54 lines
1.8 KiB
Python
54 lines
1.8 KiB
Python
|
import numpy as np
|
||
|
from numpy.testing import assert_equal, assert_allclose
|
||
|
|
||
|
import scipy.special as sc
|
||
|
|
||
|
|
||
|
def test_symmetries():
|
||
|
np.random.seed(1234)
|
||
|
a, h = np.random.rand(100), np.random.rand(100)
|
||
|
assert_equal(sc.owens_t(h, a), sc.owens_t(-h, a))
|
||
|
assert_equal(sc.owens_t(h, a), -sc.owens_t(h, -a))
|
||
|
|
||
|
|
||
|
def test_special_cases():
|
||
|
assert_equal(sc.owens_t(5, 0), 0)
|
||
|
assert_allclose(sc.owens_t(0, 5), 0.5*np.arctan(5)/np.pi,
|
||
|
rtol=5e-14)
|
||
|
# Target value is 0.5*Phi(5)*(1 - Phi(5)) for Phi the CDF of the
|
||
|
# standard normal distribution
|
||
|
assert_allclose(sc.owens_t(5, 1), 1.4332574485503512543e-07,
|
||
|
rtol=5e-14)
|
||
|
|
||
|
|
||
|
def test_nans():
|
||
|
assert_equal(sc.owens_t(20, np.nan), np.nan)
|
||
|
assert_equal(sc.owens_t(np.nan, 20), np.nan)
|
||
|
assert_equal(sc.owens_t(np.nan, np.nan), np.nan)
|
||
|
|
||
|
|
||
|
def test_infs():
|
||
|
h, a = 0, np.inf
|
||
|
# T(0, a) = 1/2π * arctan(a)
|
||
|
res = 1/(2*np.pi) * np.arctan(a)
|
||
|
assert_allclose(sc.owens_t(h, a), res, rtol=5e-14)
|
||
|
assert_allclose(sc.owens_t(h, -a), -res, rtol=5e-14)
|
||
|
|
||
|
h = 1
|
||
|
# Refer Owens T function definition in Wikipedia
|
||
|
# https://en.wikipedia.org/wiki/Owen%27s_T_function
|
||
|
# Value approximated through Numerical Integration
|
||
|
# using scipy.integrate.quad
|
||
|
# quad(lambda x: 1/(2*pi)*(exp(-0.5*(1*1)*(1+x*x))/(1+x*x)), 0, inf)
|
||
|
res = 0.07932762696572854
|
||
|
assert_allclose(sc.owens_t(h, np.inf), res, rtol=5e-14)
|
||
|
assert_allclose(sc.owens_t(h, -np.inf), -res, rtol=5e-14)
|
||
|
|
||
|
assert_equal(sc.owens_t(np.inf, 1), 0)
|
||
|
assert_equal(sc.owens_t(-np.inf, 1), 0)
|
||
|
|
||
|
assert_equal(sc.owens_t(np.inf, np.inf), 0)
|
||
|
assert_equal(sc.owens_t(-np.inf, np.inf), 0)
|
||
|
assert_equal(sc.owens_t(np.inf, -np.inf), -0.0)
|
||
|
assert_equal(sc.owens_t(-np.inf, -np.inf), -0.0)
|