Inzynierka/Lib/site-packages/sklearn/metrics/_plot/base.py

117 lines
4.0 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from ...base import is_classifier
def _check_classifier_response_method(estimator, response_method):
"""Return prediction method from the response_method
Parameters
----------
estimator: object
Classifier to check
response_method: {'auto', 'predict_proba', 'decision_function'}
Specifies whether to use :term:`predict_proba` or
:term:`decision_function` as the target response. If set to 'auto',
:term:`predict_proba` is tried first and if it does not exist
:term:`decision_function` is tried next.
Returns
-------
prediction_method: callable
prediction method of estimator
"""
if response_method not in ("predict_proba", "decision_function", "auto"):
raise ValueError(
"response_method must be 'predict_proba', 'decision_function' or 'auto'"
)
error_msg = "response method {} is not defined in {}"
if response_method != "auto":
prediction_method = getattr(estimator, response_method, None)
if prediction_method is None:
raise ValueError(
error_msg.format(response_method, estimator.__class__.__name__)
)
else:
predict_proba = getattr(estimator, "predict_proba", None)
decision_function = getattr(estimator, "decision_function", None)
prediction_method = predict_proba or decision_function
if prediction_method is None:
raise ValueError(
error_msg.format(
"decision_function or predict_proba", estimator.__class__.__name__
)
)
return prediction_method
def _get_response(X, estimator, response_method, pos_label=None):
"""Return response and positive label.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
estimator : estimator instance
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
in which the last estimator is a classifier.
response_method: {'auto', 'predict_proba', 'decision_function'}
Specifies whether to use :term:`predict_proba` or
:term:`decision_function` as the target response. If set to 'auto',
:term:`predict_proba` is tried first and if it does not exist
:term:`decision_function` is tried next.
pos_label : str or int, default=None
The class considered as the positive class when computing
the metrics. By default, `estimators.classes_[1]` is
considered as the positive class.
Returns
-------
y_pred: ndarray of shape (n_samples,)
Target scores calculated from the provided response_method
and pos_label.
pos_label: str or int
The class considered as the positive class when computing
the metrics.
"""
classification_error = (
"Expected 'estimator' to be a binary classifier, but got"
f" {estimator.__class__.__name__}"
)
if not is_classifier(estimator):
raise ValueError(classification_error)
prediction_method = _check_classifier_response_method(estimator, response_method)
y_pred = prediction_method(X)
if pos_label is not None:
try:
class_idx = estimator.classes_.tolist().index(pos_label)
except ValueError as e:
raise ValueError(
"The class provided by 'pos_label' is unknown. Got "
f"{pos_label} instead of one of {set(estimator.classes_)}"
) from e
else:
class_idx = 1
pos_label = estimator.classes_[class_idx]
if y_pred.ndim != 1: # `predict_proba`
y_pred_shape = y_pred.shape[1]
if y_pred_shape != 2:
raise ValueError(
f"{classification_error} fit on multiclass ({y_pred_shape} classes)"
" data"
)
y_pred = y_pred[:, class_idx]
elif pos_label == estimator.classes_[0]: # `decision_function`
y_pred *= -1
return y_pred, pos_label