Inzynierka/Lib/site-packages/sklearn/calibration.py

1429 lines
49 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""Calibration of predicted probabilities."""
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Balazs Kegl <balazs.kegl@gmail.com>
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# Mathieu Blondel <mathieu@mblondel.org>
#
# License: BSD 3 clause
from numbers import Integral
import warnings
from inspect import signature
from functools import partial
from math import log
import numpy as np
from scipy.special import expit
from scipy.special import xlogy
from scipy.optimize import fmin_bfgs
from .base import (
BaseEstimator,
ClassifierMixin,
RegressorMixin,
clone,
MetaEstimatorMixin,
is_classifier,
)
from .preprocessing import label_binarize, LabelEncoder
from .utils import (
column_or_1d,
indexable,
check_matplotlib_support,
)
from .utils.multiclass import check_classification_targets
from .utils.parallel import delayed, Parallel
from .utils._param_validation import StrOptions, HasMethods, Hidden
from .utils.validation import (
_check_fit_params,
_check_sample_weight,
_num_samples,
check_consistent_length,
check_is_fitted,
)
from .utils import _safe_indexing
from .isotonic import IsotonicRegression
from .svm import LinearSVC
from .model_selection import check_cv, cross_val_predict
from .metrics._base import _check_pos_label_consistency
from .metrics._plot.base import _get_response
class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator):
"""Probability calibration with isotonic regression or logistic regression.
This class uses cross-validation to both estimate the parameters of a
classifier and subsequently calibrate a classifier. With default
`ensemble=True`, for each cv split it
fits a copy of the base estimator to the training subset, and calibrates it
using the testing subset. For prediction, predicted probabilities are
averaged across these individual calibrated classifiers. When
`ensemble=False`, cross-validation is used to obtain unbiased predictions,
via :func:`~sklearn.model_selection.cross_val_predict`, which are then
used for calibration. For prediction, the base estimator, trained using all
the data, is used. This is the method implemented when `probabilities=True`
for :mod:`sklearn.svm` estimators.
Already fitted classifiers can be calibrated via the parameter
`cv="prefit"`. In this case, no cross-validation is used and all provided
data is used for calibration. The user has to take care manually that data
for model fitting and calibration are disjoint.
The calibration is based on the :term:`decision_function` method of the
`estimator` if it exists, else on :term:`predict_proba`.
Read more in the :ref:`User Guide <calibration>`.
Parameters
----------
estimator : estimator instance, default=None
The classifier whose output need to be calibrated to provide more
accurate `predict_proba` outputs. The default classifier is
a :class:`~sklearn.svm.LinearSVC`.
.. versionadded:: 1.2
method : {'sigmoid', 'isotonic'}, default='sigmoid'
The method to use for calibration. Can be 'sigmoid' which
corresponds to Platt's method (i.e. a logistic regression model) or
'isotonic' which is a non-parametric approach. It is not advised to
use isotonic calibration with too few calibration samples
``(<<1000)`` since it tends to overfit.
cv : int, cross-validation generator, iterable or "prefit", \
default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`~sklearn.model_selection.StratifiedKFold` is used. If ``y`` is
neither binary nor multiclass, :class:`~sklearn.model_selection.KFold`
is used.
Refer to the :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
If "prefit" is passed, it is assumed that `estimator` has been
fitted already and all data is used for calibration.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
n_jobs : int, default=None
Number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors.
Base estimator clones are fitted in parallel across cross-validation
iterations. Therefore parallelism happens only when `cv != "prefit"`.
See :term:`Glossary <n_jobs>` for more details.
.. versionadded:: 0.24
ensemble : bool, default=True
Determines how the calibrator is fitted when `cv` is not `'prefit'`.
Ignored if `cv='prefit'`.
If `True`, the `estimator` is fitted using training data, and
calibrated using testing data, for each `cv` fold. The final estimator
is an ensemble of `n_cv` fitted classifier and calibrator pairs, where
`n_cv` is the number of cross-validation folds. The output is the
average predicted probabilities of all pairs.
If `False`, `cv` is used to compute unbiased predictions, via
:func:`~sklearn.model_selection.cross_val_predict`, which are then
used for calibration. At prediction time, the classifier used is the
`estimator` trained on all the data.
Note that this method is also internally implemented in
:mod:`sklearn.svm` estimators with the `probabilities=True` parameter.
.. versionadded:: 0.24
base_estimator : estimator instance
This parameter is deprecated. Use `estimator` instead.
.. deprecated:: 1.2
The parameter `base_estimator` is deprecated in 1.2 and will be
removed in 1.4. Use `estimator` instead.
Attributes
----------
classes_ : ndarray of shape (n_classes,)
The class labels.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 1.0
calibrated_classifiers_ : list (len() equal to cv or 1 if `cv="prefit"` \
or `ensemble=False`)
The list of classifier and calibrator pairs.
- When `cv="prefit"`, the fitted `estimator` and fitted
calibrator.
- When `cv` is not "prefit" and `ensemble=True`, `n_cv` fitted
`estimator` and calibrator pairs. `n_cv` is the number of
cross-validation folds.
- When `cv` is not "prefit" and `ensemble=False`, the `estimator`,
fitted on all the data, and fitted calibrator.
.. versionchanged:: 0.24
Single calibrated classifier case when `ensemble=False`.
See Also
--------
calibration_curve : Compute true and predicted probabilities
for a calibration curve.
References
----------
.. [1] Obtaining calibrated probability estimates from decision trees
and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001
.. [2] Transforming Classifier Scores into Accurate Multiclass
Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)
.. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods, J. Platt, (1999)
.. [4] Predicting Good Probabilities with Supervised Learning,
A. Niculescu-Mizil & R. Caruana, ICML 2005
Examples
--------
>>> from sklearn.datasets import make_classification
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.calibration import CalibratedClassifierCV
>>> X, y = make_classification(n_samples=100, n_features=2,
... n_redundant=0, random_state=42)
>>> base_clf = GaussianNB()
>>> calibrated_clf = CalibratedClassifierCV(base_clf, cv=3)
>>> calibrated_clf.fit(X, y)
CalibratedClassifierCV(...)
>>> len(calibrated_clf.calibrated_classifiers_)
3
>>> calibrated_clf.predict_proba(X)[:5, :]
array([[0.110..., 0.889...],
[0.072..., 0.927...],
[0.928..., 0.071...],
[0.928..., 0.071...],
[0.071..., 0.928...]])
>>> from sklearn.model_selection import train_test_split
>>> X, y = make_classification(n_samples=100, n_features=2,
... n_redundant=0, random_state=42)
>>> X_train, X_calib, y_train, y_calib = train_test_split(
... X, y, random_state=42
... )
>>> base_clf = GaussianNB()
>>> base_clf.fit(X_train, y_train)
GaussianNB()
>>> calibrated_clf = CalibratedClassifierCV(base_clf, cv="prefit")
>>> calibrated_clf.fit(X_calib, y_calib)
CalibratedClassifierCV(...)
>>> len(calibrated_clf.calibrated_classifiers_)
1
>>> calibrated_clf.predict_proba([[-0.5, 0.5]])
array([[0.936..., 0.063...]])
"""
_parameter_constraints: dict = {
"estimator": [
HasMethods(["fit", "predict_proba"]),
HasMethods(["fit", "decision_function"]),
None,
],
"method": [StrOptions({"isotonic", "sigmoid"})],
"cv": ["cv_object", StrOptions({"prefit"})],
"n_jobs": [Integral, None],
"ensemble": ["boolean"],
"base_estimator": [
HasMethods(["fit", "predict_proba"]),
HasMethods(["fit", "decision_function"]),
None,
Hidden(StrOptions({"deprecated"})),
],
}
def __init__(
self,
estimator=None,
*,
method="sigmoid",
cv=None,
n_jobs=None,
ensemble=True,
base_estimator="deprecated",
):
self.estimator = estimator
self.method = method
self.cv = cv
self.n_jobs = n_jobs
self.ensemble = ensemble
self.base_estimator = base_estimator
def fit(self, X, y, sample_weight=None, **fit_params):
"""Fit the calibrated model.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
**fit_params : dict
Parameters to pass to the `fit` method of the underlying
classifier.
Returns
-------
self : object
Returns an instance of self.
"""
self._validate_params()
check_classification_targets(y)
X, y = indexable(X, y)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
for sample_aligned_params in fit_params.values():
check_consistent_length(y, sample_aligned_params)
# TODO(1.4): Remove when base_estimator is removed
if self.base_estimator != "deprecated":
if self.estimator is not None:
raise ValueError(
"Both `base_estimator` and `estimator` are set. Only set "
"`estimator` since `base_estimator` is deprecated."
)
warnings.warn(
"`base_estimator` was renamed to `estimator` in version 1.2 and "
"will be removed in 1.4.",
FutureWarning,
)
estimator = self.base_estimator
else:
estimator = self.estimator
if estimator is None:
# we want all classifiers that don't expose a random_state
# to be deterministic (and we don't want to expose this one).
estimator = LinearSVC(random_state=0)
self.calibrated_classifiers_ = []
if self.cv == "prefit":
# `classes_` should be consistent with that of estimator
check_is_fitted(self.estimator, attributes=["classes_"])
self.classes_ = self.estimator.classes_
pred_method, method_name = _get_prediction_method(estimator)
n_classes = len(self.classes_)
predictions = _compute_predictions(pred_method, method_name, X, n_classes)
calibrated_classifier = _fit_calibrator(
estimator,
predictions,
y,
self.classes_,
self.method,
sample_weight,
)
self.calibrated_classifiers_.append(calibrated_classifier)
else:
# Set `classes_` using all `y`
label_encoder_ = LabelEncoder().fit(y)
self.classes_ = label_encoder_.classes_
n_classes = len(self.classes_)
# sample_weight checks
fit_parameters = signature(estimator.fit).parameters
supports_sw = "sample_weight" in fit_parameters
if sample_weight is not None and not supports_sw:
estimator_name = type(estimator).__name__
warnings.warn(
f"Since {estimator_name} does not appear to accept sample_weight, "
"sample weights will only be used for the calibration itself. This "
"can be caused by a limitation of the current scikit-learn API. "
"See the following issue for more details: "
"https://github.com/scikit-learn/scikit-learn/issues/21134. Be "
"warned that the result of the calibration is likely to be "
"incorrect."
)
# Check that each cross-validation fold can have at least one
# example per class
if isinstance(self.cv, int):
n_folds = self.cv
elif hasattr(self.cv, "n_splits"):
n_folds = self.cv.n_splits
else:
n_folds = None
if n_folds and np.any(
[np.sum(y == class_) < n_folds for class_ in self.classes_]
):
raise ValueError(
f"Requesting {n_folds}-fold "
"cross-validation but provided less than "
f"{n_folds} examples for at least one class."
)
cv = check_cv(self.cv, y, classifier=True)
if self.ensemble:
parallel = Parallel(n_jobs=self.n_jobs)
self.calibrated_classifiers_ = parallel(
delayed(_fit_classifier_calibrator_pair)(
clone(estimator),
X,
y,
train=train,
test=test,
method=self.method,
classes=self.classes_,
supports_sw=supports_sw,
sample_weight=sample_weight,
**fit_params,
)
for train, test in cv.split(X, y)
)
else:
this_estimator = clone(estimator)
_, method_name = _get_prediction_method(this_estimator)
fit_params = (
{"sample_weight": sample_weight}
if sample_weight is not None and supports_sw
else None
)
pred_method = partial(
cross_val_predict,
estimator=this_estimator,
X=X,
y=y,
cv=cv,
method=method_name,
n_jobs=self.n_jobs,
fit_params=fit_params,
)
predictions = _compute_predictions(
pred_method, method_name, X, n_classes
)
if sample_weight is not None and supports_sw:
this_estimator.fit(X, y, sample_weight=sample_weight)
else:
this_estimator.fit(X, y)
# Note: Here we don't pass on fit_params because the supported
# calibrators don't support fit_params anyway
calibrated_classifier = _fit_calibrator(
this_estimator,
predictions,
y,
self.classes_,
self.method,
sample_weight,
)
self.calibrated_classifiers_.append(calibrated_classifier)
first_clf = self.calibrated_classifiers_[0].estimator
if hasattr(first_clf, "n_features_in_"):
self.n_features_in_ = first_clf.n_features_in_
if hasattr(first_clf, "feature_names_in_"):
self.feature_names_in_ = first_clf.feature_names_in_
return self
def predict_proba(self, X):
"""Calibrated probabilities of classification.
This function returns calibrated probabilities of classification
according to each class on an array of test vectors X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The samples, as accepted by `estimator.predict_proba`.
Returns
-------
C : ndarray of shape (n_samples, n_classes)
The predicted probas.
"""
check_is_fitted(self)
# Compute the arithmetic mean of the predictions of the calibrated
# classifiers
mean_proba = np.zeros((_num_samples(X), len(self.classes_)))
for calibrated_classifier in self.calibrated_classifiers_:
proba = calibrated_classifier.predict_proba(X)
mean_proba += proba
mean_proba /= len(self.calibrated_classifiers_)
return mean_proba
def predict(self, X):
"""Predict the target of new samples.
The predicted class is the class that has the highest probability,
and can thus be different from the prediction of the uncalibrated classifier.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The samples, as accepted by `estimator.predict`.
Returns
-------
C : ndarray of shape (n_samples,)
The predicted class.
"""
check_is_fitted(self)
return self.classes_[np.argmax(self.predict_proba(X), axis=1)]
def _more_tags(self):
return {
"_xfail_checks": {
"check_sample_weights_invariance": (
"Due to the cross-validation and sample ordering, removing a sample"
" is not strictly equal to putting is weight to zero. Specific unit"
" tests are added for CalibratedClassifierCV specifically."
),
}
}
def _fit_classifier_calibrator_pair(
estimator,
X,
y,
train,
test,
supports_sw,
method,
classes,
sample_weight=None,
**fit_params,
):
"""Fit a classifier/calibration pair on a given train/test split.
Fit the classifier on the train set, compute its predictions on the test
set and use the predictions as input to fit the calibrator along with the
test labels.
Parameters
----------
estimator : estimator instance
Cloned base estimator.
X : array-like, shape (n_samples, n_features)
Sample data.
y : array-like, shape (n_samples,)
Targets.
train : ndarray, shape (n_train_indices,)
Indices of the training subset.
test : ndarray, shape (n_test_indices,)
Indices of the testing subset.
supports_sw : bool
Whether or not the `estimator` supports sample weights.
method : {'sigmoid', 'isotonic'}
Method to use for calibration.
classes : ndarray, shape (n_classes,)
The target classes.
sample_weight : array-like, default=None
Sample weights for `X`.
**fit_params : dict
Parameters to pass to the `fit` method of the underlying
classifier.
Returns
-------
calibrated_classifier : _CalibratedClassifier instance
"""
fit_params_train = _check_fit_params(X, fit_params, train)
X_train, y_train = _safe_indexing(X, train), _safe_indexing(y, train)
X_test, y_test = _safe_indexing(X, test), _safe_indexing(y, test)
if sample_weight is not None and supports_sw:
sw_train = _safe_indexing(sample_weight, train)
estimator.fit(X_train, y_train, sample_weight=sw_train, **fit_params_train)
else:
estimator.fit(X_train, y_train, **fit_params_train)
n_classes = len(classes)
pred_method, method_name = _get_prediction_method(estimator)
predictions = _compute_predictions(pred_method, method_name, X_test, n_classes)
sw_test = None if sample_weight is None else _safe_indexing(sample_weight, test)
calibrated_classifier = _fit_calibrator(
estimator, predictions, y_test, classes, method, sample_weight=sw_test
)
return calibrated_classifier
def _get_prediction_method(clf):
"""Return prediction method.
`decision_function` method of `clf` returned, if it
exists, otherwise `predict_proba` method returned.
Parameters
----------
clf : Estimator instance
Fitted classifier to obtain the prediction method from.
Returns
-------
prediction_method : callable
The prediction method.
method_name : str
The name of the prediction method.
"""
if hasattr(clf, "decision_function"):
method = getattr(clf, "decision_function")
return method, "decision_function"
if hasattr(clf, "predict_proba"):
method = getattr(clf, "predict_proba")
return method, "predict_proba"
def _compute_predictions(pred_method, method_name, X, n_classes):
"""Return predictions for `X` and reshape binary outputs to shape
(n_samples, 1).
Parameters
----------
pred_method : callable
Prediction method.
method_name: str
Name of the prediction method
X : array-like or None
Data used to obtain predictions.
n_classes : int
Number of classes present.
Returns
-------
predictions : array-like, shape (X.shape[0], len(clf.classes_))
The predictions. Note if there are 2 classes, array is of shape
(X.shape[0], 1).
"""
predictions = pred_method(X=X)
if method_name == "decision_function":
if predictions.ndim == 1:
predictions = predictions[:, np.newaxis]
elif method_name == "predict_proba":
if n_classes == 2:
predictions = predictions[:, 1:]
else: # pragma: no cover
# this branch should be unreachable.
raise ValueError(f"Invalid prediction method: {method_name}")
return predictions
def _fit_calibrator(clf, predictions, y, classes, method, sample_weight=None):
"""Fit calibrator(s) and return a `_CalibratedClassifier`
instance.
`n_classes` (i.e. `len(clf.classes_)`) calibrators are fitted.
However, if `n_classes` equals 2, one calibrator is fitted.
Parameters
----------
clf : estimator instance
Fitted classifier.
predictions : array-like, shape (n_samples, n_classes) or (n_samples, 1) \
when binary.
Raw predictions returned by the un-calibrated base classifier.
y : array-like, shape (n_samples,)
The targets.
classes : ndarray, shape (n_classes,)
All the prediction classes.
method : {'sigmoid', 'isotonic'}
The method to use for calibration.
sample_weight : ndarray, shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
Returns
-------
pipeline : _CalibratedClassifier instance
"""
Y = label_binarize(y, classes=classes)
label_encoder = LabelEncoder().fit(classes)
pos_class_indices = label_encoder.transform(clf.classes_)
calibrators = []
for class_idx, this_pred in zip(pos_class_indices, predictions.T):
if method == "isotonic":
calibrator = IsotonicRegression(out_of_bounds="clip")
else: # "sigmoid"
calibrator = _SigmoidCalibration()
calibrator.fit(this_pred, Y[:, class_idx], sample_weight)
calibrators.append(calibrator)
pipeline = _CalibratedClassifier(clf, calibrators, method=method, classes=classes)
return pipeline
class _CalibratedClassifier:
"""Pipeline-like chaining a fitted classifier and its fitted calibrators.
Parameters
----------
estimator : estimator instance
Fitted classifier.
calibrators : list of fitted estimator instances
List of fitted calibrators (either 'IsotonicRegression' or
'_SigmoidCalibration'). The number of calibrators equals the number of
classes. However, if there are 2 classes, the list contains only one
fitted calibrator.
classes : array-like of shape (n_classes,)
All the prediction classes.
method : {'sigmoid', 'isotonic'}, default='sigmoid'
The method to use for calibration. Can be 'sigmoid' which
corresponds to Platt's method or 'isotonic' which is a
non-parametric approach based on isotonic regression.
"""
def __init__(self, estimator, calibrators, *, classes, method="sigmoid"):
self.estimator = estimator
self.calibrators = calibrators
self.classes = classes
self.method = method
def predict_proba(self, X):
"""Calculate calibrated probabilities.
Calculates classification calibrated probabilities
for each class, in a one-vs-all manner, for `X`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
The sample data.
Returns
-------
proba : array, shape (n_samples, n_classes)
The predicted probabilities. Can be exact zeros.
"""
n_classes = len(self.classes)
pred_method, method_name = _get_prediction_method(self.estimator)
predictions = _compute_predictions(pred_method, method_name, X, n_classes)
label_encoder = LabelEncoder().fit(self.classes)
pos_class_indices = label_encoder.transform(self.estimator.classes_)
proba = np.zeros((_num_samples(X), n_classes))
for class_idx, this_pred, calibrator in zip(
pos_class_indices, predictions.T, self.calibrators
):
if n_classes == 2:
# When binary, `predictions` consists only of predictions for
# clf.classes_[1] but `pos_class_indices` = 0
class_idx += 1
proba[:, class_idx] = calibrator.predict(this_pred)
# Normalize the probabilities
if n_classes == 2:
proba[:, 0] = 1.0 - proba[:, 1]
else:
denominator = np.sum(proba, axis=1)[:, np.newaxis]
# In the edge case where for each class calibrator returns a null
# probability for a given sample, use the uniform distribution
# instead.
uniform_proba = np.full_like(proba, 1 / n_classes)
proba = np.divide(
proba, denominator, out=uniform_proba, where=denominator != 0
)
# Deal with cases where the predicted probability minimally exceeds 1.0
proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0
return proba
def _sigmoid_calibration(predictions, y, sample_weight=None):
"""Probability Calibration with sigmoid method (Platt 2000)
Parameters
----------
predictions : ndarray of shape (n_samples,)
The decision function or predict proba for the samples.
y : ndarray of shape (n_samples,)
The targets.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
Returns
-------
a : float
The slope.
b : float
The intercept.
References
----------
Platt, "Probabilistic Outputs for Support Vector Machines"
"""
predictions = column_or_1d(predictions)
y = column_or_1d(y)
F = predictions # F follows Platt's notations
# Bayesian priors (see Platt end of section 2.2):
# It corresponds to the number of samples, taking into account the
# `sample_weight`.
mask_negative_samples = y <= 0
if sample_weight is not None:
prior0 = (sample_weight[mask_negative_samples]).sum()
prior1 = (sample_weight[~mask_negative_samples]).sum()
else:
prior0 = float(np.sum(mask_negative_samples))
prior1 = y.shape[0] - prior0
T = np.zeros_like(y, dtype=np.float64)
T[y > 0] = (prior1 + 1.0) / (prior1 + 2.0)
T[y <= 0] = 1.0 / (prior0 + 2.0)
T1 = 1.0 - T
def objective(AB):
# From Platt (beginning of Section 2.2)
P = expit(-(AB[0] * F + AB[1]))
loss = -(xlogy(T, P) + xlogy(T1, 1.0 - P))
if sample_weight is not None:
return (sample_weight * loss).sum()
else:
return loss.sum()
def grad(AB):
# gradient of the objective function
P = expit(-(AB[0] * F + AB[1]))
TEP_minus_T1P = T - P
if sample_weight is not None:
TEP_minus_T1P *= sample_weight
dA = np.dot(TEP_minus_T1P, F)
dB = np.sum(TEP_minus_T1P)
return np.array([dA, dB])
AB0 = np.array([0.0, log((prior0 + 1.0) / (prior1 + 1.0))])
AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False)
return AB_[0], AB_[1]
class _SigmoidCalibration(RegressorMixin, BaseEstimator):
"""Sigmoid regression model.
Attributes
----------
a_ : float
The slope.
b_ : float
The intercept.
"""
def fit(self, X, y, sample_weight=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like of shape (n_samples,)
Training data.
y : array-like of shape (n_samples,)
Training target.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
Returns
-------
self : object
Returns an instance of self.
"""
X = column_or_1d(X)
y = column_or_1d(y)
X, y = indexable(X, y)
self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight)
return self
def predict(self, T):
"""Predict new data by linear interpolation.
Parameters
----------
T : array-like of shape (n_samples,)
Data to predict from.
Returns
-------
T_ : ndarray of shape (n_samples,)
The predicted data.
"""
T = column_or_1d(T)
return expit(-(self.a_ * T + self.b_))
def calibration_curve(
y_true,
y_prob,
*,
pos_label=None,
normalize="deprecated",
n_bins=5,
strategy="uniform",
):
"""Compute true and predicted probabilities for a calibration curve.
The method assumes the inputs come from a binary classifier, and
discretize the [0, 1] interval into bins.
Calibration curves may also be referred to as reliability diagrams.
Read more in the :ref:`User Guide <calibration>`.
Parameters
----------
y_true : array-like of shape (n_samples,)
True targets.
y_prob : array-like of shape (n_samples,)
Probabilities of the positive class.
pos_label : int or str, default=None
The label of the positive class.
.. versionadded:: 1.1
normalize : bool, default="deprecated"
Whether y_prob needs to be normalized into the [0, 1] interval, i.e.
is not a proper probability. If True, the smallest value in y_prob
is linearly mapped onto 0 and the largest one onto 1.
.. deprecated:: 1.1
The normalize argument is deprecated in v1.1 and will be removed in v1.3.
Explicitly normalizing `y_prob` will reproduce this behavior, but it is
recommended that a proper probability is used (i.e. a classifier's
`predict_proba` positive class).
n_bins : int, default=5
Number of bins to discretize the [0, 1] interval. A bigger number
requires more data. Bins with no samples (i.e. without
corresponding values in `y_prob`) will not be returned, thus the
returned arrays may have less than `n_bins` values.
strategy : {'uniform', 'quantile'}, default='uniform'
Strategy used to define the widths of the bins.
uniform
The bins have identical widths.
quantile
The bins have the same number of samples and depend on `y_prob`.
Returns
-------
prob_true : ndarray of shape (n_bins,) or smaller
The proportion of samples whose class is the positive class, in each
bin (fraction of positives).
prob_pred : ndarray of shape (n_bins,) or smaller
The mean predicted probability in each bin.
References
----------
Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good
Probabilities With Supervised Learning, in Proceedings of the 22nd
International Conference on Machine Learning (ICML).
See section 4 (Qualitative Analysis of Predictions).
Examples
--------
>>> import numpy as np
>>> from sklearn.calibration import calibration_curve
>>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1])
>>> y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.])
>>> prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=3)
>>> prob_true
array([0. , 0.5, 1. ])
>>> prob_pred
array([0.2 , 0.525, 0.85 ])
"""
y_true = column_or_1d(y_true)
y_prob = column_or_1d(y_prob)
check_consistent_length(y_true, y_prob)
pos_label = _check_pos_label_consistency(pos_label, y_true)
# TODO(1.3): Remove normalize conditional block.
if normalize != "deprecated":
warnings.warn(
"The normalize argument is deprecated in v1.1 and will be removed in v1.3."
" Explicitly normalizing y_prob will reproduce this behavior, but it is"
" recommended that a proper probability is used (i.e. a classifier's"
" `predict_proba` positive class or `decision_function` output calibrated"
" with `CalibratedClassifierCV`).",
FutureWarning,
)
if normalize: # Normalize predicted values into interval [0, 1]
y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min())
if y_prob.min() < 0 or y_prob.max() > 1:
raise ValueError("y_prob has values outside [0, 1].")
labels = np.unique(y_true)
if len(labels) > 2:
raise ValueError(
f"Only binary classification is supported. Provided labels {labels}."
)
y_true = y_true == pos_label
if strategy == "quantile": # Determine bin edges by distribution of data
quantiles = np.linspace(0, 1, n_bins + 1)
bins = np.percentile(y_prob, quantiles * 100)
elif strategy == "uniform":
bins = np.linspace(0.0, 1.0, n_bins + 1)
else:
raise ValueError(
"Invalid entry to 'strategy' input. Strategy "
"must be either 'quantile' or 'uniform'."
)
binids = np.searchsorted(bins[1:-1], y_prob)
bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins))
bin_true = np.bincount(binids, weights=y_true, minlength=len(bins))
bin_total = np.bincount(binids, minlength=len(bins))
nonzero = bin_total != 0
prob_true = bin_true[nonzero] / bin_total[nonzero]
prob_pred = bin_sums[nonzero] / bin_total[nonzero]
return prob_true, prob_pred
class CalibrationDisplay:
"""Calibration curve (also known as reliability diagram) visualization.
It is recommended to use
:func:`~sklearn.calibration.CalibrationDisplay.from_estimator` or
:func:`~sklearn.calibration.CalibrationDisplay.from_predictions`
to create a `CalibrationDisplay`. All parameters are stored as attributes.
Read more about calibration in the :ref:`User Guide <calibration>` and
more about the scikit-learn visualization API in :ref:`visualizations`.
.. versionadded:: 1.0
Parameters
----------
prob_true : ndarray of shape (n_bins,)
The proportion of samples whose class is the positive class (fraction
of positives), in each bin.
prob_pred : ndarray of shape (n_bins,)
The mean predicted probability in each bin.
y_prob : ndarray of shape (n_samples,)
Probability estimates for the positive class, for each sample.
estimator_name : str, default=None
Name of estimator. If None, the estimator name is not shown.
pos_label : str or int, default=None
The positive class when computing the calibration curve.
By default, `estimators.classes_[1]` is considered as the
positive class.
.. versionadded:: 1.1
Attributes
----------
line_ : matplotlib Artist
Calibration curve.
ax_ : matplotlib Axes
Axes with calibration curve.
figure_ : matplotlib Figure
Figure containing the curve.
See Also
--------
calibration_curve : Compute true and predicted probabilities for a
calibration curve.
CalibrationDisplay.from_predictions : Plot calibration curve using true
and predicted labels.
CalibrationDisplay.from_estimator : Plot calibration curve using an
estimator and data.
Examples
--------
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.calibration import calibration_curve, CalibrationDisplay
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = LogisticRegression(random_state=0)
>>> clf.fit(X_train, y_train)
LogisticRegression(random_state=0)
>>> y_prob = clf.predict_proba(X_test)[:, 1]
>>> prob_true, prob_pred = calibration_curve(y_test, y_prob, n_bins=10)
>>> disp = CalibrationDisplay(prob_true, prob_pred, y_prob)
>>> disp.plot()
<...>
"""
def __init__(
self, prob_true, prob_pred, y_prob, *, estimator_name=None, pos_label=None
):
self.prob_true = prob_true
self.prob_pred = prob_pred
self.y_prob = y_prob
self.estimator_name = estimator_name
self.pos_label = pos_label
def plot(self, *, ax=None, name=None, ref_line=True, **kwargs):
"""Plot visualization.
Extra keyword arguments will be passed to
:func:`matplotlib.pyplot.plot`.
Parameters
----------
ax : Matplotlib Axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
name : str, default=None
Name for labeling curve. If `None`, use `estimator_name` if
not `None`, otherwise no labeling is shown.
ref_line : bool, default=True
If `True`, plots a reference line representing a perfectly
calibrated classifier.
**kwargs : dict
Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
display : :class:`~sklearn.calibration.CalibrationDisplay`
Object that stores computed values.
"""
check_matplotlib_support("CalibrationDisplay.plot")
import matplotlib.pyplot as plt
if ax is None:
fig, ax = plt.subplots()
name = self.estimator_name if name is None else name
info_pos_label = (
f"(Positive class: {self.pos_label})" if self.pos_label is not None else ""
)
line_kwargs = {}
if name is not None:
line_kwargs["label"] = name
line_kwargs.update(**kwargs)
ref_line_label = "Perfectly calibrated"
existing_ref_line = ref_line_label in ax.get_legend_handles_labels()[1]
if ref_line and not existing_ref_line:
ax.plot([0, 1], [0, 1], "k:", label=ref_line_label)
self.line_ = ax.plot(self.prob_pred, self.prob_true, "s-", **line_kwargs)[0]
# We always have to show the legend for at least the reference line
ax.legend(loc="lower right")
xlabel = f"Mean predicted probability {info_pos_label}"
ylabel = f"Fraction of positives {info_pos_label}"
ax.set(xlabel=xlabel, ylabel=ylabel)
self.ax_ = ax
self.figure_ = ax.figure
return self
@classmethod
def from_estimator(
cls,
estimator,
X,
y,
*,
n_bins=5,
strategy="uniform",
pos_label=None,
name=None,
ref_line=True,
ax=None,
**kwargs,
):
"""Plot calibration curve using a binary classifier and data.
A calibration curve, also known as a reliability diagram, uses inputs
from a binary classifier and plots the average predicted probability
for each bin against the fraction of positive classes, on the
y-axis.
Extra keyword arguments will be passed to
:func:`matplotlib.pyplot.plot`.
Read more about calibration in the :ref:`User Guide <calibration>` and
more about the scikit-learn visualization API in :ref:`visualizations`.
.. versionadded:: 1.0
Parameters
----------
estimator : estimator instance
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
in which the last estimator is a classifier. The classifier must
have a :term:`predict_proba` method.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
y : array-like of shape (n_samples,)
Binary target values.
n_bins : int, default=5
Number of bins to discretize the [0, 1] interval into when
calculating the calibration curve. A bigger number requires more
data.
strategy : {'uniform', 'quantile'}, default='uniform'
Strategy used to define the widths of the bins.
- `'uniform'`: The bins have identical widths.
- `'quantile'`: The bins have the same number of samples and depend
on predicted probabilities.
pos_label : str or int, default=None
The positive class when computing the calibration curve.
By default, `estimators.classes_[1]` is considered as the
positive class.
.. versionadded:: 1.1
name : str, default=None
Name for labeling curve. If `None`, the name of the estimator is
used.
ref_line : bool, default=True
If `True`, plots a reference line representing a perfectly
calibrated classifier.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
**kwargs : dict
Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
display : :class:`~sklearn.calibration.CalibrationDisplay`.
Object that stores computed values.
See Also
--------
CalibrationDisplay.from_predictions : Plot calibration curve using true
and predicted labels.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.calibration import CalibrationDisplay
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = LogisticRegression(random_state=0)
>>> clf.fit(X_train, y_train)
LogisticRegression(random_state=0)
>>> disp = CalibrationDisplay.from_estimator(clf, X_test, y_test)
>>> plt.show()
"""
method_name = f"{cls.__name__}.from_estimator"
check_matplotlib_support(method_name)
if not is_classifier(estimator):
raise ValueError("'estimator' should be a fitted classifier.")
y_prob, pos_label = _get_response(
X, estimator, response_method="predict_proba", pos_label=pos_label
)
name = name if name is not None else estimator.__class__.__name__
return cls.from_predictions(
y,
y_prob,
n_bins=n_bins,
strategy=strategy,
pos_label=pos_label,
name=name,
ref_line=ref_line,
ax=ax,
**kwargs,
)
@classmethod
def from_predictions(
cls,
y_true,
y_prob,
*,
n_bins=5,
strategy="uniform",
pos_label=None,
name=None,
ref_line=True,
ax=None,
**kwargs,
):
"""Plot calibration curve using true labels and predicted probabilities.
Calibration curve, also known as reliability diagram, uses inputs
from a binary classifier and plots the average predicted probability
for each bin against the fraction of positive classes, on the
y-axis.
Extra keyword arguments will be passed to
:func:`matplotlib.pyplot.plot`.
Read more about calibration in the :ref:`User Guide <calibration>` and
more about the scikit-learn visualization API in :ref:`visualizations`.
.. versionadded:: 1.0
Parameters
----------
y_true : array-like of shape (n_samples,)
True labels.
y_prob : array-like of shape (n_samples,)
The predicted probabilities of the positive class.
n_bins : int, default=5
Number of bins to discretize the [0, 1] interval into when
calculating the calibration curve. A bigger number requires more
data.
strategy : {'uniform', 'quantile'}, default='uniform'
Strategy used to define the widths of the bins.
- `'uniform'`: The bins have identical widths.
- `'quantile'`: The bins have the same number of samples and depend
on predicted probabilities.
pos_label : str or int, default=None
The positive class when computing the calibration curve.
By default, `estimators.classes_[1]` is considered as the
positive class.
.. versionadded:: 1.1
name : str, default=None
Name for labeling curve.
ref_line : bool, default=True
If `True`, plots a reference line representing a perfectly
calibrated classifier.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
**kwargs : dict
Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
display : :class:`~sklearn.calibration.CalibrationDisplay`.
Object that stores computed values.
See Also
--------
CalibrationDisplay.from_estimator : Plot calibration curve using an
estimator and data.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.calibration import CalibrationDisplay
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = LogisticRegression(random_state=0)
>>> clf.fit(X_train, y_train)
LogisticRegression(random_state=0)
>>> y_prob = clf.predict_proba(X_test)[:, 1]
>>> disp = CalibrationDisplay.from_predictions(y_test, y_prob)
>>> plt.show()
"""
method_name = f"{cls.__name__}.from_estimator"
check_matplotlib_support(method_name)
prob_true, prob_pred = calibration_curve(
y_true, y_prob, n_bins=n_bins, strategy=strategy, pos_label=pos_label
)
name = "Classifier" if name is None else name
pos_label = _check_pos_label_consistency(pos_label, y_true)
disp = cls(
prob_true=prob_true,
prob_pred=prob_pred,
y_prob=y_prob,
estimator_name=name,
pos_label=pos_label,
)
return disp.plot(ax=ax, ref_line=ref_line, **kwargs)