Inzynierka/Lib/site-packages/joblib/backports.py

191 lines
5.9 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""
Backports of fixes for joblib dependencies
"""
import os
import re
import time
from os.path import basename
from multiprocessing import util
# Prior to joblib 1.2, joblib used to import LooseVersion from
# distutils.version. This import had a side-effect with setuptools that was
# implicitly required in sklearn.show_versions() to work without raising an
# exception for scikit-learn 1.0 and earlier. This has been fixed in
# scikit-learn 1.1 (not yet released at the time of writing), see:
# https://github.com/scikit-learn/scikit-learn/issues/22614
#
# To avoid unnecessary disruption for users who might update to joblib 1.2
# prior to a release of scikit-learn that includes the fix, let's keep on
# importing distutils here. TODO: Remove this for a future release of joblib,
# e.g. 6 months after the release of scikit-learn 1.1.
import distutils # noqa
class Version:
"""Backport from deprecated distutils
We maintain this backport to avoid introducing a new dependency on
`packaging`.
We might rexplore this choice in the future if all major Python projects
introduce a dependency on packaging anyway.
"""
def __init__(self, vstring=None):
if vstring:
self.parse(vstring)
def __repr__(self):
return "%s ('%s')" % (self.__class__.__name__, str(self))
def __eq__(self, other):
c = self._cmp(other)
if c is NotImplemented:
return c
return c == 0
def __lt__(self, other):
c = self._cmp(other)
if c is NotImplemented:
return c
return c < 0
def __le__(self, other):
c = self._cmp(other)
if c is NotImplemented:
return c
return c <= 0
def __gt__(self, other):
c = self._cmp(other)
if c is NotImplemented:
return c
return c > 0
def __ge__(self, other):
c = self._cmp(other)
if c is NotImplemented:
return c
return c >= 0
class LooseVersion(Version):
"""Backport from deprecated distutils
We maintain this backport to avoid introducing a new dependency on
`packaging`.
We might rexplore this choice in the future if all major Python projects
introduce a dependency on packaging anyway.
"""
component_re = re.compile(r'(\d+ | [a-z]+ | \.)', re.VERBOSE)
def __init__(self, vstring=None):
if vstring:
self.parse(vstring)
def parse(self, vstring):
# I've given up on thinking I can reconstruct the version string
# from the parsed tuple -- so I just store the string here for
# use by __str__
self.vstring = vstring
components = [x for x in self.component_re.split(vstring)
if x and x != '.']
for i, obj in enumerate(components):
try:
components[i] = int(obj)
except ValueError:
pass
self.version = components
def __str__(self):
return self.vstring
def __repr__(self):
return "LooseVersion ('%s')" % str(self)
def _cmp(self, other):
if isinstance(other, str):
other = LooseVersion(other)
elif not isinstance(other, LooseVersion):
return NotImplemented
if self.version == other.version:
return 0
if self.version < other.version:
return -1
if self.version > other.version:
return 1
try:
import numpy as np
def make_memmap(filename, dtype='uint8', mode='r+', offset=0,
shape=None, order='C', unlink_on_gc_collect=False):
"""Custom memmap constructor compatible with numpy.memmap.
This function:
- is a backport the numpy memmap offset fix (See
https://github.com/numpy/numpy/pull/8443 for more details.
The numpy fix is available starting numpy 1.13)
- adds ``unlink_on_gc_collect``, which specifies explicitly whether
the process re-constructing the memmap owns a reference to the
underlying file. If set to True, it adds a finalizer to the
newly-created memmap that sends a maybe_unlink request for the
memmaped file to resource_tracker.
"""
util.debug(
"[MEMMAP READ] creating a memmap (shape {}, filename {}, "
"pid {})".format(shape, basename(filename), os.getpid())
)
mm = np.memmap(filename, dtype=dtype, mode=mode, offset=offset,
shape=shape, order=order)
if LooseVersion(np.__version__) < '1.13':
mm.offset = offset
if unlink_on_gc_collect:
from ._memmapping_reducer import add_maybe_unlink_finalizer
add_maybe_unlink_finalizer(mm)
return mm
except ImportError:
def make_memmap(filename, dtype='uint8', mode='r+', offset=0,
shape=None, order='C', unlink_on_gc_collect=False):
raise NotImplementedError(
"'joblib.backports.make_memmap' should not be used "
'if numpy is not installed.')
if os.name == 'nt':
# https://github.com/joblib/joblib/issues/540
access_denied_errors = (5, 13)
from os import replace
def concurrency_safe_rename(src, dst):
"""Renames ``src`` into ``dst`` overwriting ``dst`` if it exists.
On Windows os.replace can yield permission errors if executed by two
different processes.
"""
max_sleep_time = 1
total_sleep_time = 0
sleep_time = 0.001
while total_sleep_time < max_sleep_time:
try:
replace(src, dst)
break
except Exception as exc:
if getattr(exc, 'winerror', None) in access_denied_errors:
time.sleep(sleep_time)
total_sleep_time += sleep_time
sleep_time *= 2
else:
raise
else:
raise
else:
from os import replace as concurrency_safe_rename # noqa