Inzynierka/Lib/site-packages/sklearn/compose/tests/test_column_transformer.py

2162 lines
72 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""
Test the ColumnTransformer.
"""
import re
import pickle
import numpy as np
from scipy import sparse
import pytest
from numpy.testing import assert_allclose
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_allclose_dense_sparse
from sklearn.utils._testing import assert_almost_equal
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.compose import (
ColumnTransformer,
make_column_transformer,
make_column_selector,
)
from sklearn.exceptions import NotFittedError
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import StandardScaler, Normalizer, OneHotEncoder
class Trans(TransformerMixin, BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
# 1D Series -> 2D DataFrame
if hasattr(X, "to_frame"):
return X.to_frame()
# 1D array -> 2D array
if X.ndim == 1:
return np.atleast_2d(X).T
return X
class DoubleTrans(BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X):
return 2 * X
class SparseMatrixTrans(BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
n_samples = len(X)
return sparse.eye(n_samples, n_samples).tocsr()
class TransNo2D(BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
return X
class TransRaise(BaseEstimator):
def fit(self, X, y=None):
raise ValueError("specific message")
def transform(self, X, y=None):
raise ValueError("specific message")
def test_column_transformer():
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_first1D = np.array([0, 1, 2])
X_res_second1D = np.array([2, 4, 6])
X_res_first = X_res_first1D.reshape(-1, 1)
X_res_both = X_array
cases = [
# single column 1D / 2D
(0, X_res_first),
([0], X_res_first),
# list-like
([0, 1], X_res_both),
(np.array([0, 1]), X_res_both),
# slice
(slice(0, 1), X_res_first),
(slice(0, 2), X_res_both),
# boolean mask
(np.array([True, False]), X_res_first),
([True, False], X_res_first),
(np.array([True, True]), X_res_both),
([True, True], X_res_both),
]
for selection, res in cases:
ct = ColumnTransformer([("trans", Trans(), selection)], remainder="drop")
assert_array_equal(ct.fit_transform(X_array), res)
assert_array_equal(ct.fit(X_array).transform(X_array), res)
# callable that returns any of the allowed specifiers
ct = ColumnTransformer(
[("trans", Trans(), lambda x: selection)], remainder="drop"
)
assert_array_equal(ct.fit_transform(X_array), res)
assert_array_equal(ct.fit(X_array).transform(X_array), res)
ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", Trans(), [1])])
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
# test with transformer_weights
transformer_weights = {"trans1": 0.1, "trans2": 10}
both = ColumnTransformer(
[("trans1", Trans(), [0]), ("trans2", Trans(), [1])],
transformer_weights=transformer_weights,
)
res = np.vstack(
[
transformer_weights["trans1"] * X_res_first1D,
transformer_weights["trans2"] * X_res_second1D,
]
).T
assert_array_equal(both.fit_transform(X_array), res)
assert_array_equal(both.fit(X_array).transform(X_array), res)
assert len(both.transformers_) == 2
both = ColumnTransformer(
[("trans", Trans(), [0, 1])], transformer_weights={"trans": 0.1}
)
assert_array_equal(both.fit_transform(X_array), 0.1 * X_res_both)
assert_array_equal(both.fit(X_array).transform(X_array), 0.1 * X_res_both)
assert len(both.transformers_) == 1
def test_column_transformer_dataframe():
pd = pytest.importorskip("pandas")
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_df = pd.DataFrame(X_array, columns=["first", "second"])
X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
X_res_both = X_array
cases = [
# String keys: label based
# scalar
("first", X_res_first),
# list
(["first"], X_res_first),
(["first", "second"], X_res_both),
# slice
(slice("first", "second"), X_res_both),
# int keys: positional
# scalar
(0, X_res_first),
# list
([0], X_res_first),
([0, 1], X_res_both),
(np.array([0, 1]), X_res_both),
# slice
(slice(0, 1), X_res_first),
(slice(0, 2), X_res_both),
# boolean mask
(np.array([True, False]), X_res_first),
(pd.Series([True, False], index=["first", "second"]), X_res_first),
([True, False], X_res_first),
]
for selection, res in cases:
ct = ColumnTransformer([("trans", Trans(), selection)], remainder="drop")
assert_array_equal(ct.fit_transform(X_df), res)
assert_array_equal(ct.fit(X_df).transform(X_df), res)
# callable that returns any of the allowed specifiers
ct = ColumnTransformer(
[("trans", Trans(), lambda X: selection)], remainder="drop"
)
assert_array_equal(ct.fit_transform(X_df), res)
assert_array_equal(ct.fit(X_df).transform(X_df), res)
ct = ColumnTransformer(
[("trans1", Trans(), ["first"]), ("trans2", Trans(), ["second"])]
)
assert_array_equal(ct.fit_transform(X_df), X_res_both)
assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != "remainder"
ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", Trans(), [1])])
assert_array_equal(ct.fit_transform(X_df), X_res_both)
assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != "remainder"
# test with transformer_weights
transformer_weights = {"trans1": 0.1, "trans2": 10}
both = ColumnTransformer(
[("trans1", Trans(), ["first"]), ("trans2", Trans(), ["second"])],
transformer_weights=transformer_weights,
)
res = np.vstack(
[
transformer_weights["trans1"] * X_df["first"],
transformer_weights["trans2"] * X_df["second"],
]
).T
assert_array_equal(both.fit_transform(X_df), res)
assert_array_equal(both.fit(X_df).transform(X_df), res)
assert len(both.transformers_) == 2
assert both.transformers_[-1][0] != "remainder"
# test multiple columns
both = ColumnTransformer(
[("trans", Trans(), ["first", "second"])], transformer_weights={"trans": 0.1}
)
assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
assert len(both.transformers_) == 1
assert both.transformers_[-1][0] != "remainder"
both = ColumnTransformer(
[("trans", Trans(), [0, 1])], transformer_weights={"trans": 0.1}
)
assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
assert len(both.transformers_) == 1
assert both.transformers_[-1][0] != "remainder"
# ensure pandas object is passed through
class TransAssert(BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
assert isinstance(X, (pd.DataFrame, pd.Series))
if isinstance(X, pd.Series):
X = X.to_frame()
return X
ct = ColumnTransformer([("trans", TransAssert(), "first")], remainder="drop")
ct.fit_transform(X_df)
ct = ColumnTransformer([("trans", TransAssert(), ["first", "second"])])
ct.fit_transform(X_df)
# integer column spec + integer column names -> still use positional
X_df2 = X_df.copy()
X_df2.columns = [1, 0]
ct = ColumnTransformer([("trans", Trans(), 0)], remainder="drop")
assert_array_equal(ct.fit_transform(X_df2), X_res_first)
assert_array_equal(ct.fit(X_df2).transform(X_df2), X_res_first)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert ct.transformers_[-1][1] == "drop"
assert_array_equal(ct.transformers_[-1][2], [1])
@pytest.mark.parametrize("pandas", [True, False], ids=["pandas", "numpy"])
@pytest.mark.parametrize(
"column_selection",
[[], np.array([False, False]), [False, False]],
ids=["list", "bool", "bool_int"],
)
@pytest.mark.parametrize("callable_column", [False, True])
def test_column_transformer_empty_columns(pandas, column_selection, callable_column):
# test case that ensures that the column transformer does also work when
# a given transformer doesn't have any columns to work on
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_both = X_array
if pandas:
pd = pytest.importorskip("pandas")
X = pd.DataFrame(X_array, columns=["first", "second"])
else:
X = X_array
if callable_column:
column = lambda X: column_selection # noqa
else:
column = column_selection
ct = ColumnTransformer(
[("trans1", Trans(), [0, 1]), ("trans2", TransRaise(), column)]
)
assert_array_equal(ct.fit_transform(X), X_res_both)
assert_array_equal(ct.fit(X).transform(X), X_res_both)
assert len(ct.transformers_) == 2
assert isinstance(ct.transformers_[1][1], TransRaise)
ct = ColumnTransformer(
[("trans1", TransRaise(), column), ("trans2", Trans(), [0, 1])]
)
assert_array_equal(ct.fit_transform(X), X_res_both)
assert_array_equal(ct.fit(X).transform(X), X_res_both)
assert len(ct.transformers_) == 2
assert isinstance(ct.transformers_[0][1], TransRaise)
ct = ColumnTransformer([("trans", TransRaise(), column)], remainder="passthrough")
assert_array_equal(ct.fit_transform(X), X_res_both)
assert_array_equal(ct.fit(X).transform(X), X_res_both)
assert len(ct.transformers_) == 2 # including remainder
assert isinstance(ct.transformers_[0][1], TransRaise)
fixture = np.array([[], [], []])
ct = ColumnTransformer([("trans", TransRaise(), column)], remainder="drop")
assert_array_equal(ct.fit_transform(X), fixture)
assert_array_equal(ct.fit(X).transform(X), fixture)
assert len(ct.transformers_) == 2 # including remainder
assert isinstance(ct.transformers_[0][1], TransRaise)
def test_column_transformer_output_indices():
# Checks for the output_indices_ attribute
X_array = np.arange(6).reshape(3, 2)
ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", Trans(), [1])])
X_trans = ct.fit_transform(X_array)
assert ct.output_indices_ == {
"trans1": slice(0, 1),
"trans2": slice(1, 2),
"remainder": slice(0, 0),
}
assert_array_equal(X_trans[:, [0]], X_trans[:, ct.output_indices_["trans1"]])
assert_array_equal(X_trans[:, [1]], X_trans[:, ct.output_indices_["trans2"]])
# test with transformer_weights and multiple columns
ct = ColumnTransformer(
[("trans", Trans(), [0, 1])], transformer_weights={"trans": 0.1}
)
X_trans = ct.fit_transform(X_array)
assert ct.output_indices_ == {"trans": slice(0, 2), "remainder": slice(0, 0)}
assert_array_equal(X_trans[:, [0, 1]], X_trans[:, ct.output_indices_["trans"]])
assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["remainder"]])
# test case that ensures that the attribute does also work when
# a given transformer doesn't have any columns to work on
ct = ColumnTransformer([("trans1", Trans(), [0, 1]), ("trans2", TransRaise(), [])])
X_trans = ct.fit_transform(X_array)
assert ct.output_indices_ == {
"trans1": slice(0, 2),
"trans2": slice(0, 0),
"remainder": slice(0, 0),
}
assert_array_equal(X_trans[:, [0, 1]], X_trans[:, ct.output_indices_["trans1"]])
assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["trans2"]])
assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["remainder"]])
ct = ColumnTransformer([("trans", TransRaise(), [])], remainder="passthrough")
X_trans = ct.fit_transform(X_array)
assert ct.output_indices_ == {"trans": slice(0, 0), "remainder": slice(0, 2)}
assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["trans"]])
assert_array_equal(X_trans[:, [0, 1]], X_trans[:, ct.output_indices_["remainder"]])
def test_column_transformer_output_indices_df():
# Checks for the output_indices_ attribute with data frames
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame(np.arange(6).reshape(3, 2), columns=["first", "second"])
ct = ColumnTransformer(
[("trans1", Trans(), ["first"]), ("trans2", Trans(), ["second"])]
)
X_trans = ct.fit_transform(X_df)
assert ct.output_indices_ == {
"trans1": slice(0, 1),
"trans2": slice(1, 2),
"remainder": slice(0, 0),
}
assert_array_equal(X_trans[:, [0]], X_trans[:, ct.output_indices_["trans1"]])
assert_array_equal(X_trans[:, [1]], X_trans[:, ct.output_indices_["trans2"]])
assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["remainder"]])
ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", Trans(), [1])])
X_trans = ct.fit_transform(X_df)
assert ct.output_indices_ == {
"trans1": slice(0, 1),
"trans2": slice(1, 2),
"remainder": slice(0, 0),
}
assert_array_equal(X_trans[:, [0]], X_trans[:, ct.output_indices_["trans1"]])
assert_array_equal(X_trans[:, [1]], X_trans[:, ct.output_indices_["trans2"]])
assert_array_equal(X_trans[:, []], X_trans[:, ct.output_indices_["remainder"]])
def test_column_transformer_sparse_array():
X_sparse = sparse.eye(3, 2).tocsr()
# no distinction between 1D and 2D
X_res_first = X_sparse[:, 0]
X_res_both = X_sparse
for col in [0, [0], slice(0, 1)]:
for remainder, res in [("drop", X_res_first), ("passthrough", X_res_both)]:
ct = ColumnTransformer(
[("trans", Trans(), col)], remainder=remainder, sparse_threshold=0.8
)
assert sparse.issparse(ct.fit_transform(X_sparse))
assert_allclose_dense_sparse(ct.fit_transform(X_sparse), res)
assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse), res)
for col in [[0, 1], slice(0, 2)]:
ct = ColumnTransformer([("trans", Trans(), col)], sparse_threshold=0.8)
assert sparse.issparse(ct.fit_transform(X_sparse))
assert_allclose_dense_sparse(ct.fit_transform(X_sparse), X_res_both)
assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse), X_res_both)
def test_column_transformer_list():
X_list = [[1, float("nan"), "a"], [0, 0, "b"]]
expected_result = np.array(
[
[1, float("nan"), 1, 0],
[-1, 0, 0, 1],
]
)
ct = ColumnTransformer(
[
("numerical", StandardScaler(), [0, 1]),
("categorical", OneHotEncoder(), [2]),
]
)
assert_array_equal(ct.fit_transform(X_list), expected_result)
assert_array_equal(ct.fit(X_list).transform(X_list), expected_result)
def test_column_transformer_sparse_stacking():
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
col_trans = ColumnTransformer(
[("trans1", Trans(), [0]), ("trans2", SparseMatrixTrans(), 1)],
sparse_threshold=0.8,
)
col_trans.fit(X_array)
X_trans = col_trans.transform(X_array)
assert sparse.issparse(X_trans)
assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
assert_array_equal(X_trans.toarray()[:, 1:], np.eye(X_trans.shape[0]))
assert len(col_trans.transformers_) == 2
assert col_trans.transformers_[-1][0] != "remainder"
col_trans = ColumnTransformer(
[("trans1", Trans(), [0]), ("trans2", SparseMatrixTrans(), 1)],
sparse_threshold=0.1,
)
col_trans.fit(X_array)
X_trans = col_trans.transform(X_array)
assert not sparse.issparse(X_trans)
assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
assert_array_equal(X_trans[:, 1:], np.eye(X_trans.shape[0]))
def test_column_transformer_mixed_cols_sparse():
df = np.array([["a", 1, True], ["b", 2, False]], dtype="O")
ct = make_column_transformer(
(OneHotEncoder(), [0]), ("passthrough", [1, 2]), sparse_threshold=1.0
)
# this shouldn't fail, since boolean can be coerced into a numeric
# See: https://github.com/scikit-learn/scikit-learn/issues/11912
X_trans = ct.fit_transform(df)
assert X_trans.getformat() == "csr"
assert_array_equal(X_trans.toarray(), np.array([[1, 0, 1, 1], [0, 1, 2, 0]]))
ct = make_column_transformer(
(OneHotEncoder(), [0]), ("passthrough", [0]), sparse_threshold=1.0
)
with pytest.raises(ValueError, match="For a sparse output, all columns should"):
# this fails since strings `a` and `b` cannot be
# coerced into a numeric.
ct.fit_transform(df)
def test_column_transformer_sparse_threshold():
X_array = np.array([["a", "b"], ["A", "B"]], dtype=object).T
# above data has sparsity of 4 / 8 = 0.5
# apply threshold even if all sparse
col_trans = ColumnTransformer(
[("trans1", OneHotEncoder(), [0]), ("trans2", OneHotEncoder(), [1])],
sparse_threshold=0.2,
)
res = col_trans.fit_transform(X_array)
assert not sparse.issparse(res)
assert not col_trans.sparse_output_
# mixed -> sparsity of (4 + 2) / 8 = 0.75
for thres in [0.75001, 1]:
col_trans = ColumnTransformer(
[
("trans1", OneHotEncoder(sparse_output=True), [0]),
("trans2", OneHotEncoder(sparse_output=False), [1]),
],
sparse_threshold=thres,
)
res = col_trans.fit_transform(X_array)
assert sparse.issparse(res)
assert col_trans.sparse_output_
for thres in [0.75, 0]:
col_trans = ColumnTransformer(
[
("trans1", OneHotEncoder(sparse_output=True), [0]),
("trans2", OneHotEncoder(sparse_output=False), [1]),
],
sparse_threshold=thres,
)
res = col_trans.fit_transform(X_array)
assert not sparse.issparse(res)
assert not col_trans.sparse_output_
# if nothing is sparse -> no sparse
for thres in [0.33, 0, 1]:
col_trans = ColumnTransformer(
[
("trans1", OneHotEncoder(sparse_output=False), [0]),
("trans2", OneHotEncoder(sparse_output=False), [1]),
],
sparse_threshold=thres,
)
res = col_trans.fit_transform(X_array)
assert not sparse.issparse(res)
assert not col_trans.sparse_output_
def test_column_transformer_error_msg_1D():
X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
col_trans = ColumnTransformer([("trans", StandardScaler(), 0)])
msg = "1D data passed to a transformer"
with pytest.raises(ValueError, match=msg):
col_trans.fit(X_array)
with pytest.raises(ValueError, match=msg):
col_trans.fit_transform(X_array)
col_trans = ColumnTransformer([("trans", TransRaise(), 0)])
for func in [col_trans.fit, col_trans.fit_transform]:
with pytest.raises(ValueError, match="specific message"):
func(X_array)
def test_2D_transformer_output():
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
# if one transformer is dropped, test that name is still correct
ct = ColumnTransformer([("trans1", "drop", 0), ("trans2", TransNo2D(), 1)])
msg = "the 'trans2' transformer should be 2D"
with pytest.raises(ValueError, match=msg):
ct.fit_transform(X_array)
# because fit is also doing transform, this raises already on fit
with pytest.raises(ValueError, match=msg):
ct.fit(X_array)
def test_2D_transformer_output_pandas():
pd = pytest.importorskip("pandas")
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_df = pd.DataFrame(X_array, columns=["col1", "col2"])
# if one transformer is dropped, test that name is still correct
ct = ColumnTransformer([("trans1", TransNo2D(), "col1")])
msg = "the 'trans1' transformer should be 2D"
with pytest.raises(ValueError, match=msg):
ct.fit_transform(X_df)
# because fit is also doing transform, this raises already on fit
with pytest.raises(ValueError, match=msg):
ct.fit(X_df)
@pytest.mark.parametrize("remainder", ["drop", "passthrough"])
def test_column_transformer_invalid_columns(remainder):
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
# general invalid
for col in [1.5, ["string", 1], slice(1, "s"), np.array([1.0])]:
ct = ColumnTransformer([("trans", Trans(), col)], remainder=remainder)
with pytest.raises(ValueError, match="No valid specification"):
ct.fit(X_array)
# invalid for arrays
for col in ["string", ["string", "other"], slice("a", "b")]:
ct = ColumnTransformer([("trans", Trans(), col)], remainder=remainder)
with pytest.raises(ValueError, match="Specifying the columns"):
ct.fit(X_array)
# transformed n_features does not match fitted n_features
col = [0, 1]
ct = ColumnTransformer([("trans", Trans(), col)], remainder=remainder)
ct.fit(X_array)
X_array_more = np.array([[0, 1, 2], [2, 4, 6], [3, 6, 9]]).T
msg = "X has 3 features, but ColumnTransformer is expecting 2 features as input."
with pytest.raises(ValueError, match=msg):
ct.transform(X_array_more)
X_array_fewer = np.array(
[
[0, 1, 2],
]
).T
err_msg = (
"X has 1 features, but ColumnTransformer is expecting 2 features as input."
)
with pytest.raises(ValueError, match=err_msg):
ct.transform(X_array_fewer)
def test_column_transformer_invalid_transformer():
class NoTrans(BaseEstimator):
def fit(self, X, y=None):
return self
def predict(self, X):
return X
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
ct = ColumnTransformer([("trans", NoTrans(), [0])])
msg = "All estimators should implement fit and transform"
with pytest.raises(TypeError, match=msg):
ct.fit(X_array)
def test_make_column_transformer():
scaler = StandardScaler()
norm = Normalizer()
ct = make_column_transformer((scaler, "first"), (norm, ["second"]))
names, transformers, columns = zip(*ct.transformers)
assert names == ("standardscaler", "normalizer")
assert transformers == (scaler, norm)
assert columns == ("first", ["second"])
def test_make_column_transformer_pandas():
pd = pytest.importorskip("pandas")
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_df = pd.DataFrame(X_array, columns=["first", "second"])
norm = Normalizer()
ct1 = ColumnTransformer([("norm", Normalizer(), X_df.columns)])
ct2 = make_column_transformer((norm, X_df.columns))
assert_almost_equal(ct1.fit_transform(X_df), ct2.fit_transform(X_df))
def test_make_column_transformer_kwargs():
scaler = StandardScaler()
norm = Normalizer()
ct = make_column_transformer(
(scaler, "first"),
(norm, ["second"]),
n_jobs=3,
remainder="drop",
sparse_threshold=0.5,
)
assert (
ct.transformers
== make_column_transformer((scaler, "first"), (norm, ["second"])).transformers
)
assert ct.n_jobs == 3
assert ct.remainder == "drop"
assert ct.sparse_threshold == 0.5
# invalid keyword parameters should raise an error message
msg = re.escape(
"make_column_transformer() got an unexpected "
"keyword argument 'transformer_weights'"
)
with pytest.raises(TypeError, match=msg):
make_column_transformer(
(scaler, "first"),
(norm, ["second"]),
transformer_weights={"pca": 10, "Transf": 1},
)
def test_make_column_transformer_remainder_transformer():
scaler = StandardScaler()
norm = Normalizer()
remainder = StandardScaler()
ct = make_column_transformer(
(scaler, "first"), (norm, ["second"]), remainder=remainder
)
assert ct.remainder == remainder
def test_column_transformer_get_set_params():
ct = ColumnTransformer(
[("trans1", StandardScaler(), [0]), ("trans2", StandardScaler(), [1])]
)
exp = {
"n_jobs": None,
"remainder": "drop",
"sparse_threshold": 0.3,
"trans1": ct.transformers[0][1],
"trans1__copy": True,
"trans1__with_mean": True,
"trans1__with_std": True,
"trans2": ct.transformers[1][1],
"trans2__copy": True,
"trans2__with_mean": True,
"trans2__with_std": True,
"transformers": ct.transformers,
"transformer_weights": None,
"verbose_feature_names_out": True,
"verbose": False,
}
assert ct.get_params() == exp
ct.set_params(trans1__with_mean=False)
assert not ct.get_params()["trans1__with_mean"]
ct.set_params(trans1="passthrough")
exp = {
"n_jobs": None,
"remainder": "drop",
"sparse_threshold": 0.3,
"trans1": "passthrough",
"trans2": ct.transformers[1][1],
"trans2__copy": True,
"trans2__with_mean": True,
"trans2__with_std": True,
"transformers": ct.transformers,
"transformer_weights": None,
"verbose_feature_names_out": True,
"verbose": False,
}
assert ct.get_params() == exp
def test_column_transformer_named_estimators():
X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
ct = ColumnTransformer(
[
("trans1", StandardScaler(), [0]),
("trans2", StandardScaler(with_std=False), [1]),
]
)
assert not hasattr(ct, "transformers_")
ct.fit(X_array)
assert hasattr(ct, "transformers_")
assert isinstance(ct.named_transformers_["trans1"], StandardScaler)
assert isinstance(ct.named_transformers_.trans1, StandardScaler)
assert isinstance(ct.named_transformers_["trans2"], StandardScaler)
assert isinstance(ct.named_transformers_.trans2, StandardScaler)
assert not ct.named_transformers_.trans2.with_std
# check it are fitted transformers
assert ct.named_transformers_.trans1.mean_ == 1.0
def test_column_transformer_cloning():
X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
ct = ColumnTransformer([("trans", StandardScaler(), [0])])
ct.fit(X_array)
assert not hasattr(ct.transformers[0][1], "mean_")
assert hasattr(ct.transformers_[0][1], "mean_")
ct = ColumnTransformer([("trans", StandardScaler(), [0])])
ct.fit_transform(X_array)
assert not hasattr(ct.transformers[0][1], "mean_")
assert hasattr(ct.transformers_[0][1], "mean_")
def test_column_transformer_get_feature_names():
X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
ct = ColumnTransformer([("trans", Trans(), [0, 1])])
# raise correct error when not fitted
with pytest.raises(NotFittedError):
ct.get_feature_names_out()
# raise correct error when no feature names are available
ct.fit(X_array)
msg = re.escape(
"Transformer trans (type Trans) does not provide get_feature_names_out"
)
with pytest.raises(AttributeError, match=msg):
ct.get_feature_names_out()
def test_column_transformer_special_strings():
# one 'drop' -> ignore
X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", "drop", [1])])
exp = np.array([[0.0], [1.0], [2.0]])
assert_array_equal(ct.fit_transform(X_array), exp)
assert_array_equal(ct.fit(X_array).transform(X_array), exp)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != "remainder"
# all 'drop' -> return shape 0 array
ct = ColumnTransformer([("trans1", "drop", [0]), ("trans2", "drop", [1])])
assert_array_equal(ct.fit(X_array).transform(X_array).shape, (3, 0))
assert_array_equal(ct.fit_transform(X_array).shape, (3, 0))
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != "remainder"
# 'passthrough'
X_array = np.array([[0.0, 1.0, 2.0], [2.0, 4.0, 6.0]]).T
ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", "passthrough", [1])])
exp = X_array
assert_array_equal(ct.fit_transform(X_array), exp)
assert_array_equal(ct.fit(X_array).transform(X_array), exp)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != "remainder"
# None itself / other string is not valid
for val in [None, "other"]:
ct = ColumnTransformer([("trans1", Trans(), [0]), ("trans2", None, [1])])
msg = "All estimators should implement"
with pytest.raises(TypeError, match=msg):
ct.fit_transform(X_array)
with pytest.raises(TypeError, match=msg):
ct.fit(X_array)
def test_column_transformer_remainder():
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
X_res_second = np.array([2, 4, 6]).reshape(-1, 1)
X_res_both = X_array
# default drop
ct = ColumnTransformer([("trans1", Trans(), [0])])
assert_array_equal(ct.fit_transform(X_array), X_res_first)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert ct.transformers_[-1][1] == "drop"
assert_array_equal(ct.transformers_[-1][2], [1])
# specify passthrough
ct = ColumnTransformer([("trans", Trans(), [0])], remainder="passthrough")
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert ct.transformers_[-1][1] == "passthrough"
assert_array_equal(ct.transformers_[-1][2], [1])
# column order is not preserved (passed through added to end)
ct = ColumnTransformer([("trans1", Trans(), [1])], remainder="passthrough")
assert_array_equal(ct.fit_transform(X_array), X_res_both[:, ::-1])
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both[:, ::-1])
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert ct.transformers_[-1][1] == "passthrough"
assert_array_equal(ct.transformers_[-1][2], [0])
# passthrough when all actual transformers are skipped
ct = ColumnTransformer([("trans1", "drop", [0])], remainder="passthrough")
assert_array_equal(ct.fit_transform(X_array), X_res_second)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_second)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert ct.transformers_[-1][1] == "passthrough"
assert_array_equal(ct.transformers_[-1][2], [1])
# error on invalid arg
ct = ColumnTransformer([("trans1", Trans(), [0])], remainder=1)
msg = "remainder keyword needs to be one of 'drop', 'passthrough', or estimator."
with pytest.raises(ValueError, match=msg):
ct.fit(X_array)
with pytest.raises(ValueError, match=msg):
ct.fit_transform(X_array)
# check default for make_column_transformer
ct = make_column_transformer((Trans(), [0]))
assert ct.remainder == "drop"
@pytest.mark.parametrize(
"key", [[0], np.array([0]), slice(0, 1), np.array([True, False])]
)
def test_column_transformer_remainder_numpy(key):
# test different ways that columns are specified with passthrough
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_both = X_array
ct = ColumnTransformer([("trans1", Trans(), key)], remainder="passthrough")
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert ct.transformers_[-1][1] == "passthrough"
assert_array_equal(ct.transformers_[-1][2], [1])
@pytest.mark.parametrize(
"key",
[
[0],
slice(0, 1),
np.array([True, False]),
["first"],
"pd-index",
np.array(["first"]),
np.array(["first"], dtype=object),
slice(None, "first"),
slice("first", "first"),
],
)
def test_column_transformer_remainder_pandas(key):
# test different ways that columns are specified with passthrough
pd = pytest.importorskip("pandas")
if isinstance(key, str) and key == "pd-index":
key = pd.Index(["first"])
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_df = pd.DataFrame(X_array, columns=["first", "second"])
X_res_both = X_array
ct = ColumnTransformer([("trans1", Trans(), key)], remainder="passthrough")
assert_array_equal(ct.fit_transform(X_df), X_res_both)
assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert ct.transformers_[-1][1] == "passthrough"
assert_array_equal(ct.transformers_[-1][2], [1])
@pytest.mark.parametrize(
"key", [[0], np.array([0]), slice(0, 1), np.array([True, False, False])]
)
def test_column_transformer_remainder_transformer(key):
X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
X_res_both = X_array.copy()
# second and third columns are doubled when remainder = DoubleTrans
X_res_both[:, 1:3] *= 2
ct = ColumnTransformer([("trans1", Trans(), key)], remainder=DoubleTrans())
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert isinstance(ct.transformers_[-1][1], DoubleTrans)
assert_array_equal(ct.transformers_[-1][2], [1, 2])
def test_column_transformer_no_remaining_remainder_transformer():
X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
ct = ColumnTransformer([("trans1", Trans(), [0, 1, 2])], remainder=DoubleTrans())
assert_array_equal(ct.fit_transform(X_array), X_array)
assert_array_equal(ct.fit(X_array).transform(X_array), X_array)
assert len(ct.transformers_) == 1
assert ct.transformers_[-1][0] != "remainder"
def test_column_transformer_drops_all_remainder_transformer():
X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
# columns are doubled when remainder = DoubleTrans
X_res_both = 2 * X_array.copy()[:, 1:3]
ct = ColumnTransformer([("trans1", "drop", [0])], remainder=DoubleTrans())
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert isinstance(ct.transformers_[-1][1], DoubleTrans)
assert_array_equal(ct.transformers_[-1][2], [1, 2])
def test_column_transformer_sparse_remainder_transformer():
X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
ct = ColumnTransformer(
[("trans1", Trans(), [0])], remainder=SparseMatrixTrans(), sparse_threshold=0.8
)
X_trans = ct.fit_transform(X_array)
assert sparse.issparse(X_trans)
# SparseMatrixTrans creates 3 features for each column. There is
# one column in ``transformers``, thus:
assert X_trans.shape == (3, 3 + 1)
exp_array = np.hstack((X_array[:, 0].reshape(-1, 1), np.eye(3)))
assert_array_equal(X_trans.toarray(), exp_array)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
assert_array_equal(ct.transformers_[-1][2], [1, 2])
def test_column_transformer_drop_all_sparse_remainder_transformer():
X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
ct = ColumnTransformer(
[("trans1", "drop", [0])], remainder=SparseMatrixTrans(), sparse_threshold=0.8
)
X_trans = ct.fit_transform(X_array)
assert sparse.issparse(X_trans)
# SparseMatrixTrans creates 3 features for each column, thus:
assert X_trans.shape == (3, 3)
assert_array_equal(X_trans.toarray(), np.eye(3))
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == "remainder"
assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
assert_array_equal(ct.transformers_[-1][2], [1, 2])
def test_column_transformer_get_set_params_with_remainder():
ct = ColumnTransformer(
[("trans1", StandardScaler(), [0])], remainder=StandardScaler()
)
exp = {
"n_jobs": None,
"remainder": ct.remainder,
"remainder__copy": True,
"remainder__with_mean": True,
"remainder__with_std": True,
"sparse_threshold": 0.3,
"trans1": ct.transformers[0][1],
"trans1__copy": True,
"trans1__with_mean": True,
"trans1__with_std": True,
"transformers": ct.transformers,
"transformer_weights": None,
"verbose_feature_names_out": True,
"verbose": False,
}
assert ct.get_params() == exp
ct.set_params(remainder__with_std=False)
assert not ct.get_params()["remainder__with_std"]
ct.set_params(trans1="passthrough")
exp = {
"n_jobs": None,
"remainder": ct.remainder,
"remainder__copy": True,
"remainder__with_mean": True,
"remainder__with_std": False,
"sparse_threshold": 0.3,
"trans1": "passthrough",
"transformers": ct.transformers,
"transformer_weights": None,
"verbose_feature_names_out": True,
"verbose": False,
}
assert ct.get_params() == exp
def test_column_transformer_no_estimators():
X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).astype("float").T
ct = ColumnTransformer([], remainder=StandardScaler())
params = ct.get_params()
assert params["remainder__with_mean"]
X_trans = ct.fit_transform(X_array)
assert X_trans.shape == X_array.shape
assert len(ct.transformers_) == 1
assert ct.transformers_[-1][0] == "remainder"
assert ct.transformers_[-1][2] == [0, 1, 2]
@pytest.mark.parametrize(
["est", "pattern"],
[
(
ColumnTransformer(
[("trans1", Trans(), [0]), ("trans2", Trans(), [1])],
remainder=DoubleTrans(),
),
(
r"\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n"
r"\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n"
r"\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$"
),
),
(
ColumnTransformer(
[("trans1", Trans(), [0]), ("trans2", Trans(), [1])],
remainder="passthrough",
),
(
r"\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n"
r"\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n"
r"\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$"
),
),
(
ColumnTransformer(
[("trans1", Trans(), [0]), ("trans2", "drop", [1])],
remainder="passthrough",
),
(
r"\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n"
r"\[ColumnTransformer\].*\(2 of 2\) Processing remainder.* total=.*\n$"
),
),
(
ColumnTransformer(
[("trans1", Trans(), [0]), ("trans2", "passthrough", [1])],
remainder="passthrough",
),
(
r"\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n"
r"\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n"
r"\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$"
),
),
(
ColumnTransformer([("trans1", Trans(), [0])], remainder="passthrough"),
(
r"\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n"
r"\[ColumnTransformer\].*\(2 of 2\) Processing remainder.* total=.*\n$"
),
),
(
ColumnTransformer(
[("trans1", Trans(), [0]), ("trans2", Trans(), [1])], remainder="drop"
),
(
r"\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n"
r"\[ColumnTransformer\].*\(2 of 2\) Processing trans2.* total=.*\n$"
),
),
(
ColumnTransformer([("trans1", Trans(), [0])], remainder="drop"),
r"\[ColumnTransformer\].*\(1 of 1\) Processing trans1.* total=.*\n$",
),
],
)
@pytest.mark.parametrize("method", ["fit", "fit_transform"])
def test_column_transformer_verbose(est, pattern, method, capsys):
X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
func = getattr(est, method)
est.set_params(verbose=False)
func(X_array)
assert not capsys.readouterr().out, "Got output for verbose=False"
est.set_params(verbose=True)
func(X_array)
assert re.match(pattern, capsys.readouterr()[0])
def test_column_transformer_no_estimators_set_params():
ct = ColumnTransformer([]).set_params(n_jobs=2)
assert ct.n_jobs == 2
def test_column_transformer_callable_specifier():
# assert that function gets the full array
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_first = np.array([[0, 1, 2]]).T
def func(X):
assert_array_equal(X, X_array)
return [0]
ct = ColumnTransformer([("trans", Trans(), func)], remainder="drop")
assert_array_equal(ct.fit_transform(X_array), X_res_first)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
assert callable(ct.transformers[0][2])
assert ct.transformers_[0][2] == [0]
def test_column_transformer_callable_specifier_dataframe():
# assert that function gets the full dataframe
pd = pytest.importorskip("pandas")
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_first = np.array([[0, 1, 2]]).T
X_df = pd.DataFrame(X_array, columns=["first", "second"])
def func(X):
assert_array_equal(X.columns, X_df.columns)
assert_array_equal(X.values, X_df.values)
return ["first"]
ct = ColumnTransformer([("trans", Trans(), func)], remainder="drop")
assert_array_equal(ct.fit_transform(X_df), X_res_first)
assert_array_equal(ct.fit(X_df).transform(X_df), X_res_first)
assert callable(ct.transformers[0][2])
assert ct.transformers_[0][2] == ["first"]
def test_column_transformer_negative_column_indexes():
X = np.random.randn(2, 2)
X_categories = np.array([[1], [2]])
X = np.concatenate([X, X_categories], axis=1)
ohe = OneHotEncoder()
tf_1 = ColumnTransformer([("ohe", ohe, [-1])], remainder="passthrough")
tf_2 = ColumnTransformer([("ohe", ohe, [2])], remainder="passthrough")
assert_array_equal(tf_1.fit_transform(X), tf_2.fit_transform(X))
@pytest.mark.parametrize("array_type", [np.asarray, sparse.csr_matrix])
def test_column_transformer_mask_indexing(array_type):
# Regression test for #14510
# Boolean array-like does not behave as boolean array with sparse matrices.
X = np.transpose([[1, 2, 3], [4, 5, 6], [5, 6, 7], [8, 9, 10]])
X = array_type(X)
column_transformer = ColumnTransformer(
[("identity", FunctionTransformer(), [False, True, False, True])]
)
X_trans = column_transformer.fit_transform(X)
assert X_trans.shape == (3, 2)
def test_n_features_in():
# make sure n_features_in is what is passed as input to the column
# transformer.
X = [[1, 2], [3, 4], [5, 6]]
ct = ColumnTransformer([("a", DoubleTrans(), [0]), ("b", DoubleTrans(), [1])])
assert not hasattr(ct, "n_features_in_")
ct.fit(X)
assert ct.n_features_in_ == 2
@pytest.mark.parametrize(
"cols, pattern, include, exclude",
[
(["col_int", "col_float"], None, np.number, None),
(["col_int", "col_float"], None, None, object),
(["col_int", "col_float"], None, [int, float], None),
(["col_str"], None, [object], None),
(["col_str"], None, object, None),
(["col_float"], None, float, None),
(["col_float"], "at$", [np.number], None),
(["col_int"], None, [int], None),
(["col_int"], "^col_int", [np.number], None),
(["col_float", "col_str"], "float|str", None, None),
(["col_str"], "^col_s", None, [int]),
([], "str$", float, None),
(["col_int", "col_float", "col_str"], None, [np.number, object], None),
],
)
def test_make_column_selector_with_select_dtypes(cols, pattern, include, exclude):
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame(
{
"col_int": np.array([0, 1, 2], dtype=int),
"col_float": np.array([0.0, 1.0, 2.0], dtype=float),
"col_str": ["one", "two", "three"],
},
columns=["col_int", "col_float", "col_str"],
)
selector = make_column_selector(
dtype_include=include, dtype_exclude=exclude, pattern=pattern
)
assert_array_equal(selector(X_df), cols)
def test_column_transformer_with_make_column_selector():
# Functional test for column transformer + column selector
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame(
{
"col_int": np.array([0, 1, 2], dtype=int),
"col_float": np.array([0.0, 1.0, 2.0], dtype=float),
"col_cat": ["one", "two", "one"],
"col_str": ["low", "middle", "high"],
},
columns=["col_int", "col_float", "col_cat", "col_str"],
)
X_df["col_str"] = X_df["col_str"].astype("category")
cat_selector = make_column_selector(dtype_include=["category", object])
num_selector = make_column_selector(dtype_include=np.number)
ohe = OneHotEncoder()
scaler = StandardScaler()
ct_selector = make_column_transformer((ohe, cat_selector), (scaler, num_selector))
ct_direct = make_column_transformer(
(ohe, ["col_cat", "col_str"]), (scaler, ["col_float", "col_int"])
)
X_selector = ct_selector.fit_transform(X_df)
X_direct = ct_direct.fit_transform(X_df)
assert_allclose(X_selector, X_direct)
def test_make_column_selector_error():
selector = make_column_selector(dtype_include=np.number)
X = np.array([[0.1, 0.2]])
msg = "make_column_selector can only be applied to pandas dataframes"
with pytest.raises(ValueError, match=msg):
selector(X)
def test_make_column_selector_pickle():
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame(
{
"col_int": np.array([0, 1, 2], dtype=int),
"col_float": np.array([0.0, 1.0, 2.0], dtype=float),
"col_str": ["one", "two", "three"],
},
columns=["col_int", "col_float", "col_str"],
)
selector = make_column_selector(dtype_include=[object])
selector_picked = pickle.loads(pickle.dumps(selector))
assert_array_equal(selector(X_df), selector_picked(X_df))
@pytest.mark.parametrize(
"empty_col",
[[], np.array([], dtype=int), lambda x: []],
ids=["list", "array", "callable"],
)
def test_feature_names_empty_columns(empty_col):
pd = pytest.importorskip("pandas")
df = pd.DataFrame({"col1": ["a", "a", "b"], "col2": ["z", "z", "z"]})
ct = ColumnTransformer(
transformers=[
("ohe", OneHotEncoder(), ["col1", "col2"]),
("empty_features", OneHotEncoder(), empty_col),
],
)
ct.fit(df)
assert_array_equal(
ct.get_feature_names_out(), ["ohe__col1_a", "ohe__col1_b", "ohe__col2_z"]
)
@pytest.mark.parametrize(
"selector",
[
[1],
lambda x: [1],
["col2"],
lambda x: ["col2"],
[False, True],
lambda x: [False, True],
],
)
def test_feature_names_out_pandas(selector):
"""Checks name when selecting only the second column"""
pd = pytest.importorskip("pandas")
df = pd.DataFrame({"col1": ["a", "a", "b"], "col2": ["z", "z", "z"]})
ct = ColumnTransformer([("ohe", OneHotEncoder(), selector)])
ct.fit(df)
assert_array_equal(ct.get_feature_names_out(), ["ohe__col2_z"])
@pytest.mark.parametrize(
"selector", [[1], lambda x: [1], [False, True], lambda x: [False, True]]
)
def test_feature_names_out_non_pandas(selector):
"""Checks name when selecting the second column with numpy array"""
X = [["a", "z"], ["a", "z"], ["b", "z"]]
ct = ColumnTransformer([("ohe", OneHotEncoder(), selector)])
ct.fit(X)
assert_array_equal(ct.get_feature_names_out(), ["ohe__x1_z"])
@pytest.mark.parametrize("remainder", ["passthrough", StandardScaler()])
def test_sk_visual_block_remainder(remainder):
# remainder='passthrough' or an estimator will be shown in repr_html
ohe = OneHotEncoder()
ct = ColumnTransformer(
transformers=[("ohe", ohe, ["col1", "col2"])], remainder=remainder
)
visual_block = ct._sk_visual_block_()
assert visual_block.names == ("ohe", "remainder")
assert visual_block.name_details == (["col1", "col2"], "")
assert visual_block.estimators == (ohe, remainder)
def test_sk_visual_block_remainder_drop():
# remainder='drop' is not shown in repr_html
ohe = OneHotEncoder()
ct = ColumnTransformer(transformers=[("ohe", ohe, ["col1", "col2"])])
visual_block = ct._sk_visual_block_()
assert visual_block.names == ("ohe",)
assert visual_block.name_details == (["col1", "col2"],)
assert visual_block.estimators == (ohe,)
@pytest.mark.parametrize("remainder", ["passthrough", StandardScaler()])
def test_sk_visual_block_remainder_fitted_pandas(remainder):
# Remainder shows the columns after fitting
pd = pytest.importorskip("pandas")
ohe = OneHotEncoder()
ct = ColumnTransformer(
transformers=[("ohe", ohe, ["col1", "col2"])], remainder=remainder
)
df = pd.DataFrame(
{
"col1": ["a", "b", "c"],
"col2": ["z", "z", "z"],
"col3": [1, 2, 3],
"col4": [3, 4, 5],
}
)
ct.fit(df)
visual_block = ct._sk_visual_block_()
assert visual_block.names == ("ohe", "remainder")
assert visual_block.name_details == (["col1", "col2"], ["col3", "col4"])
assert visual_block.estimators == (ohe, remainder)
@pytest.mark.parametrize("remainder", ["passthrough", StandardScaler()])
def test_sk_visual_block_remainder_fitted_numpy(remainder):
# Remainder shows the indices after fitting
X = np.array([[1, 2, 3], [4, 5, 6]], dtype=float)
scaler = StandardScaler()
ct = ColumnTransformer(
transformers=[("scale", scaler, [0, 2])], remainder=remainder
)
ct.fit(X)
visual_block = ct._sk_visual_block_()
assert visual_block.names == ("scale", "remainder")
assert visual_block.name_details == ([0, 2], [1])
assert visual_block.estimators == (scaler, remainder)
@pytest.mark.parametrize("explicit_colname", ["first", "second", 0, 1])
@pytest.mark.parametrize("remainder", [Trans(), "passthrough", "drop"])
def test_column_transformer_reordered_column_names_remainder(
explicit_colname, remainder
):
"""Test the interaction between remainder and column transformer"""
pd = pytest.importorskip("pandas")
X_fit_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_fit_df = pd.DataFrame(X_fit_array, columns=["first", "second"])
X_trans_array = np.array([[2, 4, 6], [0, 1, 2]]).T
X_trans_df = pd.DataFrame(X_trans_array, columns=["second", "first"])
tf = ColumnTransformer([("bycol", Trans(), explicit_colname)], remainder=remainder)
tf.fit(X_fit_df)
X_fit_trans = tf.transform(X_fit_df)
# Changing the order still works
X_trans = tf.transform(X_trans_df)
assert_allclose(X_trans, X_fit_trans)
# extra columns are ignored
X_extended_df = X_fit_df.copy()
X_extended_df["third"] = [3, 6, 9]
X_trans = tf.transform(X_extended_df)
assert_allclose(X_trans, X_fit_trans)
if isinstance(explicit_colname, str):
# Raise error if columns are specified by names but input only allows
# to specify by position, e.g. numpy array instead of a pandas df.
X_array = X_fit_array.copy()
err_msg = "Specifying the columns"
with pytest.raises(ValueError, match=err_msg):
tf.transform(X_array)
def test_feature_name_validation_missing_columns_drop_passthough():
"""Test the interaction between {'drop', 'passthrough'} and
missing column names."""
pd = pytest.importorskip("pandas")
X = np.ones(shape=(3, 4))
df = pd.DataFrame(X, columns=["a", "b", "c", "d"])
df_dropped = df.drop("c", axis=1)
# with remainder='passthrough', all columns seen during `fit` must be
# present
tf = ColumnTransformer([("bycol", Trans(), [1])], remainder="passthrough")
tf.fit(df)
msg = r"columns are missing: {'c'}"
with pytest.raises(ValueError, match=msg):
tf.transform(df_dropped)
# with remainder='drop', it is allowed to have column 'c' missing
tf = ColumnTransformer([("bycol", Trans(), [1])], remainder="drop")
tf.fit(df)
df_dropped_trans = tf.transform(df_dropped)
df_fit_trans = tf.transform(df)
assert_allclose(df_dropped_trans, df_fit_trans)
# bycol drops 'c', thus it is allowed for 'c' to be missing
tf = ColumnTransformer([("bycol", "drop", ["c"])], remainder="passthrough")
tf.fit(df)
df_dropped_trans = tf.transform(df_dropped)
df_fit_trans = tf.transform(df)
assert_allclose(df_dropped_trans, df_fit_trans)
def test_feature_names_in_():
"""Feature names are stored in column transformer.
Column transformer deliberately does not check for column name consistency.
It only checks that the non-dropped names seen in `fit` are seen
in `transform`. This behavior is already tested in
`test_feature_name_validation_missing_columns_drop_passthough`"""
pd = pytest.importorskip("pandas")
feature_names = ["a", "c", "d"]
df = pd.DataFrame([[1, 2, 3]], columns=feature_names)
ct = ColumnTransformer([("bycol", Trans(), ["a", "d"])], remainder="passthrough")
ct.fit(df)
assert_array_equal(ct.feature_names_in_, feature_names)
assert isinstance(ct.feature_names_in_, np.ndarray)
assert ct.feature_names_in_.dtype == object
class TransWithNames(Trans):
def __init__(self, feature_names_out=None):
self.feature_names_out = feature_names_out
def get_feature_names_out(self, input_features=None):
if self.feature_names_out is not None:
return np.asarray(self.feature_names_out, dtype=object)
return input_features
@pytest.mark.parametrize(
"transformers, remainder, expected_names",
[
(
[
("bycol1", TransWithNames(), ["d", "c"]),
("bycol2", "passthrough", ["d"]),
],
"passthrough",
["bycol1__d", "bycol1__c", "bycol2__d", "remainder__a", "remainder__b"],
),
(
[
("bycol1", TransWithNames(), ["d", "c"]),
("bycol2", "passthrough", ["d"]),
],
"drop",
["bycol1__d", "bycol1__c", "bycol2__d"],
),
(
[
("bycol1", TransWithNames(), ["b"]),
("bycol2", "drop", ["d"]),
],
"passthrough",
["bycol1__b", "remainder__a", "remainder__c"],
),
(
[
("bycol1", TransWithNames(["pca1", "pca2"]), ["a", "b", "d"]),
],
"passthrough",
["bycol1__pca1", "bycol1__pca2", "remainder__c"],
),
(
[
("bycol1", TransWithNames(["a", "b"]), ["d"]),
("bycol2", "passthrough", ["b"]),
],
"drop",
["bycol1__a", "bycol1__b", "bycol2__b"],
),
(
[
("bycol1", TransWithNames([f"pca{i}" for i in range(2)]), ["b"]),
("bycol2", TransWithNames([f"pca{i}" for i in range(2)]), ["b"]),
],
"passthrough",
[
"bycol1__pca0",
"bycol1__pca1",
"bycol2__pca0",
"bycol2__pca1",
"remainder__a",
"remainder__c",
"remainder__d",
],
),
(
[
("bycol1", "drop", ["d"]),
],
"drop",
[],
),
(
[
("bycol1", TransWithNames(), slice(1, 3)),
],
"drop",
["bycol1__b", "bycol1__c"],
),
(
[
("bycol1", TransWithNames(), ["b"]),
("bycol2", "drop", slice(3, 4)),
],
"passthrough",
["bycol1__b", "remainder__a", "remainder__c"],
),
(
[
("bycol1", TransWithNames(), ["d", "c"]),
("bycol2", "passthrough", slice(3, 4)),
],
"passthrough",
["bycol1__d", "bycol1__c", "bycol2__d", "remainder__a", "remainder__b"],
),
(
[
("bycol1", TransWithNames(), slice("b", "c")),
],
"drop",
["bycol1__b", "bycol1__c"],
),
(
[
("bycol1", TransWithNames(), ["b"]),
("bycol2", "drop", slice("c", "d")),
],
"passthrough",
["bycol1__b", "remainder__a"],
),
(
[
("bycol1", TransWithNames(), ["d", "c"]),
("bycol2", "passthrough", slice("c", "d")),
],
"passthrough",
[
"bycol1__d",
"bycol1__c",
"bycol2__c",
"bycol2__d",
"remainder__a",
"remainder__b",
],
),
],
)
def test_verbose_feature_names_out_true(transformers, remainder, expected_names):
"""Check feature_names_out for verbose_feature_names_out=True (default)"""
pd = pytest.importorskip("pandas")
df = pd.DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"])
ct = ColumnTransformer(
transformers,
remainder=remainder,
)
ct.fit(df)
names = ct.get_feature_names_out()
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, expected_names)
@pytest.mark.parametrize(
"transformers, remainder, expected_names",
[
(
[
("bycol1", TransWithNames(), ["d", "c"]),
("bycol2", "passthrough", ["a"]),
],
"passthrough",
["d", "c", "a", "b"],
),
(
[
("bycol1", TransWithNames(["a"]), ["d", "c"]),
("bycol2", "passthrough", ["d"]),
],
"drop",
["a", "d"],
),
(
[
("bycol1", TransWithNames(), ["b"]),
("bycol2", "drop", ["d"]),
],
"passthrough",
["b", "a", "c"],
),
(
[
("bycol1", TransWithNames(["pca1", "pca2"]), ["a", "b", "d"]),
],
"passthrough",
["pca1", "pca2", "c"],
),
(
[
("bycol1", TransWithNames(["a", "c"]), ["d"]),
("bycol2", "passthrough", ["d"]),
],
"drop",
["a", "c", "d"],
),
(
[
("bycol1", TransWithNames([f"pca{i}" for i in range(2)]), ["b"]),
("bycol2", TransWithNames([f"kpca{i}" for i in range(2)]), ["b"]),
],
"passthrough",
["pca0", "pca1", "kpca0", "kpca1", "a", "c", "d"],
),
(
[
("bycol1", "drop", ["d"]),
],
"drop",
[],
),
(
[
("bycol1", TransWithNames(), slice(1, 2)),
("bycol2", "drop", ["d"]),
],
"passthrough",
["b", "a", "c"],
),
(
[
("bycol1", TransWithNames(), ["b"]),
("bycol2", "drop", slice(3, 4)),
],
"passthrough",
["b", "a", "c"],
),
(
[
("bycol1", TransWithNames(), ["d", "c"]),
("bycol2", "passthrough", slice(0, 2)),
],
"drop",
["d", "c", "a", "b"],
),
(
[
("bycol1", TransWithNames(), slice("a", "b")),
("bycol2", "drop", ["d"]),
],
"passthrough",
["a", "b", "c"],
),
(
[
("bycol1", TransWithNames(), ["b"]),
("bycol2", "drop", slice("c", "d")),
],
"passthrough",
["b", "a"],
),
(
[
("bycol1", TransWithNames(), ["d", "c"]),
("bycol2", "passthrough", slice("a", "b")),
],
"drop",
["d", "c", "a", "b"],
),
(
[
("bycol1", TransWithNames(), ["d", "c"]),
("bycol2", "passthrough", slice("b", "b")),
],
"drop",
["d", "c", "b"],
),
],
)
def test_verbose_feature_names_out_false(transformers, remainder, expected_names):
"""Check feature_names_out for verbose_feature_names_out=False"""
pd = pytest.importorskip("pandas")
df = pd.DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"])
ct = ColumnTransformer(
transformers,
remainder=remainder,
verbose_feature_names_out=False,
)
ct.fit(df)
names = ct.get_feature_names_out()
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, expected_names)
@pytest.mark.parametrize(
"transformers, remainder, colliding_columns",
[
(
[
("bycol1", TransWithNames(), ["b"]),
("bycol2", "passthrough", ["b"]),
],
"drop",
"['b']",
),
(
[
("bycol1", TransWithNames(["c", "d"]), ["c"]),
("bycol2", "passthrough", ["c"]),
],
"drop",
"['c']",
),
(
[
("bycol1", TransWithNames(["a"]), ["b"]),
("bycol2", "passthrough", ["b"]),
],
"passthrough",
"['a']",
),
(
[
("bycol1", TransWithNames(["a"]), ["b"]),
("bycol2", "drop", ["b"]),
],
"passthrough",
"['a']",
),
(
[
("bycol1", TransWithNames(["c", "b"]), ["b"]),
("bycol2", "passthrough", ["c", "b"]),
],
"drop",
"['b', 'c']",
),
(
[
("bycol1", TransWithNames(["a"]), ["b"]),
("bycol2", "passthrough", ["a"]),
("bycol3", TransWithNames(["a"]), ["b"]),
],
"passthrough",
"['a']",
),
(
[
("bycol1", TransWithNames(["a", "b"]), ["b"]),
("bycol2", "passthrough", ["a"]),
("bycol3", TransWithNames(["b"]), ["c"]),
],
"passthrough",
"['a', 'b']",
),
(
[
("bycol1", TransWithNames([f"pca{i}" for i in range(6)]), ["b"]),
("bycol2", TransWithNames([f"pca{i}" for i in range(6)]), ["b"]),
],
"passthrough",
"['pca0', 'pca1', 'pca2', 'pca3', 'pca4', ...]",
),
(
[
("bycol1", TransWithNames(["a", "b"]), slice(1, 2)),
("bycol2", "passthrough", ["a"]),
("bycol3", TransWithNames(["b"]), ["c"]),
],
"passthrough",
"['a', 'b']",
),
(
[
("bycol1", TransWithNames(["a", "b"]), ["b"]),
("bycol2", "passthrough", slice(0, 1)),
("bycol3", TransWithNames(["b"]), ["c"]),
],
"passthrough",
"['a', 'b']",
),
(
[
("bycol1", TransWithNames(["a", "b"]), slice("b", "c")),
("bycol2", "passthrough", ["a"]),
("bycol3", TransWithNames(["b"]), ["c"]),
],
"passthrough",
"['a', 'b']",
),
(
[
("bycol1", TransWithNames(["a", "b"]), ["b"]),
("bycol2", "passthrough", slice("a", "a")),
("bycol3", TransWithNames(["b"]), ["c"]),
],
"passthrough",
"['a', 'b']",
),
],
)
def test_verbose_feature_names_out_false_errors(
transformers, remainder, colliding_columns
):
"""Check feature_names_out for verbose_feature_names_out=False"""
pd = pytest.importorskip("pandas")
df = pd.DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"])
ct = ColumnTransformer(
transformers,
remainder=remainder,
verbose_feature_names_out=False,
)
ct.fit(df)
msg = re.escape(
f"Output feature names: {colliding_columns} are not unique. Please set "
"verbose_feature_names_out=True to add prefixes to feature names"
)
with pytest.raises(ValueError, match=msg):
ct.get_feature_names_out()
@pytest.mark.parametrize("verbose_feature_names_out", [True, False])
@pytest.mark.parametrize("remainder", ["drop", "passthrough"])
def test_column_transformer_set_output(verbose_feature_names_out, remainder):
"""Check column transformer behavior with set_output."""
pd = pytest.importorskip("pandas")
df = pd.DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"], index=[10])
ct = ColumnTransformer(
[("first", TransWithNames(), ["a", "c"]), ("second", TransWithNames(), ["d"])],
remainder=remainder,
verbose_feature_names_out=verbose_feature_names_out,
)
X_trans = ct.fit_transform(df)
assert isinstance(X_trans, np.ndarray)
ct.set_output(transform="pandas")
df_test = pd.DataFrame([[1, 2, 3, 4]], columns=df.columns, index=[20])
X_trans = ct.transform(df_test)
assert isinstance(X_trans, pd.DataFrame)
feature_names_out = ct.get_feature_names_out()
assert_array_equal(X_trans.columns, feature_names_out)
assert_array_equal(X_trans.index, df_test.index)
@pytest.mark.parametrize("remainder", ["drop", "passthrough"])
@pytest.mark.parametrize("fit_transform", [True, False])
def test_column_transform_set_output_mixed(remainder, fit_transform):
"""Check ColumnTransformer outputs mixed types correctly."""
pd = pytest.importorskip("pandas")
df = pd.DataFrame(
{
"pet": pd.Series(["dog", "cat", "snake"], dtype="category"),
"color": pd.Series(["green", "blue", "red"], dtype="object"),
"age": [1.4, 2.1, 4.4],
"height": [20, 40, 10],
"distance": pd.Series([20, pd.NA, 100], dtype="Int32"),
}
)
ct = ColumnTransformer(
[
(
"color_encode",
OneHotEncoder(sparse_output=False, dtype="int8"),
["color"],
),
("age", StandardScaler(), ["age"]),
],
remainder=remainder,
verbose_feature_names_out=False,
).set_output(transform="pandas")
if fit_transform:
X_trans = ct.fit_transform(df)
else:
X_trans = ct.fit(df).transform(df)
assert isinstance(X_trans, pd.DataFrame)
assert_array_equal(X_trans.columns, ct.get_feature_names_out())
expected_dtypes = {
"color_blue": "int8",
"color_green": "int8",
"color_red": "int8",
"age": "float64",
"pet": "category",
"height": "int64",
"distance": "Int32",
}
for col, dtype in X_trans.dtypes.items():
assert dtype == expected_dtypes[col]
@pytest.mark.parametrize("remainder", ["drop", "passthrough"])
def test_column_transform_set_output_after_fitting(remainder):
pd = pytest.importorskip("pandas")
df = pd.DataFrame(
{
"pet": pd.Series(["dog", "cat", "snake"], dtype="category"),
"age": [1.4, 2.1, 4.4],
"height": [20, 40, 10],
}
)
ct = ColumnTransformer(
[
(
"color_encode",
OneHotEncoder(sparse_output=False, dtype="int16"),
["pet"],
),
("age", StandardScaler(), ["age"]),
],
remainder=remainder,
verbose_feature_names_out=False,
)
# fit without calling set_output
X_trans = ct.fit_transform(df)
assert isinstance(X_trans, np.ndarray)
assert X_trans.dtype == "float64"
ct.set_output(transform="pandas")
X_trans_df = ct.transform(df)
expected_dtypes = {
"pet_cat": "int16",
"pet_dog": "int16",
"pet_snake": "int16",
"height": "int64",
"age": "float64",
}
for col, dtype in X_trans_df.dtypes.items():
assert dtype == expected_dtypes[col]
# PandasOutTransformer that does not define get_feature_names_out and always expects
# the input to be a DataFrame.
class PandasOutTransformer(BaseEstimator):
def __init__(self, offset=1.0):
self.offset = offset
def fit(self, X, y=None):
pd = pytest.importorskip("pandas")
assert isinstance(X, pd.DataFrame)
return self
def transform(self, X, y=None):
pd = pytest.importorskip("pandas")
assert isinstance(X, pd.DataFrame)
return X - self.offset
def set_output(self, transform=None):
# This transformer will always output a DataFrame regardless of the
# configuration.
return self
@pytest.mark.parametrize(
"trans_1, expected_verbose_names, expected_non_verbose_names",
[
(
PandasOutTransformer(offset=2.0),
["trans_0__feat1", "trans_1__feat0"],
["feat1", "feat0"],
),
(
"drop",
["trans_0__feat1"],
["feat1"],
),
(
"passthrough",
["trans_0__feat1", "trans_1__feat0"],
["feat1", "feat0"],
),
],
)
def test_transformers_with_pandas_out_but_not_feature_names_out(
trans_1, expected_verbose_names, expected_non_verbose_names
):
"""Check that set_config(transform="pandas") is compatible with more transformers.
Specifically, if transformers returns a DataFrame, but does not define
`get_feature_names_out`.
"""
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame({"feat0": [1.0, 2.0, 3.0], "feat1": [2.0, 3.0, 4.0]})
ct = ColumnTransformer(
[
("trans_0", PandasOutTransformer(offset=3.0), ["feat1"]),
("trans_1", trans_1, ["feat0"]),
]
)
X_trans_np = ct.fit_transform(X_df)
assert isinstance(X_trans_np, np.ndarray)
# `ct` does not have `get_feature_names_out` because `PandasOutTransformer` does
# not define the method.
with pytest.raises(AttributeError, match="not provide get_feature_names_out"):
ct.get_feature_names_out()
# The feature names are prefixed because verbose_feature_names_out=True is default
ct.set_output(transform="pandas")
X_trans_df0 = ct.fit_transform(X_df)
assert_array_equal(X_trans_df0.columns, expected_verbose_names)
ct.set_params(verbose_feature_names_out=False)
X_trans_df1 = ct.fit_transform(X_df)
assert_array_equal(X_trans_df1.columns, expected_non_verbose_names)
@pytest.mark.parametrize(
"empty_selection",
[[], np.array([False, False]), [False, False]],
ids=["list", "bool", "bool_int"],
)
def test_empty_selection_pandas_output(empty_selection):
"""Check that pandas output works when there is an empty selection.
Non-regression test for gh-25487
"""
pd = pytest.importorskip("pandas")
X = pd.DataFrame([[1.0, 2.2], [3.0, 1.0]], columns=["a", "b"])
ct = ColumnTransformer(
[
("categorical", "passthrough", empty_selection),
("numerical", StandardScaler(), ["a", "b"]),
],
verbose_feature_names_out=True,
)
ct.set_output(transform="pandas")
X_out = ct.fit_transform(X)
assert_array_equal(X_out.columns, ["numerical__a", "numerical__b"])
ct.set_params(verbose_feature_names_out=False)
X_out = ct.fit_transform(X)
assert_array_equal(X_out.columns, ["a", "b"])