Inzynierka/Lib/site-packages/sklearn/metrics/_plot/confusion_matrix.py

483 lines
16 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from itertools import product
import numpy as np
from .. import confusion_matrix
from ...utils import check_matplotlib_support
from ...utils.multiclass import unique_labels
from ...base import is_classifier
class ConfusionMatrixDisplay:
"""Confusion Matrix visualization.
It is recommend to use
:func:`~sklearn.metrics.ConfusionMatrixDisplay.from_estimator` or
:func:`~sklearn.metrics.ConfusionMatrixDisplay.from_predictions` to
create a :class:`ConfusionMatrixDisplay`. All parameters are stored as
attributes.
Read more in the :ref:`User Guide <visualizations>`.
Parameters
----------
confusion_matrix : ndarray of shape (n_classes, n_classes)
Confusion matrix.
display_labels : ndarray of shape (n_classes,), default=None
Display labels for plot. If None, display labels are set from 0 to
`n_classes - 1`.
Attributes
----------
im_ : matplotlib AxesImage
Image representing the confusion matrix.
text_ : ndarray of shape (n_classes, n_classes), dtype=matplotlib Text, \
or None
Array of matplotlib axes. `None` if `include_values` is false.
ax_ : matplotlib Axes
Axes with confusion matrix.
figure_ : matplotlib Figure
Figure containing the confusion matrix.
See Also
--------
confusion_matrix : Compute Confusion Matrix to evaluate the accuracy of a
classification.
ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
given an estimator, the data, and the label.
ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix
given the true and predicted labels.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... random_state=0)
>>> clf = SVC(random_state=0)
>>> clf.fit(X_train, y_train)
SVC(random_state=0)
>>> predictions = clf.predict(X_test)
>>> cm = confusion_matrix(y_test, predictions, labels=clf.classes_)
>>> disp = ConfusionMatrixDisplay(confusion_matrix=cm,
... display_labels=clf.classes_)
>>> disp.plot()
<...>
>>> plt.show()
"""
def __init__(self, confusion_matrix, *, display_labels=None):
self.confusion_matrix = confusion_matrix
self.display_labels = display_labels
def plot(
self,
*,
include_values=True,
cmap="viridis",
xticks_rotation="horizontal",
values_format=None,
ax=None,
colorbar=True,
im_kw=None,
text_kw=None,
):
"""Plot visualization.
Parameters
----------
include_values : bool, default=True
Includes values in confusion matrix.
cmap : str or matplotlib Colormap, default='viridis'
Colormap recognized by matplotlib.
xticks_rotation : {'vertical', 'horizontal'} or float, \
default='horizontal'
Rotation of xtick labels.
values_format : str, default=None
Format specification for values in confusion matrix. If `None`,
the format specification is 'd' or '.2g' whichever is shorter.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
colorbar : bool, default=True
Whether or not to add a colorbar to the plot.
im_kw : dict, default=None
Dict with keywords passed to `matplotlib.pyplot.imshow` call.
text_kw : dict, default=None
Dict with keywords passed to `matplotlib.pyplot.text` call.
.. versionadded:: 1.2
Returns
-------
display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`
Returns a :class:`~sklearn.metrics.ConfusionMatrixDisplay` instance
that contains all the information to plot the confusion matrix.
"""
check_matplotlib_support("ConfusionMatrixDisplay.plot")
import matplotlib.pyplot as plt
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.figure
cm = self.confusion_matrix
n_classes = cm.shape[0]
default_im_kw = dict(interpolation="nearest", cmap=cmap)
im_kw = im_kw or {}
im_kw = {**default_im_kw, **im_kw}
text_kw = text_kw or {}
self.im_ = ax.imshow(cm, **im_kw)
self.text_ = None
cmap_min, cmap_max = self.im_.cmap(0), self.im_.cmap(1.0)
if include_values:
self.text_ = np.empty_like(cm, dtype=object)
# print text with appropriate color depending on background
thresh = (cm.max() + cm.min()) / 2.0
for i, j in product(range(n_classes), range(n_classes)):
color = cmap_max if cm[i, j] < thresh else cmap_min
if values_format is None:
text_cm = format(cm[i, j], ".2g")
if cm.dtype.kind != "f":
text_d = format(cm[i, j], "d")
if len(text_d) < len(text_cm):
text_cm = text_d
else:
text_cm = format(cm[i, j], values_format)
default_text_kwargs = dict(ha="center", va="center", color=color)
text_kwargs = {**default_text_kwargs, **text_kw}
self.text_[i, j] = ax.text(j, i, text_cm, **text_kwargs)
if self.display_labels is None:
display_labels = np.arange(n_classes)
else:
display_labels = self.display_labels
if colorbar:
fig.colorbar(self.im_, ax=ax)
ax.set(
xticks=np.arange(n_classes),
yticks=np.arange(n_classes),
xticklabels=display_labels,
yticklabels=display_labels,
ylabel="True label",
xlabel="Predicted label",
)
ax.set_ylim((n_classes - 0.5, -0.5))
plt.setp(ax.get_xticklabels(), rotation=xticks_rotation)
self.figure_ = fig
self.ax_ = ax
return self
@classmethod
def from_estimator(
cls,
estimator,
X,
y,
*,
labels=None,
sample_weight=None,
normalize=None,
display_labels=None,
include_values=True,
xticks_rotation="horizontal",
values_format=None,
cmap="viridis",
ax=None,
colorbar=True,
im_kw=None,
text_kw=None,
):
"""Plot Confusion Matrix given an estimator and some data.
Read more in the :ref:`User Guide <confusion_matrix>`.
.. versionadded:: 1.0
Parameters
----------
estimator : estimator instance
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
in which the last estimator is a classifier.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
y : array-like of shape (n_samples,)
Target values.
labels : array-like of shape (n_classes,), default=None
List of labels to index the confusion matrix. This may be used to
reorder or select a subset of labels. If `None` is given, those
that appear at least once in `y_true` or `y_pred` are used in
sorted order.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
normalize : {'true', 'pred', 'all'}, default=None
Either to normalize the counts display in the matrix:
- if `'true'`, the confusion matrix is normalized over the true
conditions (e.g. rows);
- if `'pred'`, the confusion matrix is normalized over the
predicted conditions (e.g. columns);
- if `'all'`, the confusion matrix is normalized by the total
number of samples;
- if `None` (default), the confusion matrix will not be normalized.
display_labels : array-like of shape (n_classes,), default=None
Target names used for plotting. By default, `labels` will be used
if it is defined, otherwise the unique labels of `y_true` and
`y_pred` will be used.
include_values : bool, default=True
Includes values in confusion matrix.
xticks_rotation : {'vertical', 'horizontal'} or float, \
default='horizontal'
Rotation of xtick labels.
values_format : str, default=None
Format specification for values in confusion matrix. If `None`, the
format specification is 'd' or '.2g' whichever is shorter.
cmap : str or matplotlib Colormap, default='viridis'
Colormap recognized by matplotlib.
ax : matplotlib Axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
colorbar : bool, default=True
Whether or not to add a colorbar to the plot.
im_kw : dict, default=None
Dict with keywords passed to `matplotlib.pyplot.imshow` call.
text_kw : dict, default=None
Dict with keywords passed to `matplotlib.pyplot.text` call.
.. versionadded:: 1.2
Returns
-------
display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`
See Also
--------
ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix
given the true and predicted labels.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import ConfusionMatrixDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = SVC(random_state=0)
>>> clf.fit(X_train, y_train)
SVC(random_state=0)
>>> ConfusionMatrixDisplay.from_estimator(
... clf, X_test, y_test)
<...>
>>> plt.show()
"""
method_name = f"{cls.__name__}.from_estimator"
check_matplotlib_support(method_name)
if not is_classifier(estimator):
raise ValueError(f"{method_name} only supports classifiers")
y_pred = estimator.predict(X)
return cls.from_predictions(
y,
y_pred,
sample_weight=sample_weight,
labels=labels,
normalize=normalize,
display_labels=display_labels,
include_values=include_values,
cmap=cmap,
ax=ax,
xticks_rotation=xticks_rotation,
values_format=values_format,
colorbar=colorbar,
im_kw=im_kw,
text_kw=text_kw,
)
@classmethod
def from_predictions(
cls,
y_true,
y_pred,
*,
labels=None,
sample_weight=None,
normalize=None,
display_labels=None,
include_values=True,
xticks_rotation="horizontal",
values_format=None,
cmap="viridis",
ax=None,
colorbar=True,
im_kw=None,
text_kw=None,
):
"""Plot Confusion Matrix given true and predicted labels.
Read more in the :ref:`User Guide <confusion_matrix>`.
.. versionadded:: 1.0
Parameters
----------
y_true : array-like of shape (n_samples,)
True labels.
y_pred : array-like of shape (n_samples,)
The predicted labels given by the method `predict` of an
classifier.
labels : array-like of shape (n_classes,), default=None
List of labels to index the confusion matrix. This may be used to
reorder or select a subset of labels. If `None` is given, those
that appear at least once in `y_true` or `y_pred` are used in
sorted order.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
normalize : {'true', 'pred', 'all'}, default=None
Either to normalize the counts display in the matrix:
- if `'true'`, the confusion matrix is normalized over the true
conditions (e.g. rows);
- if `'pred'`, the confusion matrix is normalized over the
predicted conditions (e.g. columns);
- if `'all'`, the confusion matrix is normalized by the total
number of samples;
- if `None` (default), the confusion matrix will not be normalized.
display_labels : array-like of shape (n_classes,), default=None
Target names used for plotting. By default, `labels` will be used
if it is defined, otherwise the unique labels of `y_true` and
`y_pred` will be used.
include_values : bool, default=True
Includes values in confusion matrix.
xticks_rotation : {'vertical', 'horizontal'} or float, \
default='horizontal'
Rotation of xtick labels.
values_format : str, default=None
Format specification for values in confusion matrix. If `None`, the
format specification is 'd' or '.2g' whichever is shorter.
cmap : str or matplotlib Colormap, default='viridis'
Colormap recognized by matplotlib.
ax : matplotlib Axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
colorbar : bool, default=True
Whether or not to add a colorbar to the plot.
im_kw : dict, default=None
Dict with keywords passed to `matplotlib.pyplot.imshow` call.
text_kw : dict, default=None
Dict with keywords passed to `matplotlib.pyplot.text` call.
.. versionadded:: 1.2
Returns
-------
display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`
See Also
--------
ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
given an estimator, the data, and the label.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import ConfusionMatrixDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = SVC(random_state=0)
>>> clf.fit(X_train, y_train)
SVC(random_state=0)
>>> y_pred = clf.predict(X_test)
>>> ConfusionMatrixDisplay.from_predictions(
... y_test, y_pred)
<...>
>>> plt.show()
"""
check_matplotlib_support(f"{cls.__name__}.from_predictions")
if display_labels is None:
if labels is None:
display_labels = unique_labels(y_true, y_pred)
else:
display_labels = labels
cm = confusion_matrix(
y_true,
y_pred,
sample_weight=sample_weight,
labels=labels,
normalize=normalize,
)
disp = cls(confusion_matrix=cm, display_labels=display_labels)
return disp.plot(
include_values=include_values,
cmap=cmap,
ax=ax,
xticks_rotation=xticks_rotation,
values_format=values_format,
colorbar=colorbar,
im_kw=im_kw,
text_kw=text_kw,
)