Inzynierka/Lib/site-packages/sklearn/utils/tests/test_utils.py

780 lines
26 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from copy import copy
from itertools import chain
import warnings
import string
import timeit
import pytest
import numpy as np
import scipy.sparse as sp
from sklearn.utils._testing import (
assert_array_equal,
assert_allclose_dense_sparse,
assert_no_warnings,
_convert_container,
)
from sklearn.utils import check_random_state
from sklearn.utils import _determine_key_type
from sklearn.utils import deprecated
from sklearn.utils import gen_batches
from sklearn.utils import _get_column_indices
from sklearn.utils import resample
from sklearn.utils import safe_mask
from sklearn.utils import column_or_1d
from sklearn.utils import _safe_indexing
from sklearn.utils import _safe_assign
from sklearn.utils import shuffle
from sklearn.utils import gen_even_slices
from sklearn.utils import _message_with_time, _print_elapsed_time
from sklearn.utils import get_chunk_n_rows
from sklearn.utils import is_scalar_nan
from sklearn.utils import _to_object_array
from sklearn.utils import _approximate_mode
from sklearn.utils._mocking import MockDataFrame
from sklearn import config_context
# toy array
X_toy = np.arange(9).reshape((3, 3))
def test_make_rng():
# Check the check_random_state utility function behavior
assert check_random_state(None) is np.random.mtrand._rand
assert check_random_state(np.random) is np.random.mtrand._rand
rng_42 = np.random.RandomState(42)
assert check_random_state(42).randint(100) == rng_42.randint(100)
rng_42 = np.random.RandomState(42)
assert check_random_state(rng_42) is rng_42
rng_42 = np.random.RandomState(42)
assert check_random_state(43).randint(100) != rng_42.randint(100)
with pytest.raises(ValueError):
check_random_state("some invalid seed")
def test_gen_batches():
# Make sure gen_batches errors on invalid batch_size
assert_array_equal(list(gen_batches(4, 2)), [slice(0, 2, None), slice(2, 4, None)])
msg_zero = "gen_batches got batch_size=0, must be positive"
with pytest.raises(ValueError, match=msg_zero):
next(gen_batches(4, 0))
msg_float = "gen_batches got batch_size=0.5, must be an integer"
with pytest.raises(TypeError, match=msg_float):
next(gen_batches(4, 0.5))
def test_deprecated():
# Test whether the deprecated decorator issues appropriate warnings
# Copied almost verbatim from https://docs.python.org/library/warnings.html
# First a function...
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
@deprecated()
def ham():
return "spam"
spam = ham()
assert spam == "spam" # function must remain usable
assert len(w) == 1
assert issubclass(w[0].category, FutureWarning)
assert "deprecated" in str(w[0].message).lower()
# ... then a class.
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
@deprecated("don't use this")
class Ham:
SPAM = 1
ham = Ham()
assert hasattr(ham, "SPAM")
assert len(w) == 1
assert issubclass(w[0].category, FutureWarning)
assert "deprecated" in str(w[0].message).lower()
def test_resample():
# Border case not worth mentioning in doctests
assert resample() is None
# Check that invalid arguments yield ValueError
with pytest.raises(ValueError):
resample([0], [0, 1])
with pytest.raises(ValueError):
resample([0, 1], [0, 1], replace=False, n_samples=3)
# Issue:6581, n_samples can be more when replace is True (default).
assert len(resample([1, 2], n_samples=5)) == 5
def test_resample_stratified():
# Make sure resample can stratify
rng = np.random.RandomState(0)
n_samples = 100
p = 0.9
X = rng.normal(size=(n_samples, 1))
y = rng.binomial(1, p, size=n_samples)
_, y_not_stratified = resample(X, y, n_samples=10, random_state=0, stratify=None)
assert np.all(y_not_stratified == 1)
_, y_stratified = resample(X, y, n_samples=10, random_state=0, stratify=y)
assert not np.all(y_stratified == 1)
assert np.sum(y_stratified) == 9 # all 1s, one 0
def test_resample_stratified_replace():
# Make sure stratified resampling supports the replace parameter
rng = np.random.RandomState(0)
n_samples = 100
X = rng.normal(size=(n_samples, 1))
y = rng.randint(0, 2, size=n_samples)
X_replace, _ = resample(
X, y, replace=True, n_samples=50, random_state=rng, stratify=y
)
X_no_replace, _ = resample(
X, y, replace=False, n_samples=50, random_state=rng, stratify=y
)
assert np.unique(X_replace).shape[0] < 50
assert np.unique(X_no_replace).shape[0] == 50
# make sure n_samples can be greater than X.shape[0] if we sample with
# replacement
X_replace, _ = resample(
X, y, replace=True, n_samples=1000, random_state=rng, stratify=y
)
assert X_replace.shape[0] == 1000
assert np.unique(X_replace).shape[0] == 100
def test_resample_stratify_2dy():
# Make sure y can be 2d when stratifying
rng = np.random.RandomState(0)
n_samples = 100
X = rng.normal(size=(n_samples, 1))
y = rng.randint(0, 2, size=(n_samples, 2))
X, y = resample(X, y, n_samples=50, random_state=rng, stratify=y)
assert y.ndim == 2
def test_resample_stratify_sparse_error():
# resample must be ndarray
rng = np.random.RandomState(0)
n_samples = 100
X = rng.normal(size=(n_samples, 2))
y = rng.randint(0, 2, size=n_samples)
stratify = sp.csr_matrix(y)
with pytest.raises(TypeError, match="A sparse matrix was passed"):
X, y = resample(X, y, n_samples=50, random_state=rng, stratify=stratify)
def test_safe_mask():
random_state = check_random_state(0)
X = random_state.rand(5, 4)
X_csr = sp.csr_matrix(X)
mask = [False, False, True, True, True]
mask = safe_mask(X, mask)
assert X[mask].shape[0] == 3
mask = safe_mask(X_csr, mask)
assert X_csr[mask].shape[0] == 3
def test_column_or_1d():
EXAMPLES = [
("binary", ["spam", "egg", "spam"]),
("binary", [0, 1, 0, 1]),
("continuous", np.arange(10) / 20.0),
("multiclass", [1, 2, 3]),
("multiclass", [0, 1, 2, 2, 0]),
("multiclass", [[1], [2], [3]]),
("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]),
("multiclass-multioutput", [[1, 2, 3]]),
("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]),
("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]),
("multiclass-multioutput", [[1, 2, 3]]),
("continuous-multioutput", np.arange(30).reshape((-1, 3))),
]
for y_type, y in EXAMPLES:
if y_type in ["binary", "multiclass", "continuous"]:
assert_array_equal(column_or_1d(y), np.ravel(y))
else:
with pytest.raises(ValueError):
column_or_1d(y)
@pytest.mark.parametrize(
"key, dtype",
[
(0, "int"),
("0", "str"),
(True, "bool"),
(np.bool_(True), "bool"),
([0, 1, 2], "int"),
(["0", "1", "2"], "str"),
((0, 1, 2), "int"),
(("0", "1", "2"), "str"),
(slice(None, None), None),
(slice(0, 2), "int"),
(np.array([0, 1, 2], dtype=np.int32), "int"),
(np.array([0, 1, 2], dtype=np.int64), "int"),
(np.array([0, 1, 2], dtype=np.uint8), "int"),
([True, False], "bool"),
((True, False), "bool"),
(np.array([True, False]), "bool"),
("col_0", "str"),
(["col_0", "col_1", "col_2"], "str"),
(("col_0", "col_1", "col_2"), "str"),
(slice("begin", "end"), "str"),
(np.array(["col_0", "col_1", "col_2"]), "str"),
(np.array(["col_0", "col_1", "col_2"], dtype=object), "str"),
],
)
def test_determine_key_type(key, dtype):
assert _determine_key_type(key) == dtype
def test_determine_key_type_error():
with pytest.raises(ValueError, match="No valid specification of the"):
_determine_key_type(1.0)
def test_determine_key_type_slice_error():
with pytest.raises(TypeError, match="Only array-like or scalar are"):
_determine_key_type(slice(0, 2, 1), accept_slice=False)
@pytest.mark.parametrize("array_type", ["list", "array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series", "slice"])
def test_safe_indexing_2d_container_axis_0(array_type, indices_type):
indices = [1, 2]
if indices_type == "slice" and isinstance(indices[1], int):
indices[1] += 1
array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type)
indices = _convert_container(indices, indices_type)
subset = _safe_indexing(array, indices, axis=0)
assert_allclose_dense_sparse(
subset, _convert_container([[4, 5, 6], [7, 8, 9]], array_type)
)
@pytest.mark.parametrize("array_type", ["list", "array", "series"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series", "slice"])
def test_safe_indexing_1d_container(array_type, indices_type):
indices = [1, 2]
if indices_type == "slice" and isinstance(indices[1], int):
indices[1] += 1
array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type)
indices = _convert_container(indices, indices_type)
subset = _safe_indexing(array, indices, axis=0)
assert_allclose_dense_sparse(subset, _convert_container([2, 3], array_type))
@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series", "slice"])
@pytest.mark.parametrize("indices", [[1, 2], ["col_1", "col_2"]])
def test_safe_indexing_2d_container_axis_1(array_type, indices_type, indices):
# validation of the indices
# we make a copy because indices is mutable and shared between tests
indices_converted = copy(indices)
if indices_type == "slice" and isinstance(indices[1], int):
indices_converted[1] += 1
columns_name = ["col_0", "col_1", "col_2"]
array = _convert_container(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name
)
indices_converted = _convert_container(indices_converted, indices_type)
if isinstance(indices[0], str) and array_type != "dataframe":
err_msg = (
"Specifying the columns using strings is only supported "
"for pandas DataFrames"
)
with pytest.raises(ValueError, match=err_msg):
_safe_indexing(array, indices_converted, axis=1)
else:
subset = _safe_indexing(array, indices_converted, axis=1)
assert_allclose_dense_sparse(
subset, _convert_container([[2, 3], [5, 6], [8, 9]], array_type)
)
@pytest.mark.parametrize("array_read_only", [True, False])
@pytest.mark.parametrize("indices_read_only", [True, False])
@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["array", "series"])
@pytest.mark.parametrize(
"axis, expected_array", [(0, [[4, 5, 6], [7, 8, 9]]), (1, [[2, 3], [5, 6], [8, 9]])]
)
def test_safe_indexing_2d_read_only_axis_1(
array_read_only, indices_read_only, array_type, indices_type, axis, expected_array
):
array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
if array_read_only:
array.setflags(write=False)
array = _convert_container(array, array_type)
indices = np.array([1, 2])
if indices_read_only:
indices.setflags(write=False)
indices = _convert_container(indices, indices_type)
subset = _safe_indexing(array, indices, axis=axis)
assert_allclose_dense_sparse(subset, _convert_container(expected_array, array_type))
@pytest.mark.parametrize("array_type", ["list", "array", "series"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series"])
def test_safe_indexing_1d_container_mask(array_type, indices_type):
indices = [False] + [True] * 2 + [False] * 6
array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type)
indices = _convert_container(indices, indices_type)
subset = _safe_indexing(array, indices, axis=0)
assert_allclose_dense_sparse(subset, _convert_container([2, 3], array_type))
@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series"])
@pytest.mark.parametrize(
"axis, expected_subset",
[(0, [[4, 5, 6], [7, 8, 9]]), (1, [[2, 3], [5, 6], [8, 9]])],
)
def test_safe_indexing_2d_mask(array_type, indices_type, axis, expected_subset):
columns_name = ["col_0", "col_1", "col_2"]
array = _convert_container(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name
)
indices = [False, True, True]
indices = _convert_container(indices, indices_type)
subset = _safe_indexing(array, indices, axis=axis)
assert_allclose_dense_sparse(
subset, _convert_container(expected_subset, array_type)
)
@pytest.mark.parametrize(
"array_type, expected_output_type",
[
("list", "list"),
("array", "array"),
("sparse", "sparse"),
("dataframe", "series"),
],
)
def test_safe_indexing_2d_scalar_axis_0(array_type, expected_output_type):
array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type)
indices = 2
subset = _safe_indexing(array, indices, axis=0)
expected_array = _convert_container([7, 8, 9], expected_output_type)
assert_allclose_dense_sparse(subset, expected_array)
@pytest.mark.parametrize("array_type", ["list", "array", "series"])
def test_safe_indexing_1d_scalar(array_type):
array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type)
indices = 2
subset = _safe_indexing(array, indices, axis=0)
assert subset == 3
@pytest.mark.parametrize(
"array_type, expected_output_type",
[("array", "array"), ("sparse", "sparse"), ("dataframe", "series")],
)
@pytest.mark.parametrize("indices", [2, "col_2"])
def test_safe_indexing_2d_scalar_axis_1(array_type, expected_output_type, indices):
columns_name = ["col_0", "col_1", "col_2"]
array = _convert_container(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name
)
if isinstance(indices, str) and array_type != "dataframe":
err_msg = (
"Specifying the columns using strings is only supported "
"for pandas DataFrames"
)
with pytest.raises(ValueError, match=err_msg):
_safe_indexing(array, indices, axis=1)
else:
subset = _safe_indexing(array, indices, axis=1)
expected_output = [3, 6, 9]
if expected_output_type == "sparse":
# sparse matrix are keeping the 2D shape
expected_output = [[3], [6], [9]]
expected_array = _convert_container(expected_output, expected_output_type)
assert_allclose_dense_sparse(subset, expected_array)
@pytest.mark.parametrize("array_type", ["list", "array", "sparse"])
def test_safe_indexing_None_axis_0(array_type):
X = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type)
X_subset = _safe_indexing(X, None, axis=0)
assert_allclose_dense_sparse(X_subset, X)
def test_safe_indexing_pandas_no_matching_cols_error():
pd = pytest.importorskip("pandas")
err_msg = "No valid specification of the columns."
X = pd.DataFrame(X_toy)
with pytest.raises(ValueError, match=err_msg):
_safe_indexing(X, [1.0], axis=1)
@pytest.mark.parametrize("axis", [None, 3])
def test_safe_indexing_error_axis(axis):
with pytest.raises(ValueError, match="'axis' should be either 0"):
_safe_indexing(X_toy, [0, 1], axis=axis)
@pytest.mark.parametrize("X_constructor", ["array", "series"])
def test_safe_indexing_1d_array_error(X_constructor):
# check that we are raising an error if the array-like passed is 1D and
# we try to index on the 2nd dimension
X = list(range(5))
if X_constructor == "array":
X_constructor = np.asarray(X)
elif X_constructor == "series":
pd = pytest.importorskip("pandas")
X_constructor = pd.Series(X)
err_msg = "'X' should be a 2D NumPy array, 2D sparse matrix or pandas"
with pytest.raises(ValueError, match=err_msg):
_safe_indexing(X_constructor, [0, 1], axis=1)
def test_safe_indexing_container_axis_0_unsupported_type():
indices = ["col_1", "col_2"]
array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
err_msg = "String indexing is not supported with 'axis=0'"
with pytest.raises(ValueError, match=err_msg):
_safe_indexing(array, indices, axis=0)
def test_safe_indexing_pandas_no_settingwithcopy_warning():
# Using safe_indexing with an array-like indexer gives a copy of the
# DataFrame -> ensure it doesn't raise a warning if modified
pd = pytest.importorskip("pandas")
X = pd.DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]})
subset = _safe_indexing(X, [0, 1], axis=0)
if hasattr(pd.errors, "SettingWithCopyWarning"):
SettingWithCopyWarning = pd.errors.SettingWithCopyWarning
else:
# backward compatibility for pandas < 1.5
SettingWithCopyWarning = pd.core.common.SettingWithCopyWarning
with warnings.catch_warnings():
warnings.simplefilter("error", SettingWithCopyWarning)
subset.iloc[0, 0] = 10
# The original dataframe is unaffected by the assignment on the subset:
assert X.iloc[0, 0] == 1
@pytest.mark.parametrize(
"key, err_msg",
[
(10, r"all features must be in \[0, 2\]"),
("whatever", "A given column is not a column of the dataframe"),
],
)
def test_get_column_indices_error(key, err_msg):
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame(X_toy, columns=["col_0", "col_1", "col_2"])
with pytest.raises(ValueError, match=err_msg):
_get_column_indices(X_df, key)
@pytest.mark.parametrize(
"key", [["col1"], ["col2"], ["col1", "col2"], ["col1", "col3"], ["col2", "col3"]]
)
def test_get_column_indices_pandas_nonunique_columns_error(key):
pd = pytest.importorskip("pandas")
toy = np.zeros((1, 5), dtype=int)
columns = ["col1", "col1", "col2", "col3", "col2"]
X = pd.DataFrame(toy, columns=columns)
err_msg = "Selected columns, {}, are not unique in dataframe".format(key)
with pytest.raises(ValueError) as exc_info:
_get_column_indices(X, key)
assert str(exc_info.value) == err_msg
def test_shuffle_on_ndim_equals_three():
def to_tuple(A): # to make the inner arrays hashable
return tuple(tuple(tuple(C) for C in B) for B in A)
A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2)
S = set(to_tuple(A))
shuffle(A) # shouldn't raise a ValueError for dim = 3
assert set(to_tuple(A)) == S
def test_shuffle_dont_convert_to_array():
# Check that shuffle does not try to convert to numpy arrays with float
# dtypes can let any indexable datastructure pass-through.
a = ["a", "b", "c"]
b = np.array(["a", "b", "c"], dtype=object)
c = [1, 2, 3]
d = MockDataFrame(np.array([["a", 0], ["b", 1], ["c", 2]], dtype=object))
e = sp.csc_matrix(np.arange(6).reshape(3, 2))
a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0)
assert a_s == ["c", "b", "a"]
assert type(a_s) == list
assert_array_equal(b_s, ["c", "b", "a"])
assert b_s.dtype == object
assert c_s == [3, 2, 1]
assert type(c_s) == list
assert_array_equal(d_s, np.array([["c", 2], ["b", 1], ["a", 0]], dtype=object))
assert type(d_s) == MockDataFrame
assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]]))
def test_gen_even_slices():
# check that gen_even_slices contains all samples
some_range = range(10)
joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)]))
assert_array_equal(some_range, joined_range)
# check that passing negative n_chunks raises an error
slices = gen_even_slices(10, -1)
with pytest.raises(ValueError, match="gen_even_slices got n_packs=-1, must be >=1"):
next(slices)
@pytest.mark.parametrize(
("row_bytes", "max_n_rows", "working_memory", "expected"),
[
(1024, None, 1, 1024),
(1024, None, 0.99999999, 1023),
(1023, None, 1, 1025),
(1025, None, 1, 1023),
(1024, None, 2, 2048),
(1024, 7, 1, 7),
(1024 * 1024, None, 1, 1),
],
)
def test_get_chunk_n_rows(row_bytes, max_n_rows, working_memory, expected):
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
actual = get_chunk_n_rows(
row_bytes=row_bytes,
max_n_rows=max_n_rows,
working_memory=working_memory,
)
assert actual == expected
assert type(actual) is type(expected)
with config_context(working_memory=working_memory):
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
actual = get_chunk_n_rows(row_bytes=row_bytes, max_n_rows=max_n_rows)
assert actual == expected
assert type(actual) is type(expected)
def test_get_chunk_n_rows_warns():
"""Check that warning is raised when working_memory is too low."""
row_bytes = 1024 * 1024 + 1
max_n_rows = None
working_memory = 1
expected = 1
warn_msg = (
"Could not adhere to working_memory config. Currently 1MiB, 2MiB required."
)
with pytest.warns(UserWarning, match=warn_msg):
actual = get_chunk_n_rows(
row_bytes=row_bytes,
max_n_rows=max_n_rows,
working_memory=working_memory,
)
assert actual == expected
assert type(actual) is type(expected)
with config_context(working_memory=working_memory):
with pytest.warns(UserWarning, match=warn_msg):
actual = get_chunk_n_rows(row_bytes=row_bytes, max_n_rows=max_n_rows)
assert actual == expected
assert type(actual) is type(expected)
@pytest.mark.parametrize(
["source", "message", "is_long"],
[
("ABC", string.ascii_lowercase, False),
("ABCDEF", string.ascii_lowercase, False),
("ABC", string.ascii_lowercase * 3, True),
("ABC" * 10, string.ascii_lowercase, True),
("ABC", string.ascii_lowercase + "\u1048", False),
],
)
@pytest.mark.parametrize(
["time", "time_str"],
[
(0.2, " 0.2s"),
(20, " 20.0s"),
(2000, "33.3min"),
(20000, "333.3min"),
],
)
def test_message_with_time(source, message, is_long, time, time_str):
out = _message_with_time(source, message, time)
if is_long:
assert len(out) > 70
else:
assert len(out) == 70
assert out.startswith("[" + source + "] ")
out = out[len(source) + 3 :]
assert out.endswith(time_str)
out = out[: -len(time_str)]
assert out.endswith(", total=")
out = out[: -len(", total=")]
assert out.endswith(message)
out = out[: -len(message)]
assert out.endswith(" ")
out = out[:-1]
if is_long:
assert not out
else:
assert list(set(out)) == ["."]
@pytest.mark.parametrize(
["message", "expected"],
[
("hello", _message_with_time("ABC", "hello", 0.1) + "\n"),
("", _message_with_time("ABC", "", 0.1) + "\n"),
(None, ""),
],
)
def test_print_elapsed_time(message, expected, capsys, monkeypatch):
monkeypatch.setattr(timeit, "default_timer", lambda: 0)
with _print_elapsed_time("ABC", message):
monkeypatch.setattr(timeit, "default_timer", lambda: 0.1)
assert capsys.readouterr().out == expected
@pytest.mark.parametrize(
"value, result",
[
(float("nan"), True),
(np.nan, True),
(float(np.nan), True),
(np.float32(np.nan), True),
(np.float64(np.nan), True),
(0, False),
(0.0, False),
(None, False),
("", False),
("nan", False),
([np.nan], False),
(9867966753463435747313673, False), # Python int that overflows with C type
],
)
def test_is_scalar_nan(value, result):
assert is_scalar_nan(value) is result
# make sure that we are returning a Python bool
assert isinstance(is_scalar_nan(value), bool)
def test_approximate_mode():
"""Make sure sklearn.utils._approximate_mode returns valid
results for cases where "class_counts * n_draws" is enough
to overflow 32-bit signed integer.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/20774
"""
X = np.array([99000, 1000], dtype=np.int32)
ret = _approximate_mode(class_counts=X, n_draws=25000, rng=0)
# Draws 25% of the total population, so in this case a fair draw means:
# 25% * 99.000 = 24.750
# 25% * 1.000 = 250
assert_array_equal(ret, [24750, 250])
def dummy_func():
pass
def test_deprecation_joblib_api(tmpdir):
# Only parallel_backend and register_parallel_backend are not deprecated in
# sklearn.utils
from sklearn.utils import parallel_backend, register_parallel_backend
assert_no_warnings(parallel_backend, "loky", None)
assert_no_warnings(register_parallel_backend, "failing", None)
from sklearn.utils._joblib import joblib
del joblib.parallel.BACKENDS["failing"]
@pytest.mark.parametrize("sequence", [[np.array(1), np.array(2)], [[1, 2], [3, 4]]])
def test_to_object_array(sequence):
out = _to_object_array(sequence)
assert isinstance(out, np.ndarray)
assert out.dtype.kind == "O"
assert out.ndim == 1
@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
def test_safe_assign(array_type):
"""Check that `_safe_assign` works as expected."""
rng = np.random.RandomState(0)
X_array = rng.randn(10, 5)
row_indexer = [1, 2]
values = rng.randn(len(row_indexer), X_array.shape[1])
X = _convert_container(X_array, array_type)
_safe_assign(X, values, row_indexer=row_indexer)
assigned_portion = _safe_indexing(X, row_indexer, axis=0)
assert_allclose_dense_sparse(
assigned_portion, _convert_container(values, array_type)
)
column_indexer = [1, 2]
values = rng.randn(X_array.shape[0], len(column_indexer))
X = _convert_container(X_array, array_type)
_safe_assign(X, values, column_indexer=column_indexer)
assigned_portion = _safe_indexing(X, column_indexer, axis=1)
assert_allclose_dense_sparse(
assigned_portion, _convert_container(values, array_type)
)
row_indexer, column_indexer = None, None
values = rng.randn(*X.shape)
X = _convert_container(X_array, array_type)
_safe_assign(X, values, column_indexer=column_indexer)
assert_allclose_dense_sparse(X, _convert_container(values, array_type))