Inzynierka/Lib/site-packages/numpy/array_api/_statistical_functions.py

116 lines
3.3 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from __future__ import annotations
from ._dtypes import (
_floating_dtypes,
_numeric_dtypes,
)
from ._array_object import Array
from ._creation_functions import asarray
from ._dtypes import float32, float64
from typing import TYPE_CHECKING, Optional, Tuple, Union
if TYPE_CHECKING:
from ._typing import Dtype
import numpy as np
def max(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in max")
return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
def mean(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in mean")
return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims))
def min(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in min")
return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
def prod(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
dtype: Optional[Dtype] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in prod")
# Note: sum() and prod() always upcast float32 to float64 for dtype=None
# We need to do so here before computing the product to avoid overflow
if dtype is None and x.dtype == float32:
dtype = float64
return Array._new(np.prod(x._array, dtype=dtype, axis=axis, keepdims=keepdims))
def std(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0,
keepdims: bool = False,
) -> Array:
# Note: the keyword argument correction is different here
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in std")
return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))
def sum(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
dtype: Optional[Dtype] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in sum")
# Note: sum() and prod() always upcast integers to (u)int64 and float32 to
# float64 for dtype=None. `np.sum` does that too for integers, but not for
# float32, so we need to special-case it here
if dtype is None and x.dtype == float32:
dtype = float64
return Array._new(np.sum(x._array, axis=axis, dtype=dtype, keepdims=keepdims))
def var(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0,
keepdims: bool = False,
) -> Array:
# Note: the keyword argument correction is different here
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in var")
return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))