Inzynierka/Lib/site-packages/sklearn/preprocessing/tests/test_function_transformer.py

467 lines
15 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
import warnings
import pytest
import numpy as np
from scipy import sparse
from sklearn.utils import _safe_indexing
from sklearn.preprocessing import FunctionTransformer
from sklearn.pipeline import make_pipeline
from sklearn.utils._testing import (
assert_array_equal,
assert_allclose_dense_sparse,
_convert_container,
)
def _make_func(args_store, kwargs_store, func=lambda X, *a, **k: X):
def _func(X, *args, **kwargs):
args_store.append(X)
args_store.extend(args)
kwargs_store.update(kwargs)
return func(X)
return _func
def test_delegate_to_func():
# (args|kwargs)_store will hold the positional and keyword arguments
# passed to the function inside the FunctionTransformer.
args_store = []
kwargs_store = {}
X = np.arange(10).reshape((5, 2))
assert_array_equal(
FunctionTransformer(_make_func(args_store, kwargs_store)).transform(X),
X,
"transform should have returned X unchanged",
)
# The function should only have received X.
assert args_store == [
X
], "Incorrect positional arguments passed to func: {args}".format(args=args_store)
assert (
not kwargs_store
), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)
# reset the argument stores.
args_store[:] = []
kwargs_store.clear()
transformed = FunctionTransformer(
_make_func(args_store, kwargs_store),
).transform(X)
assert_array_equal(
transformed, X, err_msg="transform should have returned X unchanged"
)
# The function should have received X
assert args_store == [
X
], "Incorrect positional arguments passed to func: {args}".format(args=args_store)
assert (
not kwargs_store
), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)
def test_np_log():
X = np.arange(10).reshape((5, 2))
# Test that the numpy.log example still works.
assert_array_equal(
FunctionTransformer(np.log1p).transform(X),
np.log1p(X),
)
def test_kw_arg():
X = np.linspace(0, 1, num=10).reshape((5, 2))
F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
# Test that rounding is correct
assert_array_equal(F.transform(X), np.around(X, decimals=3))
def test_kw_arg_update():
X = np.linspace(0, 1, num=10).reshape((5, 2))
F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
F.kw_args["decimals"] = 1
# Test that rounding is correct
assert_array_equal(F.transform(X), np.around(X, decimals=1))
def test_kw_arg_reset():
X = np.linspace(0, 1, num=10).reshape((5, 2))
F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
F.kw_args = dict(decimals=1)
# Test that rounding is correct
assert_array_equal(F.transform(X), np.around(X, decimals=1))
def test_inverse_transform():
X = np.array([1, 4, 9, 16]).reshape((2, 2))
# Test that inverse_transform works correctly
F = FunctionTransformer(
func=np.sqrt,
inverse_func=np.around,
inv_kw_args=dict(decimals=3),
)
assert_array_equal(
F.inverse_transform(F.transform(X)),
np.around(np.sqrt(X), decimals=3),
)
def test_check_inverse():
X_dense = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))
X_list = [X_dense, sparse.csr_matrix(X_dense), sparse.csc_matrix(X_dense)]
for X in X_list:
if sparse.issparse(X):
accept_sparse = True
else:
accept_sparse = False
trans = FunctionTransformer(
func=np.sqrt,
inverse_func=np.around,
accept_sparse=accept_sparse,
check_inverse=True,
validate=True,
)
warning_message = (
"The provided functions are not strictly"
" inverse of each other. If you are sure you"
" want to proceed regardless, set"
" 'check_inverse=False'."
)
with pytest.warns(UserWarning, match=warning_message):
trans.fit(X)
trans = FunctionTransformer(
func=np.expm1,
inverse_func=np.log1p,
accept_sparse=accept_sparse,
check_inverse=True,
validate=True,
)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
Xt = trans.fit_transform(X)
assert_allclose_dense_sparse(X, trans.inverse_transform(Xt))
# check that we don't check inverse when one of the func or inverse is not
# provided.
trans = FunctionTransformer(
func=np.expm1, inverse_func=None, check_inverse=True, validate=True
)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
trans.fit(X_dense)
trans = FunctionTransformer(
func=None, inverse_func=np.expm1, check_inverse=True, validate=True
)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
trans.fit(X_dense)
def test_function_transformer_frame():
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame(np.random.randn(100, 10))
transformer = FunctionTransformer()
X_df_trans = transformer.fit_transform(X_df)
assert hasattr(X_df_trans, "loc")
@pytest.mark.parametrize("X_type", ["array", "series"])
def test_function_transformer_raise_error_with_mixed_dtype(X_type):
"""Check that `FunctionTransformer.check_inverse` raises error on mixed dtype."""
mapping = {"one": 1, "two": 2, "three": 3, 5: "five", 6: "six"}
inverse_mapping = {value: key for key, value in mapping.items()}
dtype = "object"
data = ["one", "two", "three", "one", "one", 5, 6]
data = _convert_container(data, X_type, columns_name=["value"], dtype=dtype)
def func(X):
return np.array(
[mapping[_safe_indexing(X, i)] for i in range(X.size)], dtype=object
)
def inverse_func(X):
return _convert_container(
[inverse_mapping[x] for x in X],
X_type,
columns_name=["value"],
dtype=dtype,
)
transformer = FunctionTransformer(
func=func, inverse_func=inverse_func, validate=False, check_inverse=True
)
msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
with pytest.raises(ValueError, match=msg):
transformer.fit(data)
def test_function_transformer_support_all_nummerical_dataframes_check_inverse_True():
"""Check support for dataframes with only numerical values."""
pd = pytest.importorskip("pandas")
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
transformer = FunctionTransformer(
func=lambda x: x + 2, inverse_func=lambda x: x - 2, check_inverse=True
)
# Does not raise an error
df_out = transformer.fit_transform(df)
assert_allclose_dense_sparse(df_out, df + 2)
def test_function_transformer_with_dataframe_and_check_inverse_True():
"""Check error is raised when check_inverse=True.
Non-regresion test for gh-25261.
"""
pd = pytest.importorskip("pandas")
transformer = FunctionTransformer(
func=lambda x: x, inverse_func=lambda x: x, check_inverse=True
)
df_mixed = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
with pytest.raises(ValueError, match=msg):
transformer.fit(df_mixed)
@pytest.mark.parametrize(
"X, feature_names_out, input_features, expected",
[
(
# NumPy inputs, default behavior: generate names
np.random.rand(100, 3),
"one-to-one",
None,
("x0", "x1", "x2"),
),
(
# Pandas input, default behavior: use input feature names
{"a": np.random.rand(100), "b": np.random.rand(100)},
"one-to-one",
None,
("a", "b"),
),
(
# NumPy input, feature_names_out=callable
np.random.rand(100, 3),
lambda transformer, input_features: ("a", "b"),
None,
("a", "b"),
),
(
# Pandas input, feature_names_out=callable
{"a": np.random.rand(100), "b": np.random.rand(100)},
lambda transformer, input_features: ("c", "d", "e"),
None,
("c", "d", "e"),
),
(
# NumPy input, feature_names_out=callable default input_features
np.random.rand(100, 3),
lambda transformer, input_features: tuple(input_features) + ("a",),
None,
("x0", "x1", "x2", "a"),
),
(
# Pandas input, feature_names_out=callable default input_features
{"a": np.random.rand(100), "b": np.random.rand(100)},
lambda transformer, input_features: tuple(input_features) + ("c",),
None,
("a", "b", "c"),
),
(
# NumPy input, input_features=list of names
np.random.rand(100, 3),
"one-to-one",
("a", "b", "c"),
("a", "b", "c"),
),
(
# Pandas input, input_features=list of names
{"a": np.random.rand(100), "b": np.random.rand(100)},
"one-to-one",
("a", "b"), # must match feature_names_in_
("a", "b"),
),
(
# NumPy input, feature_names_out=callable, input_features=list
np.random.rand(100, 3),
lambda transformer, input_features: tuple(input_features) + ("d",),
("a", "b", "c"),
("a", "b", "c", "d"),
),
(
# Pandas input, feature_names_out=callable, input_features=list
{"a": np.random.rand(100), "b": np.random.rand(100)},
lambda transformer, input_features: tuple(input_features) + ("c",),
("a", "b"), # must match feature_names_in_
("a", "b", "c"),
),
],
)
@pytest.mark.parametrize("validate", [True, False])
def test_function_transformer_get_feature_names_out(
X, feature_names_out, input_features, expected, validate
):
if isinstance(X, dict):
pd = pytest.importorskip("pandas")
X = pd.DataFrame(X)
transformer = FunctionTransformer(
feature_names_out=feature_names_out, validate=validate
)
transformer.fit_transform(X)
names = transformer.get_feature_names_out(input_features)
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, expected)
def test_function_transformer_get_feature_names_out_without_validation():
transformer = FunctionTransformer(feature_names_out="one-to-one", validate=False)
X = np.random.rand(100, 2)
transformer.fit_transform(X)
names = transformer.get_feature_names_out(("a", "b"))
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, ("a", "b"))
def test_function_transformer_feature_names_out_is_None():
transformer = FunctionTransformer()
X = np.random.rand(100, 2)
transformer.fit_transform(X)
msg = "This 'FunctionTransformer' has no attribute 'get_feature_names_out'"
with pytest.raises(AttributeError, match=msg):
transformer.get_feature_names_out()
def test_function_transformer_feature_names_out_uses_estimator():
def add_n_random_features(X, n):
return np.concatenate([X, np.random.rand(len(X), n)], axis=1)
def feature_names_out(transformer, input_features):
n = transformer.kw_args["n"]
return list(input_features) + [f"rnd{i}" for i in range(n)]
transformer = FunctionTransformer(
func=add_n_random_features,
feature_names_out=feature_names_out,
kw_args=dict(n=3),
validate=True,
)
pd = pytest.importorskip("pandas")
df = pd.DataFrame({"a": np.random.rand(100), "b": np.random.rand(100)})
transformer.fit_transform(df)
names = transformer.get_feature_names_out()
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, ("a", "b", "rnd0", "rnd1", "rnd2"))
def test_function_transformer_validate_inverse():
"""Test that function transformer does not reset estimator in
`inverse_transform`."""
def add_constant_feature(X):
X_one = np.ones((X.shape[0], 1))
return np.concatenate((X, X_one), axis=1)
def inverse_add_constant(X):
return X[:, :-1]
X = np.array([[1, 2], [3, 4], [3, 4]])
trans = FunctionTransformer(
func=add_constant_feature,
inverse_func=inverse_add_constant,
validate=True,
)
X_trans = trans.fit_transform(X)
assert trans.n_features_in_ == X.shape[1]
trans.inverse_transform(X_trans)
assert trans.n_features_in_ == X.shape[1]
@pytest.mark.parametrize(
"feature_names_out, expected",
[
("one-to-one", ["pet", "color"]),
[lambda est, names: [f"{n}_out" for n in names], ["pet_out", "color_out"]],
],
)
@pytest.mark.parametrize("in_pipeline", [True, False])
def test_get_feature_names_out_dataframe_with_string_data(
feature_names_out, expected, in_pipeline
):
"""Check that get_feature_names_out works with DataFrames with string data."""
pd = pytest.importorskip("pandas")
X = pd.DataFrame({"pet": ["dog", "cat"], "color": ["red", "green"]})
transformer = FunctionTransformer(feature_names_out=feature_names_out)
if in_pipeline:
transformer = make_pipeline(transformer)
X_trans = transformer.fit_transform(X)
assert isinstance(X_trans, pd.DataFrame)
names = transformer.get_feature_names_out()
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, expected)
def test_set_output_func():
"""Check behavior of set_output with different settings."""
pd = pytest.importorskip("pandas")
X = pd.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})
ft = FunctionTransformer(np.log, feature_names_out="one-to-one")
# no warning is raised when feature_names_out is defined
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
ft.set_output(transform="pandas")
X_trans = ft.fit_transform(X)
assert isinstance(X_trans, pd.DataFrame)
assert_array_equal(X_trans.columns, ["a", "b"])
# If feature_names_out is not defined, then a warning is raised in
# `set_output`
ft = FunctionTransformer(lambda x: 2 * x)
msg = "should return a DataFrame to follow the set_output API"
with pytest.warns(UserWarning, match=msg):
ft.set_output(transform="pandas")
X_trans = ft.fit_transform(X)
assert isinstance(X_trans, pd.DataFrame)
assert_array_equal(X_trans.columns, ["a", "b"])