93 lines
3.0 KiB
Python
93 lines
3.0 KiB
Python
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
|
||
|
from sklearn.datasets import make_regression
|
||
|
from sklearn.linear_model import Ridge
|
||
|
from sklearn.kernel_ridge import KernelRidge
|
||
|
from sklearn.metrics.pairwise import pairwise_kernels
|
||
|
from sklearn.utils._testing import ignore_warnings
|
||
|
|
||
|
from sklearn.utils._testing import assert_array_almost_equal
|
||
|
|
||
|
|
||
|
X, y = make_regression(n_features=10, random_state=0)
|
||
|
Xcsr = sp.csr_matrix(X)
|
||
|
Xcsc = sp.csc_matrix(X)
|
||
|
Y = np.array([y, y]).T
|
||
|
|
||
|
|
||
|
def test_kernel_ridge():
|
||
|
pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X)
|
||
|
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X)
|
||
|
assert_array_almost_equal(pred, pred2)
|
||
|
|
||
|
|
||
|
def test_kernel_ridge_csr():
|
||
|
pred = (
|
||
|
Ridge(alpha=1, fit_intercept=False, solver="cholesky")
|
||
|
.fit(Xcsr, y)
|
||
|
.predict(Xcsr)
|
||
|
)
|
||
|
pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr)
|
||
|
assert_array_almost_equal(pred, pred2)
|
||
|
|
||
|
|
||
|
def test_kernel_ridge_csc():
|
||
|
pred = (
|
||
|
Ridge(alpha=1, fit_intercept=False, solver="cholesky")
|
||
|
.fit(Xcsc, y)
|
||
|
.predict(Xcsc)
|
||
|
)
|
||
|
pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc)
|
||
|
assert_array_almost_equal(pred, pred2)
|
||
|
|
||
|
|
||
|
def test_kernel_ridge_singular_kernel():
|
||
|
# alpha=0 causes a LinAlgError in computing the dual coefficients,
|
||
|
# which causes a fallback to a lstsq solver. This is tested here.
|
||
|
pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X)
|
||
|
kr = KernelRidge(kernel="linear", alpha=0)
|
||
|
ignore_warnings(kr.fit)(X, y)
|
||
|
pred2 = kr.predict(X)
|
||
|
assert_array_almost_equal(pred, pred2)
|
||
|
|
||
|
|
||
|
def test_kernel_ridge_precomputed():
|
||
|
for kernel in ["linear", "rbf", "poly", "cosine"]:
|
||
|
K = pairwise_kernels(X, X, metric=kernel)
|
||
|
pred = KernelRidge(kernel=kernel).fit(X, y).predict(X)
|
||
|
pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K)
|
||
|
assert_array_almost_equal(pred, pred2)
|
||
|
|
||
|
|
||
|
def test_kernel_ridge_precomputed_kernel_unchanged():
|
||
|
K = np.dot(X, X.T)
|
||
|
K2 = K.copy()
|
||
|
KernelRidge(kernel="precomputed").fit(K, y)
|
||
|
assert_array_almost_equal(K, K2)
|
||
|
|
||
|
|
||
|
def test_kernel_ridge_sample_weights():
|
||
|
K = np.dot(X, X.T) # precomputed kernel
|
||
|
sw = np.random.RandomState(0).rand(X.shape[0])
|
||
|
|
||
|
pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X)
|
||
|
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X)
|
||
|
pred3 = (
|
||
|
KernelRidge(kernel="precomputed", alpha=1)
|
||
|
.fit(K, y, sample_weight=sw)
|
||
|
.predict(K)
|
||
|
)
|
||
|
assert_array_almost_equal(pred, pred2)
|
||
|
assert_array_almost_equal(pred, pred3)
|
||
|
|
||
|
|
||
|
def test_kernel_ridge_multi_output():
|
||
|
pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X)
|
||
|
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X)
|
||
|
assert_array_almost_equal(pred, pred2)
|
||
|
|
||
|
pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X)
|
||
|
pred3 = np.array([pred3, pred3]).T
|
||
|
assert_array_almost_equal(pred2, pred3)
|