|
self._scale = scale
|
||
|
|
||
|
def onenorm(self):
|
||
|
"""
|
||
|
Compute the exact 1-norm.
|
||
|
"""
|
||
|
if self._A_1_norm is None:
|
||
|
self._A_1_norm = _exact_1_norm(self._A)
|
||
|
return self._scale*self._A_1_norm
|
||
|
|
||
|
def d(self, p):
|
||
|
"""
|
||
|
Lazily estimate d_p(A) ~= || A^p ||^(1/p) where ||.|| is the 1-norm.
|
||
|
"""
|
||
|
if p not in self._d:
|
||
|
est = _onenormest_matrix_power(self._A, p, self._ell)
|
||
|
self._d[p] = est ** (1.0 / p)
|
||
|
return self._scale*self._d[p]
|
||
|
|
||
|
def alpha(self, p):
|
||
|
"""
|
||
|
Lazily compute max(d(p), d(p+1)).
|
||
|
"""
|
||
|
return max(self.d(p), self.d(p+1))
|
||
|
|
||
|
def _compute_cost_div_m(m, p, norm_info):
|
||
|
"""
|
||
|
A helper function for computing bounds.
|
||
|
|
||
|
This is equation (3.10).
|
||
|
It measures cost in terms of the number of required matrix products.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : int
|
||
|
A valid key of _theta.
|
||
|
p : int
|
||
|
A matrix power.
|
||
|
norm_info : LazyOperatorNormInfo
|
||
|
Information about 1-norms of related operators.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cost_div_m : int
|
||
|
Required number of matrix products divided by m.
|
||
|
|
||
|
"""
|
||
|
return int(np.ceil(norm_info.alpha(p) / _theta[m]))
|
||
|
|
||
|
|
||
|
def _compute_p_max(m_max):
|
||
|
"""
|
||
|
Compute the largest positive integer p such that p*(p-1) <= m_max + 1.
|
||
|
|
||
|
Do this in a slightly dumb way, but safe and not too slow.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m_max : int
|
||
|
A count related to bounds.
|
||
|
|
||
|
"""
|
||
|
sqrt_m_max = np.sqrt(m_max)
|
||
|
p_low = int(np.floor(sqrt_m_max))
|
||
|
p_high = int(np.ceil(sqrt_m_max + 1))
|
||
|
return max(p for p in range(p_low, p_high+1) if p*(p-1) <= m_max + 1)
|
||
|
|
||
|
|
||
|
def _fragment_3_1(norm_info, n0, tol, m_max=55, ell=2):
|
||
|
"""
|
||
|
A helper function for the _expm_multiply_* functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
norm_info : LazyOperatorNormInfo
|
||
|
Information about norms of certain linear operators of interest.
|
||
|
n0 : int
|
||
|
Number of columns in the _expm_multiply_* B matrix.
|
||
|
tol : float
|
||
|
Expected to be
|
||
|
:math:`2^{-24}` for single precision or
|
||
|
:math:`2^{-53}` for double precision.
|
||
|
m_max : int
|
||
|
A value related to a bound.
|
||
|
ell : int
|
||
|
The number of columns used in the 1-norm approximation.
|
||
|
This is usually taken to be small, maybe between 1 and 5.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
best_m : int
|
||
|
Related to bounds for error control.
|
||
|
best_s : int
|
||
|
Amount of scaling.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is code fragment (3.1) in Al-Mohy and Higham (2011).
|
||
|
The discussion of default values for m_max and ell
|
||
|
is given between the definitions of equation (3.11)
|
||
|
and the definition of equation (3.12).
|
||
|
|
||
|
"""
|
||
|
if ell < 1:
|
||
|
raise ValueError('expected ell to be a positive integer')
|
||
|
best_m = None
|
||
|
best_s = None
|
||
|
if _condition_3_13(norm_info.onenorm(), n0, m_max, ell):
|
||
|
for m, theta in _theta.items():
|
||
|
s = int(np.ceil(norm_info.onenorm() / theta))
|
||
|
if best_m is None or m * s < best_m * best_s:
|
||
|
best_m = m
|
||
|
best_s = s
|
||
|
else:
|
||
|
# Equation (3.11).
|
||
|
for p in range(2, _compute_p_max(m_max) + 1):
|
||
|
for m in range(p*(p-1)-1, m_max+1):
|
||
|
if m in _theta:
|
||
|
s = _compute_cost_div_m(m, p, norm_info)
|
||
|
if best_m is None or m * s < best_m * best_s:
|
||
|
best_m = m
|
||
|
best_s = s
|
||
|
best_s = max(best_s, 1)
|
||
|
return best_m, best_s
|
||
|
|
||
|
|
||
|
def _condition_3_13(A_1_norm, n0, m_max, ell):
|
||
|
"""
|
||
|
A helper function for the _expm_multiply_* functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A_1_norm : float
|
||
|
The precomputed 1-norm of A.
|
||
|
n0 : int
|
||
|
Number of columns in the _expm_multiply_* B matrix.
|
||
|
m_max : int
|
||
|
A value related to a bound.
|
||
|
ell : int
|
||
|
The number of columns used in the 1-norm approximation.
|
||
|
This is usually taken to be small, maybe between 1 and 5.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : bool
|
||
|
Indicates whether or not the condition has been met.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is condition (3.13) in Al-Mohy and Higham (2011).
|
||
|
|
||
|
"""
|
||
|
|
||
|
# This is the rhs of equation (3.12).
|
||
|
p_max = _compute_p_max(m_max)
|
||
|
a = 2 * ell * p_max * (p_max + 3)
|
||
|
|
||
|
# Evaluate the condition (3.13).
|
||
|
b = _theta[m_max] / float(n0 * m_max)
|
||
|
return A_1_norm <= a * b
|
||
|
|
||
|
|
||
|
def _expm_multiply_interval(A, B, start=None, stop=None, num=None,
|
||
|
endpoint=None, traceA=None, balance=False,
|
||
|
status_only=False):
|
||
|
"""
|
||
|
Compute the action of the matrix exponential at multiple time points.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : transposable linear operator
|
||
|
The operator whose exponential is of interest.
|
||
|
B : ndarray
|
||
|
The matrix to be multiplied by the matrix exponential of A.
|
||
|
start : scalar, optional
|
||
|
The starting time point of the sequence.
|
||
|
stop : scalar, optional
|
||
|
The end time point of the sequence, unless `endpoint` is set to False.
|
||
|
In that case, the sequence consists of all but the last of ``num + 1``
|
||
|
evenly spaced time points, so that `stop` is excluded.
|
||
|
Note that the step size changes when `endpoint` is False.
|
||
|
num : int, optional
|
||
|
Number of time points to use.
|
||
|
traceA : scalar, optional
|
||
|
Trace of `A`. If not given the trace is estimated for linear operators,
|
||
|
or calculated exactly for sparse matrices. It is used to precondition
|
||
|
`A`, thus an approximate trace is acceptable
|
||
|
endpoint : bool, optional
|
||
|
If True, `stop` is the last time point. Otherwise, it is not included.
|
||
|
balance : bool
|
||
|
Indicates whether or not to apply balancing.
|
||
|
status_only : bool
|
||
|
A flag that is set to True for some debugging and testing operations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
F : ndarray
|
||
|
:math:`e^{t_k A} B`
|
||
|
status : int
|
||
|
An integer status for testing and debugging.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is algorithm (5.2) in Al-Mohy and Higham (2011).
|
||
|
|
||
|
There seems to be a typo, where line 15 of the algorithm should be
|
||
|
moved to line 6.5 (between lines 6 and 7).
|
||
|
|
||
|
"""
|
||
|
if balance:
|
||
|
raise NotImplementedError
|
||
|
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||
|
raise ValueError('expected A to be like a square matrix')
|
||
|
if A.shape[1] != B.shape[0]:
|
||
|
raise ValueError('shapes of matrices A {} and B {} are incompatible'
|
||
|
.format(A.shape, B.shape))
|
||
|
ident = _ident_like(A)
|
||
|
is_linear_operator = isinstance(A, scipy.sparse.linalg.LinearOperator)
|
||
|
n = A.shape[0]
|
||
|
if len(B.shape) == 1:
|
||
|
n0 = 1
|
||
|
elif len(B.shape) == 2:
|
||
|
n0 = B.shape[1]
|
||
|
else:
|
||
|
raise ValueError('expected B to be like a matrix or a vector')
|
||
|
u_d = 2**-53
|
||
|
tol = u_d
|
||
|
if traceA is None:
|
||
|
if is_linear_operator:
|
||
|
warn("Trace of LinearOperator not available, it will be estimated."
|
||
|
" Provide `traceA` to ensure performance.", stacklevel=3)
|
||
|
# m3=5 is bit arbitrary choice, a more accurate trace (larger m3) might
|
||
|
# speed up exponential calculation, but trace estimation is also costly
|
||
|
# an educated guess would need to consider the number of time points
|
||
|
traceA = traceest(A, m3=5) if is_linear_operator else _trace(A)
|
||
|
mu = traceA / float(n)
|
||
|
|
||
|
# Get the linspace samples, attempting to preserve the linspace defaults.
|
||
|
linspace_kwargs = {'retstep': True}
|
||
|
if num is not None:
|
||
|
linspace_kwargs['num'] = num
|
||
|
if endpoint is not None:
|
||
|
linspace_kwargs['endpoint'] = endpoint
|
||
|
samples, step = np.linspace(start, stop, **linspace_kwargs)
|
||
|
|
||
|
# Convert the linspace output to the notation used by the publication.
|
||
|
nsamples = len(samples)
|
||
|
if nsamples < 2:
|
||
|
raise ValueError('at least two time points are required')
|
||
|
q = nsamples - 1
|
||
|
h = step
|
||
|
t_0 = samples[0]
|
||
|
t_q = samples[q]
|
||
|
|
||
|
# Define the output ndarray.
|
||
|
# Use an ndim=3 shape, such that the last two indices
|
||
|
# are the ones that may be involved in level 3 BLAS operations.
|
||
|
X_shape = (nsamples,) + B.shape
|
||
|
X = np.empty(X_shape, dtype=np.result_type(A.dtype, B.dtype, float))
|
||
|
t = t_q - t_0
|
||
|
A = A - mu * ident
|
||
|
A_1_norm = onenormest(A) if is_linear_operator else _exact_1_norm(A)
|
||
|
ell = 2
|
||
|
norm_info = LazyOperatorNormInfo(t*A, A_1_norm=t*A_1_norm, ell=ell)
|
||
|
if t*A_1_norm == 0:
|
||
|
m_star, s = 0, 1
|
||
|
else:
|
||
|
m_star, s = _fragment_3_1(norm_info, n0, tol, ell=ell)
|
||
|
|
||
|
# Compute the expm action up to the initial time point.
|
||
|
X[0] = _expm_multiply_simple_core(A, B, t_0, mu, m_star, s)
|
||
|
|
||
|
# Compute the expm action at the rest of the time points.
|
||
|
if q <= s:
|
||
|
if status_only:
|
||
|
return 0
|
||
|
else:
|
||
|
return _expm_multiply_interval_core_0(A, X,
|
||
|
h, mu, q, norm_info, tol, ell,n0)
|
||
|
elif not (q % s):
|
||
|
if status_only:
|
||
|
return 1
|
||
|
else:
|
||
|
return _expm_multiply_interval_core_1(A, X,
|
||
|
h, mu, m_star, s, q, tol)
|
||
|
elif (q % s):
|
||
|
if status_only:
|
||
|
return 2
|
||
|
else:
|
||
|
return _expm_multiply_interval_core_2(A, X,
|
||
|
h, mu, m_star, s, q, tol)
|
||
|
else:
|
||
|
raise Exception('internal error')
|
||
|
|
||
|
|
||
|
def _expm_multiply_interval_core_0(A, X, h, mu, q, norm_info, tol, ell, n0):
|
||
|
"""
|
||
|
A helper function, for the case q <= s.
|
||
|
"""
|
||
|
|
||
|
# Compute the new values of m_star and s which should be applied
|
||
|
# over intervals of size t/q
|
||
|
if norm_info.onenorm() == 0:
|
||
|
m_star, s = 0, 1
|
||
|
else:
|
||
|
norm_info.set_scale(1./q)
|
||
|
m_star, s = _fragment_3_1(norm_info, n0, tol, ell=ell)
|
||
|
norm_info.set_scale(1)
|
||
|
|
||
|
for k in range(q):
|
||
|
X[k+1] = _expm_multiply_simple_core(A, X[k], h, mu, m_star, s)
|
||
|
return X, 0
|
||
|
|
||
|
|
||
|
def _expm_multiply_interval_core_1(A, X, h, mu, m_star, s, q, tol):
|
||
|
"""
|
||
|
A helper function, for the case q > s and q % s == 0.
|
||
|
"""
|
||
|
d = q // s
|
||
|
input_shape = X.shape[1:]
|
||
|
K_shape = (m_star + 1, ) + input_shape
|
||
|
K = np.empty(K_shape, dtype=X.dtype)
|
||
|
for i in range(s):
|
||
|
Z = X[i*d]
|
||
|
K[0] = Z
|
||
|
high_p = 0
|
||
|
for k in range(1, d+1):
|
||
|
F = K[0]
|
||
|
c1 = _exact_inf_norm(F)
|
||
|
for p in range(1, m_star+1):
|
||
|
if p > high_p:
|
||
|
K[p] = h * A.dot(K[p-1]) / float(p)
|
||
|
coeff = float(pow(k, p))
|
||
|
F = F + coeff * K[p]
|
||
|
inf_norm_K_p_1 = _exact_inf_norm(K[p])
|
||
|
c2 = coeff * inf_norm_K_p_1
|
||
|
if c1 + c2 <= tol * _exact_inf_norm(F):
|
||
|
break
|
||
|
c1 = c2
|
||
|
X[k + i*d] = np.exp(k*h*mu) * F
|
||
|
return X, 1
|
||
|
|
||
|
|
||
|
def _expm_multiply_interval_core_2(A, X, h, mu, m_star, s, q, tol):
|
||
|
"""
|
||
|
A helper function, for the case q > s and q % s > 0.
|
||
|
"""
|
||
|
d = q // s
|
||
|
j = q // d
|
||
|
r = q - d * j
|
||
|
input_shape = X.shape[1:]
|
||
|
K_shape = (m_star + 1, ) + input_shape
|
||
|
K = np.empty(K_shape, dtype=X.dtype)
|
||
|
for i in range(j + 1):
|
||
|
Z = X[i*d]
|
||
|
K[0] = Z
|
||
|
high_p = 0
|
||
|
if i < j:
|
||
|
effective_d = d
|
||
|
else:
|
||
|
effective_d = r
|
||
|
for k in range(1, effective_d+1):
|
||
|
F = K[0]
|
||
|
c1 = _exact_inf_norm(F)
|
||
|
for p in range(1, m_star+1):
|
||
|
if p == high_p + 1:
|
||
|
K[p] = h * A.dot(K[p-1]) / float(p)
|
||
|
high_p = p
|
||
|
coeff = float(pow(k, p))
|
||
|
F = F + coeff * K[p]
|
||
|
inf_norm_K_p_1 = _exact_inf_norm(K[p])
|
||
|
c2 = coeff * inf_norm_K_p_1
|
||
|
if c1 + c2 <= tol * _exact_inf_norm(F):
|
||
|
break
|
||
|
c1 = c2
|
||
|
X[k + i*d] = np.exp(k*h*mu) * F
|
||
|
return X, 2
|